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Modern photon-counting pixel detectors have enabled a revolution in

applications at synchrotron light sources and beyond in the last decade. One

of the limitations of the current detectors is their reduced counting linearity or

even paralysis at high counting rates, due to dead-time which results in photon

pile-up. Existing dead-time and pile-up models fail to reproduce the complexity

of dead-time effects on photon-counting, resulting in empirical calibrations for

particular detectors at best, imprecise linearization methods, or no linearization.

This problem will increase in the future as many synchrotron light sources plan

significant brilliance upgrades and free-electron lasers plan moving to a quasi-

continuous operation mode. Presented here are the first models that use the

actual behavior of the analog pre-amplifiers in spectroscopic photon-counting

pixel detectors with constant current discharge (e.g. the Medipix and CPix

families of detectors) to deduce more accurate analytical models and optimal

linearization methods. In particular, for detectors with at least two counters per

pixel, the need for calibration, or previous knowledge of the detector and beam

parameters (dead-time, integration time, large sets of synchrotron filling

patterns), is completely eliminated. This is summarized in several models of

increasing complexity and accuracy. Finally, a general empirical approach is

presented, applicable to any particular cases where the analytical approach is

not sufficiently precise.

1. Introduction

Modern photon science was made possible by the advent of

hybrid pixel detectors (Heijne et al., 1988; Anghinolfi et al.,

1992), leveraging developments in commercial application-

specific integrated circuit (ASIC) design while separating it

from sensor design. This enabled almost two decades ago the

first highly segmented photon-counting pixel detectors, with

64 K photon-counting pixels per ASIC (Llopart et al., 2001).

Entire research fields would be unrecognizable without the

current wide availability of photon-counting detectors: protein

crystallography (Hülsen et al., 2006), industrial X-ray diffrac-

tion (de Vries et al., 2007), electron microscopy (Sikharulidze

et al., 2011), medical imaging (Taguchi & Iwanczyk, 2013),

computed tomography (Pöllmann et al., 2010) and X-ray

pump–probe techniques (Kenney et al., 2013).

One of the limitations of current photon-counting pixel

detectors is the loss of linearity at high counting rates,

followed by saturation and paralysis at even higher photon

rates (Walko et al., 2008). This problem is set to increase in

the near future, as many synchrotron facilities are planning

substantial upgrades in brilliance (Chenevier & Joly, 2018) and

free-electron laser facilities are considering operating in a
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quasi-continuous-wave mode in the future (Brinkmann et al.,

2014; Marcus & Raubenheimer, 2017).

Ultrafast integrating pixel detectors currently under

development will be able to operate at 100 kHz and count

linearly at extremely high photon fluxes towards 108 photons

per pixel per second (Blaj et al., 2014, 2015, 2016a, 2019b),

while also providing full spectral information on a photon-by-

photon basis (at low photon occupancies) (Blaj et al., 2016b).

However, until these detectors become available and practical

for applications outside the demanding area of free-electron

laser applications (Graafsma, 2009; Blaj et al., 2016c), it is

useful to improve the performance of currently available

photon-counting (Ballabriga et al., 2016) or time-over-

threshold (TOT) detectors (Llopart et al., 2007; Poikela et al.,

2014; Johnson et al., 2014).

One approach to linearizing the saturation behavior of

photon-counting detectors is to model the dead-time in

detectors with a single counter and calculate a transformation

function for linearization. Current models describing the

dead-time and counting behavior of photon-counting pixel

detectors are incomplete, relying on characterizing the

response of a single counter in a particular detector as a

function of experimental conditions, e.g. the Mythen (Berga-

maschi et al., 2011), Pilatus (Trueb et al., 2012) or Eiger

(Johnson et al., 2014) detectors; assuming a fixed dead-time

(Bateman, 2000; Knoll, 2010; Taguchi et al., 2011); and

discussing the effect of photon energy and threshold on

counting with an exponential decay pulse shape for the analog

signal (Bergamaschi et al., 2011). Note, however, that these

detectors use an exponential decay pulse shaping (Brönni-

mann & Trüb, 2014) and have only one counter (Ballabriga et

al., 2016), unlike spectroscopic photon-counting detectors.

Several simplified analytical models are discussed by Walko

et al. (2008): non-extended dead-time, extended dead-time

and ‘isolated’ dead-time applicable to e.g. scintillators and

avalanche photodiodes, thus progressing towards explaining

the count rate of single-photon-counting detectors beyond the

previous methods; however, the model only takes into account

fixed extendable dead-time. The inadequacies of the current

dead-time models and the limited performance in photon-

counting linearization have been noted in the literature

(Sobott et al., 2013).

Other approaches to linearizing the saturation behavior of

photon-counting detectors include: (i) using two thresholds

and summing their counting rates, which yields a modest

increase in linearity (Schmitt et al., 2015); (ii) designing

complex detectors combining photon-counting with TOT

information (Bergamaschi et al., 2011; Schmitt et al., 2015),

with performance limited by the precision of the TOT

measurements (Schmitt et al., 2015); (iii) designing detectors

with two different shaping times, then modeling and correcting

their behavior (Abbene & Gerardi, 2015); or (iv) using pixels

with two thresholds and counters, and calculating the sum of

the lower counter with a multiplication by a fixed factor with

the higher counter (Kappler et al., 2010, 2012; Kraft et al.,

2012), similar to (i), although it must be noted that the fixed

factor is only valid at a particular photon rate.

We present here a statistical approach to modeling dead-

time and counting nonlinearities for typical spectroscopic

detectors (i.e. with multiple energy thresholds) and a constant

current discharge of the feedback capacitor (Krummenacher,

1991; Llopart et al., 2001, 2007; Ballabriga et al., 2013) and

resulting pile-up counter models. These models reproduce the

characteristics of counter rates as a function of photon rate.

Finally, we discuss the effect of typical synchrotron fill patterns

on the counting rate. This is relevant for the entire community

of photon-counting detector research, applications and their

users (Ballabriga et al., 2016).

2. Photon-counting pixel detectors

2.1. Analog signal

A sensor (typically a reverse-biased p–n junction) detects

a photon which is converted into electron–hole pairs.

Depending on the sensor, holes (usually, for n-type silicon

sensors) or electrons drift toward the pixel flip-chip bonding

pads (Blaj et al., 2017b). The charge is collected, amplified and

converted to a voltage in the charge preamplifier of each pixel

(Llopart et al., 2001). For simplicity, we will call the analog

output voltage of the charge preamplifier the ‘signal’.

Typically, the preamplifier is implemented with a constant

current discharge of the feedback capacitor (Krummenacher,

1991; Llopart et al., 2001), resulting in an approximately

triangular pulse shape as depicted in Fig. 1. This pulse is then

compared with one or more thresholds (Ballabriga et al.,

2013).
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Figure 1
An example of the typical signal presented to the threshold comparator,
resulting from a relatively short shaping time and a constant discharge
current (black line), corresponding to discrete photon arrival times (red
line). The two comparator thresholds (1

2 and 3
2) are indicated by the blue

dotted lines. Typically, individual photons only trigger the lower threshold
(most photons shown), but occasionally the time difference between two
photons is short enough to lead to pile-up and triggering of the higher
threshold (near t = 0.6 ms). The example shown here corresponds to a
normalized photon rate 2�� = 0.2, where 2� is the decay time of the
analog signal from 1 to 0. � indicates the time for the signal from one
photon to return to 1

2, 2� for the one-photon signal to return to 0 and 4�
for the two-photon signal to return to zero.



2.2. Photon-counting

One or more threshold comparators are connected to the

corresponding counters, and when the signal exceeds one of

the thresholds the corresponding counter is incremented by 1

(Llopart et al., 2001). The ‘photon-counting’ approach thus

discards small signals and the corresponding noise (along

with detailed spectral information of individual photons),

providing a compact lossy summary of the data (Tlustos, 2005;

Blaj et al., 2016b; Michalowska-Forsyth, 2018); most of the

noise is still present (superimposed on the photon signals),

leading to the relatively limited spectroscopic resolution of

photon-counting detectors (Tlustos, 2005).

The thresholds must be set judiciously to minimize the

effect of charge sharing along the edges between two pixels;

this corresponds to a setting of 1
2 of the expected photon signal

amplitude for detectors with a single threshold, or settings of 1
2

and 3
2 of the expected photon signal amplitude for detectors

with two thresholds (see the blue dotted lines in Fig. 1). When

each of these thresholds is exceeded, the corresponding

counters C0 and C1 are incremented by 1. Note that when set

at the default value of 3
2, C2 can only be triggered by pile-up,

i.e. two photons arriving within a short time �.
In most photon-counting pixel detectors this results in

reduced quantum efficiency at the corners of four pixels

(Gimenez et al., 2011), unless a complex ‘charge-summing’

mode is implemented (Ballabriga et al., 2007, 2013; Gimenez et

al., 2011). More than two thresholds are available in some

detectors, e.g. up to eight for the Medipix3RX (Ballabriga et

al., 2013); see the review by Ballabriga et al. (2016).

2.3. Photon pile-up

With typical X-ray sources of constant intensity, photon

detection is a Poisson process; the time intervals between

successive photon arrival times t follow an exponential

distribution � � exp(��t), where � is the average photon rate

per pixel.

Single photon counts are typically obtained as C0 � C1 (i.e.

by subtracting photon pile-up counts C1 from the total number

of detected events C0). Note that multiple comparators

threshold the same signal, thus the noise corresponding to the

counting statistics is limited to 1/(C0� C1)1/2. Photon-counting

detectors with a single threshold and counter could perform a

two-threshold measurement sequentially, but C0 and C1 would

be statistically independent, leading to larger errors [of the

order of (C0 + C1)1/2/(C0 � C1)].

Photon pile-up can either result in peak pile-up (when

photons arrive at very short intervals), triggering comparators

corresponding to the sum of their energies; or in spectral

distortion when a second photon arrives on the tail of the

pulse of a previous photon (Ballabriga et al., 2016). In either

case, the pile-up can be modeled, resulting in methods to

linearize the response of the counters.

In applications with a complex spectrum, the photon pile-up

can be difficult to recover (Blaj et al., 2017a), especially with

the lossy information collected by photon-counting detectors.

Spectroscopic detectors with two or more thresholds and

counters could be used to recover some of the lost informa-

tion. However, many of the applications with the highest

dynamic ranges use (quasi-)monochromatic radiation, e.g.

protein crystallography (Hülsen et al., 2006), X-ray reflecto-

metry (de Vries et al., 2007), X-ray computed tomography

(Pöllmann et al., 2010), X-ray imaging (Procz et al., 2011) and

wavelength-dispersive spectrometry (Blaj et al., 2019a), which

simplifies considerably the task of estimating the effect of

photon pile-up on the counters and linearizing the pixel

response.

2.4. Simulation of pile-up and effects on counters

To test the analytical correction methods in Section 3, we

implemented a Monte Carlo simulator for estimating and

modeling the effect of pile-up on the counters of photon-

counting pixel detectors, using several assumptions: (i)

monochromatic radiation, (ii) a constant discharge current of

the feedback capacitor, resulting in a triangular pulse shape

with abrupt onset; (iii) a fast shaping time compared with the

discharge time, resulting in a triangular pulse shape; (iv) two

thresholds set at 1
2 and 3

2 of the pulse height for the photons,

corresponding to counters C0 and C1, respectively; (v) the

entire charge from one photon being deposited in a single

pixel, thus ignoring charge sharing.

We simulated frame shutter times of 10 s (for improved

statistics), with a time step of 10 ns and a dead-time of 100 ns

(i.e. the time � for the signal to return from 1 to 1
2 and re-enable

counting in C0, or half of the time 2� for the signal to return

to the baseline). Note that the actual dead-time � has an

approximately linear dependence on photon energy. We

simulated a large number of photon rates �, varying from

5 � 103 to 5 � 106 photons per pixel per second. The results

are shown in Fig. 2, with the saturation effect clearly visible
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Figure 2
The simulated counter rate as a function of photon flux with T = 10 s and
� = 100 ns. Both counters C0 and C1 (corresponding to thresholds of 1

2 and
3
2, respectively) have a complex dependency on the actual photon rate �
and deviate considerably from the ideal response (blue dashed line).
When 2�� exceeds 1 (corresponding to 5 M counts per pixel per second),
the circuit is driven into saturation, resulting in counting paralysis. Note
that using a single counter results in two different photon fluxes
corresponding to a single counter value; using a second counter solves the
confusion and effectively doubles the useful range.



for both counters. Note the similarities and differences in

the shape of counter C0 with the experimental measurements

in Fig. 6 of the paper by Sobott et al. (2013) and in Fig. 5 of

the paper by Kraft et al. (2012). The similarities are due to

photon pile-up, while the differences are due to the constant

current discharge in Fig. 2 compared with the exponential

discharge.

Note that using a single counter results in two different

photon fluxes corresponding to a single counter value; using a

second counter solves the confusion and effectively doubles

the useful range.

While some detectors might use two thresholds to incre-

ment a single counter using counter logic (e.g. Llopart et al.,

2001), their behavior is complex and beyond the scope of this

article. These detectors can typically be turned into single-

threshold counters by disabling the higher threshold (Tlustos,

2005).

2.5. Threshold equalization and gain calibration

Variations in individual pixels result in a range of different

offsets of the signal ‘zero’ (Ballabriga et al., 2016), with the

offsets typically following a Gaussian distribution. The spread

can be comparable with the photon energies to be measured.

As it cannot be corrected in post-processing (like in charge-

integrating detectors) and it would severely limit the counting

performance, the typical practical solution is to include a

number of ‘trimming bits’ in each pixel to align the response of

individual pixels in the matrix (Llopart et al., 2001). Often this

calibration is performed with the noise edge, resulting in an

equalization where the pixels end up with e.g. the 5� point in

the noise distribution aligned; while this is not optimal, it is

easy to perform.

Another effect is pixel gain dispersion (Ballabriga et al.,

2016) (typically within a few percent). While its effects are

limited at low energies (especially with charge-summing

detectors that minimize the impact of charge sharing), at

higher energies and with smaller pixels the effects become

more pronounced. In imaging applications, this is often

calibrated and corrected by flat-field measurements

(mixing the actual flat field with the pixel gain and charge

sharing).

For the individual energies of monochromatic beams, the

threshold equalization can be adapted to mitigate both pixel

offset and gain simultaneously. Ideally, the user should

only provide the beam energy, and the corresponding equal-

ization mask would be calculated using previously calibrated

dark and gain maps. This could be achieved by carefully

calibrating the pixel thresholds with different monochromatic

energies or element absorption edges (Procz et al., 2009; Kraft

et al., 2009) covering the entire applicable spectrum, and

calculating the optimal pixel trim mask from the expected

beam energy.

Alternatively, a photon-counting detector with both hard-

ware offset and gain equalization has been developed recently

(Grybos et al., 2016).

2.6. Glossary

Throughout this paper, we will use the following notation:

N: Number of photons.1

E0: Photon energy.

0, 1
2, 1, 3

2: Analog signal (normalized to photons).

C0: Counter 0 (with signal threshold at 1
2 photon).

C1: Counter 1 (with signal threshold at 3
2 photon).

r: Counter ratio C1/C0.

�: Dead-time (proportional to photon energy E0).

2�: Time for signal to return from 1 to baseline (0).

�: Photon rate (photons per pixel per second).

�: Photon rate (photons per pixel per pulse).

2��: Normalized photon rate 2 [0,1].2

T: Frame shutter time.

g: Relative pixel gain (typically close to 1).

�t: Gap between two buckets in a regular fill pattern.

3. Dead-time models and counting linearization

In the ideal case, we use monochromatic radiation with photon

energy E0 and all pixels have the same gain. For simplicity, we

assume that the photon energy E0 corresponds to an analog

signal of 1 and the analog signal decay time from 1 to 0 is 2�.

The detection rate is � photons per pixel per second and the

integration time is T seconds. The expected number of

photons per pixel is N = �T (i.e. the weighted average of the

corresponding Poisson distribution).

For low photon rates compared with the dead-time, �� 1/�,

the individual photon signals will be collected separately; with

the usual thresholds at 1
2 and 3

2, counter C0 will contain the

number of independently detected photons and counter C1

will contain the number of occasional pile-up events when a

photon arrives within time � of another.

Counter C0 is incremented each time the signal passes

threshold 0 of 1
2. This requires a starting signal under the

threshold with at least one photon driving the signal over the
1
2 threshold.

Counter C1 is similarly incremented when the signal

exceeds the threshold 3
2, i.e. the signal is between 1

2 and 3
2 and

one or more photons drive the signal over the 3
2 threshold.

We did not implement a signal saturation limit in this

simulation, as: (i) it would depend on the detector and gain

mode and (ii) it would have limited effects at low photon

energies (e.g. 8 keV). However, signal saturation enforces an

upper limit on the random-walk effect shown in Fig. 3,

resulting in more frequent returns to the baseline and effec-

tively increasing the accuracy of the models presented here.

3.1. Typical approach

In the typical approach (Walko et al., 2008), a fixed paral-

yzable time � is assumed. After a photon is detected, a second
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1 For simplicity, we use the same notation N for the number of photons,
regardless of whether it refers to the number of simulated photons, detected
photons, expected number or linearized response; the particular meaning in
each equation should be clear from the context.
2 While the normalized photon rate can exceed 1, it leads to saturation and
complete counter paralysis.



photon can arrive within the paralyzable time, leading to pile-

up

C1 ¼ �T

Z �

0

� exp ð��tÞ dt ¼ �T½1� exp ð���Þ�; ð1Þ

or can arrive after a fixed time �, yielding

C0 ¼ �T

Z 1
�

� exp ð��tÞ dt ¼ �T exp ð���Þ; ð2Þ

resulting in a relatively simple correction formula (Schmitt et

al., 2015):

N ¼ �T ¼ C0 þ C1: ð3Þ

In Fig. 4 we compare the equations with the actual counter

behaviors. Note that both equations (1) and (2) are over-

simplifications, failing to match the behaviors of C0 and C1 for

higher photon rates (2�� approaching 1
2).

3.2. Novel simple model

Assuming a photon arriving at t = 0 (and ignoring the effect

of previously arrived photons), the signal will be higher than 1
2

for t 2 [0, �) and lower than 1
2 for t 2 (�,1). Consequently,

counter C0 can be incremented when a second photon arrives

and the signal is smaller than 1
2, i.e. at a time t > �:

C0 ¼ �T

Z 1
�

� exp ð��tÞ dt ¼ �T exp ð���Þ: ð4Þ

Incrementing C1 requires exceeding threshold 3
2 which requires

at least a third photon arriving within a time � of the second

photon:

C1 ¼ C0

Z �

0

� exp ð��tÞ dt ¼ �T exp ð���Þ½1� exp ð���Þ�:

ð5Þ

The ratio of the two is

r ¼
C1

C0

¼ 1� exp ð���Þ; ð6Þ

with the corresponding number of photons

N ¼ �T ¼
C0

exp ð���Þ
¼

C2
0

C0 � C1

¼ C0

1

1� r
: ð7Þ

This works directly with pixels equalized at energy E0. In the

case of a different equalization (e.g. with noise or at a different

energy), the (relatively small) variation in gain might play a

role, which is discussed in Section 3.3. In this formulation, the

parameters � and T drop gracefully out of the equations.

3.3. Novel simple model with relative pixel gain

Typically, the thresholds are set globally for each ASIC and

used separately by the comparators in each pixel; the ideal

values for threshold 0 (corresponding to counter C0) and

threshold 1 (corresponding to counter C1) are 1
2 and 3

2,

respectively (see discussion in Section 2.2). With or without an

optimal threshold equalization (see Section 2.5), small resi-

dual differences in relative pixel gain could be present and

these can be calibrated with a ‘gain map’ (Blaj et al., 2019c).

Similarly, a small variance in the discharge current across

pixels might be present (Ballabriga, personal communication);

the effects of this variation in discharge slope are mathema-

tically equivalent to an additional small variation in the pixel

gain map.

In this subsection, we investigate the effects of gain varia-

tion on the simple model [equation (7)].

For individual pixel gain g (with g ! 1, typically within a

few percent), the equations above become

C0 ¼ �T

Z 1
ðg�1=2Þ2�

� exp ð��tÞ dt ¼ �T exp � g� 1
2

� �
2��

� �
ð8Þ
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Figure 4
The counter efficiency (i.e. the ratio between counting rates and photon
rates) as a function of the normalized photon rate 2��; an ideal counter
would have an efficiency of 1 over the entire range. The usual models
[equations (1) and (2)], depicted with dashed lines, fail to describe the
counter behavior of the two counters at higher photon rates. An
improved approximation [equations (19) and (20)], indicated by the solid
black lines, yields much better results and forms the basis of the semi-
empirical model described in Section 3.4. Systematic deviations are
expected, due to the apparent baseline shift at high photon rates.

Figure 3
An example of significant pile-up corresponding to a photon rate of 2�� =
1, where 2� is the signal decay time of the analog signal from 1 to 0. Note
the resemblance to a random walk, resulting in an apparent baseline shift
and the complete breakdown of counting over large stretches of time.



and

C1 ¼C0

Z ð2g�3=2Þ2�

0

� exp ð��tÞ dt

¼C0 1� exp � 2g� 3
2

� �
2��

� �� �
: ð9Þ

The ratio between the two is

r ¼
C1

C0

¼ 1� exp � 4g� 3ð Þ��½ �; ð10Þ

resulting in

exp � 4g� 3ð Þ��½ � ¼ 1� r: ð11Þ

By taking the natural logarithm and multiplying by (2g � 1)/

(4g � 3) we obtain

�ð2g� 1Þ�� ¼
2g� 1

4g� 3
ln ð1� rÞ; ð12Þ

which can be rewritten as

exp � 2g� 1ð Þ��½ � ¼ ð1� rÞð2g�1Þ=ð4g�3Þ: ð13Þ

Finally, substituting equation (13) into equation (8) yields the

linearization,

N ¼
C0

ð1� rÞ
ð2g�1Þ=ð4g�3Þ

; ð14Þ

which is the general form of equation (7). Note that equation

(14) cannot be used directly for e.g. three-photon pile-up;

equation (9) would have to be rewritten for the pile-up of

three photons.

The relative gain g has a relatively small influence on the

counting rate correction,

lim
g!1

N ¼
C0

1� r
1þ 2 g� 1ð Þ ln 1� rð Þ½ �; ð15Þ

obtained by Taylor expansion of equation (14) and keeping

the first two terms; the second term is relatively small

compared with 1 because limg!1ðg� 1Þ is small.

3.4. Novel semi-empirical model

The ‘simple’ model [equation (7)] performs well at low

photon rates 2�� ’ 1
2, but it ignores the stochastic ‘baseline

shift’ (similar to a random walk) shown in Fig. 3. We introduce

here a simplified approach to deal with this effect.

Due to the triangular pulse shape and linear behavior of the

signal, the fraction of time spent above the noise floor is 2��,

thus the fraction of time spent in the noise floor is:

F0ð2��Þ ¼ 1� 2��: ð16Þ

Pulses corresponding to exactly n photons have a total dura-

tion of 2n�. The probability of detecting exactly n photons in

that time interval can be calculated by taking into account the

Poisson distribution of n photons in 2n� time, modulated by

the probability of being in the ‘ground state’ (1 � 2��),

resulting in a fraction:

Fnð2��Þ ¼ ð1� 2��Þ
ð2n��Þn exp ð�2n��Þ

n!
: ð17Þ

Consequently, the probability of the signal being under 1
2 is

approximately

p s<1
2

� �
¼F0ð2��Þ þ

F1ð2��Þ

2
þ :::

’ ð1� 2��Þ ½1þ �� exp ð�2��Þ� ð18Þ

(keeping only the first two terms for simplicity). The factor 2 in

the denominator corresponds to the fraction of time with

signal < 1
2 , i.e. � during a pulse duration 2�; using additional

terms improves the model accuracy (not shown).

Multiplying the probability of a signal s < 1
2 with the prob-

ability of detecting a photon while the signal is smaller than 1
2,

C0 ’ �Tð1� 2��Þ ½1þ �� exp ð�2��Þ�: ð19Þ

Incrementing C1 requires detecting a second photon within a

time 2� of the first photon, with an empirical model

C1 ’ C0�� exp ð2��Þ: ð20Þ

Note in Fig. 4 that these models (depicted by the solid lines)

describe the observed behavior of Counters 0 and 1 more

accurately than existing models.

The ratio of the two counters is thus

r ¼
C1

C0

¼ �� exp ð2��Þ: ð21Þ

Solving equation (21) analytically for �� yields a solution �� =

W0(2r)/2, with W0 the principal (zeroth) solution of the

Lambert W function. However, while this model is more

accurate than previous models (see Fig. 4), it is based on two

simplifications: equation (18) keeps only the first term in an

infinite series, and equation (20) implicitly ignores contribu-

tions of pile-up of three or more photons. These simplifications

result in a somewhat inaccurate estimate of ��. Using an

empirical correction factor of 0.91 (obtained by least-squares

fitting of the model with simulations) results in

�� ’ 0:91
W0ð2rÞ

2
: ð22Þ

Finally, rearranging the factors in equation (19) yields the

linearization equation,

N ¼
C0

ð1� 2��Þ 1þ �� exp �2��ð Þ½ �
; ð23Þ

where �� can be substituted with the value calculated from

equation (22).

3.5. Novel empirical model

Note that the ratio r = C1/C0 increases monotonically with

photon flux (Fig. 5). This behavior can be modeled with an

empirical function,

�� ¼ f ðrÞ ¼ exp
X3

i¼0

ai ln rð Þ
i

" #
; ð24Þ

see the fit in Fig. 5 and the resulting parameters in Table 1. We

can also model the ratio C0 /N as a function of ��,

research papers

1626 Gabriel Blaj � Dead-time correction J. Synchrotron Rad. (2019). 26, 1621–1630



C0

N
¼ gð��Þ ¼

X4

i¼1

bi 1� 2��ð Þ
i; ð25Þ

where b4 = 1 � b1 � b2 � b3; see the fit in Fig. 6 and the

resulting parameters in Table 2. From the ratio r we can thus

obtain the linearized counting rate,

N ¼
C0

g f ðrÞ½ �
: ð26Þ

Knowledge or calibration of �, T and � is not required.

3.6. Novel model for synchrotron fill patterns with widely
spaced buckets

With widely spaced buckets, photons from one bucket

arrive quasi-simultaneously, greatly simplifying the modeling

of the counter behavior. Assuming a rate of � photons per

pixel per pulse and long acquisition times with relatively

sparse photons in each pulse, we obtain from the Poisson

distribution

C0 ¼
X1
i¼1

�i exp ð��Þ

i!
¼ N 1� exp ð��Þ½ � ð27Þ

and

C1 ¼
X1
i¼2

�i exp ð��Þ

i!
¼ N 1� ð1þ�Þ exp ð��Þ½ �; ð28Þ

with ratio

1� r ¼ 1�
C1

C0

¼
� exp ð��Þ

1� exp ð��Þ
; ð29Þ

and solution

� ¼ ðr� 1Þ �W�1 ðr� 1Þ exp ðr� 1Þ½ �; ð30Þ

where W�1 is the �1th solution of the Lambert W function.

This solution can be used to correct the number of pulses in C0,

N ¼
C0

1� exp ð��Þ

¼
C0

1� ðr� 1Þ= W�1 ðr� 1Þ exp ðr� 1Þ½ �
� �� � : ð31Þ

Note that this result is applicable for light sources with a

(relatively) constant intensity of individual pulses. This is not

typically true at free-electron laser sources, where either a

more complex gamma distribution should be used instead of

the Poisson distribution (Blaj et al., 2017a) or individual pulses

should be read out separately.

4. Results

In Fig. 7 we show the typical response of counter C0 along with

the effect of the various counting-rate corrections, including

the counting statistics noise, which is obtained by simulating

100 acquisitions at each point, applying corrections to each

result, and using the mean and the standard deviation of each

set to estimate the systematic deviations (markers) and the

counting noise (error bars), respectively. The ideal response is

indicated by the thick solid blue line at y = 1; models closer to

the ideal perform better (i.e. their systematic deviation is

smaller).
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Table 2
Fitting parameters for g(��).

Parameter Value �

b1 1.584 0.001
b2 �0.682 0.003
b3 0.088 0.005
b4 1 � b1 � b2 � b3 0.006

Table 1
Fitting parameters for f (r).

Parameter Value �

a0 �0.7908 0.0008
a1 0.5500 0.0016
a2 �0.0822 0.0008
a3 �0.0050 0.0001

Figure 5
An empirical fit of the normalized photon flux 2�� as a function of
counter ratio r. Black dots indicate the results of the Monte Carlo
simulation and the black line depicts the value of the fitting function f (r).

Figure 6
An empirical fit of the counter C0 efficiency as a function of the
normalized photon flux 2��. Black dots indicate the numerical results of
the Monte Carlo simulation and the black line depicts the value of the
fitting function g(��).



4.1. One counter

Linearizing the response of single photon-counting pixel

detectors with a single counter requires knowledge of the

integration time T and dead-time 2�, and can only be used for

�� 1/4�. This could be achieved by solving equation (4) using

the (assumed known) T and � parameters, resulting in an

estimated number of photons,

N ¼ �
T

�
W0 �

C0�

T

� 	
: ð32Þ

In practice, an empirical calibration is likely to yield superior

results, due to the mismatch between the model in equation

(4) and the actual behavior of C0. The calibration would

depend on the parameters � and T, as well as on the fill pattern

of the light source; see the discussion in Section 4.3.

4.2. Two counters

Using two counters eliminates the need to know or calibrate

E0 (the photon energy)3, 2�(E0) (the time for the analog signal

to return from 1 to 0) and T (the integration time). More

accurate models perform well at rates approaching 2�� ! 1
2.

Using any linearization approach yields superior results

compared with no linearization. Even the simple sum of two

counters exceeds the performance of the analytical one-

counter model [which also requires knowledge of E0, �(E0)

and T].

The simple model (indicated by filled triangles in Fig. 7)

offers an increased linear range with minimal implementation

effort and outperforms all previous models, but note the

overestimation of the counting rates.

The semi-empirical and empirical models (depicted in Fig. 7

by filled squares and diamonds, respectively) offer the best

performance. In particular, the empirical model exceeds by

far the performance of the other models. Using the semi-

empirical or empirical linearization methods with e.g. the

Medipix3RX with a maximum (i.e. nonlinear) counting rate of

4.5 � 106 counts per pixel per second (Ballabriga et al., 2016)

results in a linear counting rate in excess of 107 counts per

pixel per second.

In Table 3, the performance of each linearization model is

summarized; the linear range is defined as the range where

systematic deviations are limited to the photon-counting

statistics (indicated by the thin solid blue lines in Fig. 7). The

empirical model yields an improvement of one to two orders

of magnitude in the linear range compared with a single

counter, with an error comparable with the counting statistics

for normalized photon rates up to 2�� ’ 0.6.

4.3. Synchrotron fill patterns

Synchrotron fill patterns influence the behavior of the

counters. For regular fill patterns and closely spaced buckets,

e.g. typical gaps �t ’ 2 ns at synchrotrons, much smaller than

the dead-times � ’ 100 ns (�t � �), the equations above

remain valid.

With larger gaps approaching � (�t < �/2), the equations

describing the behavior of individual counters have to be

corrected. Let f be the fraction of time with beam and 1 � f

the fraction of time with gaps; then we can substitute � with �/f

and T with fT. Note that in detectors with two thresholds �, T

and f drop out of the linearization equations (3), (7), (14), (23)

and (26), leading to exactly the same result.

For large intervals between buckets, �t� �, the dead-time is

irrelevant and the pile-up is reduced to the elegant solution in

equation (31).

Finally, for other fill patterns (e.g. �t ’ �), the Poisson

distribution (or gamma distribution in the case of free-elec-

tron laser beams) in each bucket needs to be estimated.

Alternatively, the correspondence between the ratio C1/C0
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Table 3
Performance of photon-counting linearization methods.

r = C1/C0 and x = 0.91W0(2r)/2, with W the Lambert W function.

Model Equation Section
Linear
range

None, one counter C0 2.3 3.5%
Typical, one counter N(C0, �, T) 4.1 11.0%
Typical C0 + C1 3.1 15.1%
Novel simple C0/(1 � r) 3.2 29.7%
Novel simple gain C0=ð1� rÞð2g�3=2Þ=ðg�1=2Þ 3.3 29.7%
Novel semi-empirical C0/{(1 � 2x) [1 + x exp(�2x)]} 3.4 50.0%
Novel empirical C0/g(f(r)) 3.5 64.5%

Figure 7
A comparison of the counting efficiencies with and without corrections
for realistic parameters (� = 100 ns, integration time T = 20 ms, � 2 [0,
3.25 M counts per pixel per second], pixel counter depth 65536). The ideal
counter efficiency is 1 over the whole range (thick solid blue line), with
the counting statistics limits 	 � indicated by thin solid blue lines. Error
bars represent the counting statistics errors after linearization. The
uncorrected counter quickly deviates from the ideal (small circles with
dotted line). A corrected single counter (open red triangles) requires
knowledge of the parameters � and T and underperforms a simple sum
of the two counters (large circles). Various two-counter dead-time
corrections yield increasingly accurate results, extending the linear
counting rate by one to two orders of magnitude (empirical model, black
diamonds) and enabling linear counting rates in excess of 107 counts per
pixel per second.

3 Note, however, that the comparator thresholds for C0 and C1 should always
be set to 1

2 and 3
2 of the signal, corresponding to one photon of energy E0 , as

discussed in Section 2.2.



and the ratio N/C0 can be calibrated empirically as a function

of beam intensity, as shown in Section 3.5, yielding a calibra-

tion curve specific to the actual fill pattern.

4.4. Charge sharing

Charge sharing is a complex phenomenon, with single

photons resulting in charge clouds with sizes depending on the

photon energy (E0), the photon interaction depth in the

sensor, the sensor thickness and resistivity, the bias voltage,

the pixel size etc. (Blaj et al., 2017b). Currently there is no

simple method to estimate the distribution of charge cloud

sizes as a function of all the parameters above. This depen-

dence is typically ignored in the dead-time literature,

presumably due to its complexity.

We repeated the simulations above with one example of

realistic charge sharing using 55 mm pixels and Gaussian

charge clouds with � = 5 mm (Blaj et al., 2017b) (results not

shown). Simulating detection with or without charge sharing

results in differences of up to 4% in linearized responses with

normalized photon fluxes 2�� up to 0.5, and up to 10% for

higher fluxes. More systematic studies are underway. Never-

theless, applying the novel linearization corrections described

here still yields results much closer to the incoming photon

rates than no correction at all. Moreover, in the particular case

of the Medipix3 detectors, the charge summing mode

(Gimenez et al., 2011) reverses the effects of charge sharing in

the analog circuitry before the threshold comparators, thus

avoiding the effect of charge sharing on counter values.

5. Conclusions

In the last decade, a revolution in hybrid pixel detectors has

led to the wide availability of photon-counting pixel detectors

that have enabled rapid advances in photon science and

applications of high-dynamic-range imaging.

In the near future, significant brilliance upgrades are

expected for most storage-ring X-ray sources (Chenevier &

Joly, 2018). High-repetition-rate free-electron lasers might

also eventually operate in a (quasi-)continuous-wave mode

(Marcus & Raubenheimer, 2017; Brinkmann et al., 2014). This

will further increase the pressure to linearize the saturation

response of photon-counting pixel detectors, or possibly

replace them with fast integrating detectors.

One existing approach to linearize the photon-counting

response is to assume a simple paralyzable model response

with a fixed dead-time �; however, a typical photon-counting

detector with multiple thresholds has a constant current

discharge of the feedback capacitor, resulting in very different

statistics. Another existing approach to linearize the photon-

counting response is to combine a single counter with a time-

over-threshold counter. This approach increases the counting

linearity, but its range is limited by the depth of the time-over-

threshold counter and the signal-to-noise performance is

limited by the higher noise in time-over-threshold compared

with photon-counting.

In this paper we have introduced new, more accurate,

statistical descriptions of the dead-time and photon pile-up

in photon-counting detectors with multiple thresholds,

describing the counting behavior of typical photon-counting

detectors with two independent counters (corresponding to

two different thresholds). Subsequently, we have derived three

nonlinearity correction equations, ranging from simple to

complex, which significantly extend the region with linear

photon-counting compared with previous approaches. These

equations allow a doubling of maximum counting rates

compared with detectors with a single counter and yield an

increase in linear counting rates of one to two orders of

magnitude for quasi-continuous light sources.

Additionally, in detectors with at least two thresholds and

counters, these linearization methods are very robust and do

not require calibration or knowledge of the individual system

parameters (integration time, dead-time etc.), thus enabling

simple implementation or easy reprocessing of previous

experimental data.

Finally, we have described the influence of synchrotron fill

patterns on the photon-counting linearization methods,

showing that they can be applied in a majority of cases (closely

spaced buckets, approaching typical detector dead-times of

�100 ns). We have developed a new model for widely spaced

buckets. Finally, for bucket spacings similar to the detector

dead-time, we have described an empirical calibration

method.

These novel methods enable extending the range of linear

counting by one to two orders of magnitude for photon-

counting detectors with a constant current discharge.

Acknowledgements

SLAC publication number SLAC-PUB-17431. This work was

performed in support of the LCLS and SSRL projects at

SLAC. The author would like to thank R. Ballabriga and

L. Tlustos at CERN for many interesting discussions on

photon-counting and pixel detectors.

Funding information

This work was supported by the US Department of Energy,

Office of Science, Office of Basic Energy Sciences under

contract Nos. DE-AC02-76SF00515 and DE-FOA-0001794.

References

Abbene, L. & Gerardi, G. (2015). J. Synchrotron Rad. 22, 1190–1201.
Anghinolfi, F., Aspell, P., Bass, K., Beusch, W., Bosisio, L., Boutonnet,

C., Burger, P., Campbell, M., Chesi, E., Claeys, C., Clemens, J. C.,
Cohen Solal, M., Debusschere, I., Delpierre, P., Di Bari, D.,
Dierickx, B., Enz, C. C., Focardi, E., Forti, F., Gally, Y., Glaser, M.,
Gys, T., Habrard, M. C., Heijne, E. H. M., Hermans, L., Hurst, R.,
Inzani, P., Jaeger, J. J., Jarron, P., Krummenacher, F., Lemeilleur, F.,
Lenti, V., Manzari, V., Meddeler, G., Morando, M., Munns, A.,
Nava, F., Navach, F., Neyer, C., Ottaviani, G., Pellegrini, F., Pengg,
F., Perego, R., Pindo, M., Potheau, R., Quercigh, E., Redaelli, N.,
Rossi, L., Sauvage, D., Segato, G., Simone, S., Stefanini, G., Tonelli,
G., Vanstraelen, G., Vegni, G., Verweij, H., Viertel, G. M. &
Waisbard, J. (1992). IEEE Trans. Nucl. Sci. 39, 654–661.

Ballabriga, R., Alozy, J., Blaj, G., Campbell, M., Fiederle, M., Frojdh,
E., Heijne, E. H. M., Llopart, X., Pichotka, M., Procz, S., Tlustos, L.
& Wong, W. (2013). J. Instrum. 8, C02016.

research papers

J. Synchrotron Rad. (2019). 26, 1621–1630 Gabriel Blaj � Dead-time correction 1629

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pp5145&bbid=BB3


Ballabriga, R., Alozy, J., Campbell, M., Frojdh, E., Heijne, E., Koenig,
T., Llopart, X., Marchal, J., Pennicard, D., Poikela, T., Tlustos, L.,
Valerio, P., Wong, W. & Zuber, M. (2016). J. Instrum. 11, P01007.

Ballabriga, R., Campbell, M., Heijne, E., Llopart, X. & Tlustos, L.
(2007). IEEE Trans. Nucl. Sci. 54, 1824–1829.

Bateman, J. E. (2000). J. Synchrotron Rad. 7, 307–312.
Bergamaschi, A., Dinapoli, R., Greiffenberg, D., Henrich, B.,

Johnson, I., Mozzanica, A., Radicci, V., Schmitt, B., Shi, X. &
Stoppani, L. (2011). J. Synchrotron Rad. 18, 923–929.

Blaj, G., Bhogadi, D., Chang, C.-E., Doering, D., Kenney, C., Kroll, T.,
Segal, J., Sokaras, D. & Haller, G. (2019a). AIP Conf. Proc. 2054,
060037.

Blaj, G., Caragiulo, P., Carini, G., Carron, S., Dragone, A., Freytag, D.,
Haller, G., Hart, P. A., Herbst, R., Herrmann, S., Hasi, J., Kenney,
C. J., Markovic, B., Nishimura, K., Osier, S., Pines, J., Segal, J.,
Tomada, A. & Weaver, M. (2014). Synchrotron Radiation News,
27(4), 14–19.

Blaj, G., Caragiulo, P., Carini, G., Carron, S., Dragone, A., Freytag, D.,
Haller, G., Hart, P., Hasi, J., Herbst, R., Herrmann, S., Kenney, C.,
Markovic, B., Nishimura, K., Osier, S., Pines, J., Reese, B., Segal, J.,
Tomada, A. & Weaver, M. (2015). J. Synchrotron Rad. 22, 577–
583.

Blaj, G., Caragiulo, P., Carini, G., Dragone, A., Haller, G., Hart, P.,
Hasi, J., Herbst, R., Kenney, C. J., Markovic, B., Nishimura, K.,
Pines, J., Segal, J., Tamma, C. & Tomada, A. (2016a). AIP Conf.
Proc. 1741, 040012.

Blaj, G., Caragiulo, P., Dragone, A., Haller, G., Hasi, J., Kenney, C. J.,
Kwiatkowski, M., Markovic, B., Segal, J. & Tomada, A. (2016b).
Proc. SPIE, 9968, 99680J.

Blaj, G., Carini, G., Carron, S., Haller, G., Hart, P. A., Hasi, J.,
Herrmann, S., Kenney, C. J., Segal, J., Stan, C. A. & Tomada, A.
(2016c). IEEE Trans. Nucl. Sci. 63, 1818–1826.

Blaj, G., Dragone, A., Kenney, C., Abu-Nimeh, F., Caragiulo, P.,
Doering, D., Kwiatkowski, M., Markovic, B., Pines, J., Weaver, M.,
Boutet, S., Carini, G., Chang, C.-E., Hart, P., Hasi, J., Hayes, M.,
Herbst, R., Koglin, J., Nakahara, K., Segal, J. & Haller, G. (2019b).
AIP Conf. Proc. 2054, 060062.

Blaj, G. Haller, G. Kenney, C. (2019c). arXiv:1907.07125v1.
Blaj, G., Kenney, C., Dragone, A., Carini, G., Herrmann, S., Hart, P.,

Tomada, A., Koglin, J., Haller, G., Boutet, S. M. M., Messerschmidt,
M., Williams, G., Chollet, M., Dakovski, G., Nelson, S., Pines, J.,
Song, S. & Thayer, J. (2017a). IEEE Trans. Nucl. Sci. 64, 2854–
2868.

Blaj, G., Segal, J., Kenney, C. & Haller, G. (2017b). arXiv: 1706.01429.
Brinkmann, R., Schneidmiller, E., Sekutowicz, J. & Yurkov, M.

(2014). Nucl. Instrum. Methods Phys. Res. A, 768, 20–25.
Brönnimann, C. & Trüb, P. (2014). Synchrotron Light Sources and

Free-Electron Lasers: Accelerator Physics, Instrumentation and
Science Applications, edited by E. Jaeschke, S. Khan, J. R.
Schneider & J. B. Hastings, pp. 1–29. Heidelberg: Springer.

Chenevier, D. & Joly, A. (2018). Synchrotron Radiation News, 31(1),
32–35.

Gimenez, E. N., Ballabriga, R., Campbell, M., Horswell, I., Llopart,
X., Marchal, J., Sawhney, K. J., Tartoni, N. & Turecek, D. (2011).
IEEE Trans. Nucl. Sci. 58, 323–332.

Graafsma, H. (2009). J. Instrum. 4, P12011.
Grybos, P., Kmon, P., Maj, P. & Szczygiel, R. (2016). IEEE Trans.

Nucl. Sci. 63, 1155–1161.
Heijne, E. H., Jarron, P., Olsen, A. & Redaelli, N. (1988). Nucl.

Instrum. Methods Phys. Res. A, 273, 615–619.
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