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Corvus, a Python-based package designed for managing workflows of physical

simulations that utilize multiple scientific software packages, is presented.

Corvus can be run as an executable script with an input file and automatically

generated or custom workflows, or interactively, in order to build custom

workflows with a set of Corvus-specific tools. Several prototypical examples are

presented that link density functional, vibrational and X-ray spectroscopy

software packages and are of interest to the synchrotron community. These

examples highlight the simplification of complex spectroscopy calculations that

were previously limited to expert users, and demonstrate the flexibility of the

Corvus infrastructure to tackle more general problems in other research areas.

1. Introduction

During the past decade, it has become increasingly important

to combine the capabilities of multiple scientific software

packages to simulate physical properties of complex

condensed matter and molecular systems (Lawler et al., 2008;

Marini et al., 2009; Valiev et al., 2010). For example, calcula-

tions of excited states and spectra of materials often require

conformational, electronic structure and response properties

from one or more density functional theory (DFT) packages,

which are subsequently passed to one or more analysis

packages to calculate additional physical properties. In this

way, building tools that interface various scientific software

packages allows one to take advantage of the strengths of

each, and to improve spectral simulations without having to

re-implement complicated algorithms with disparate input–

output schemes. Previous scientific workflow developments

typically consist of the creation of purpose-oriented tools

using a variety of languages and coding strategies. The result

of such a strategy is the proliferation of ad hoc workflow tools

that are neither expandable nor connectable. Consequently,

there is a steep learning curve for implementation, develop-

ment, deployment and usage of these tools, creating a high

barrier for inexperienced users. In light of these issues, we now

aim to develop a more robust framework that can, out-of-the-

box, much more easily run any of our current ready-made

scientific workflows. This allows users to focus on the physics

as opposed to the computational details. Moreover, we also

want a flexible and easily managed platform that would allow

even non-expert users to construct or modify their own

workflows. A variety of such workflow tools already exists

(Pizzi et al., 2016; Wilde et al., 2011; Spjuth et al., 2007; Goecks

et al., 2010; Altintas et al., 2004; AlSairafi et al., 2003). These
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tools, and others meant to provide sophisticated computing

paradigms such as federated and web-based computing, are

rather general, and typically designed more for developers

than general users. Therefore, we have developed a different

all-encompassing physics-oriented framework that can

generically accommodate various simple everyday workflows,

spanning an arbitrary number of external software packages.

This design has been implemented in the Python-based

Corvus package, aimed at both less experienced users only

wishing to run pre-built workflows that facilitates their

research at the synchrotron, as well as expert users and

developers interested in developing customizable interface

and analysis tools. By catering to both target audiences,

Corvus brings an attractive alternative to the scientific work-

flow landscape.

2. Corvus structure

Corvus is designed around two main layers: (1) a top-level

layer that interacts with the user and executes the various

steps defined in the workflow, and (2) lower-level infra-

structure that interacts with the external scientific software to

produce the desired output that is then translated into the

physical properties required by the workflow. This stratifica-

tion allows us to separate the implementation details specific

to each external software package from the general workflow

controls, to permit generic and modular workflow structures

that can handle a wide variety of calculations.

Corvus relies on a Workflow object consisting of a sequence

of modular steps, each providing part of the information

needed to compute a desired physical property. These indi-

vidual steps are dubbed Exchanges, since they take a set of

input properties, pass it out to external software which then

pass newly calculated output properties back in to a central

workflow database. The code that deals with the external

software is separated into independent components, or

Handlers, that are specific to each external software package.

These Workflow and Handler objects now contain the

majority of our previous, ad hoc, workflow tools. Thus, Corvus

is not simply a collection of purpose-oriented scripts but a

broadly applicable scientific workflow infrastructure. The

following sections give a more detailed description of the

design and usage of Corvus.

2.1. Global structure of a Corvus simulation

The basic structure of Corvus consists of (1) the specifica-

tion of the physical system being studied and its desired target

properties, (2) the creation and execution of a given Corvus

generated Workflow to compute them, and (3) a description

and visualization of the resulting target properties. Fig. 1

shows a flowchart for the high-level infrastructure of a general

Corvus calculation. In most common materials science and

spectroscopy simulations, the input parameters used to control

how a simulation runs (e.g. convergence conditions or grid

sizes) are specific to how a given software package runs a

particular type of simulation, and, in many cases, are spread

over a multitude of input files. In Corvus, however, these types

of parameters are easily deduced from the target property, and

are managed automatically by the Handlers. In practical terms

this means that the user only needs to provide a single minimal

input file (see Section 2) which specifies the physical system.

The input is parsed and stored in a lookup table or System

Property dictionary, that contains both physical properties

and control parameters for a given workflow. This dictionary

will update as the Corvus Workflow executes, incrementally

growing the knowledge base of the system with each

Exchange.

After processing the information provided by the user, a

Workflow can be read in from a file, or be automatically

generated based on the target property and the scientific

software available to Corvus. The structure of a generic

Workflow will be discussed in Section 2.2. The automated

workflow generation is currently carried out by a simple

Builder. This Builder can handle basic tree-like workflows

(Fig. 2) by proceeding backwards from the desired property

that forms the root of the dependency tree. For dependencies

that can be fulfilled by more than one Handler the code either
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Figure 1
Overview of the top-level infrastructure in a Corvus run. The user’s responsibility is constrained to choosing the target property and providing relevant
input. Corvus creates a System Property dictionary which stores all information for the physical system being studied. This dictionary is continually
updated as Corvus runs through the Workflow. The solid black arrows indicate progression in time, while the dashed green arrows represent
data exchanges.



uses internal defaults or the usehandlers input token,

described below, to override the defaults and give users the

option to select their desired Handlers. A fully general

Workflow builder requires an algorithm that accounts for the

fact that a single calculation can generate multiple desired

properties, and that certain properties require loops and

conditionals based on the input. This more general Builder will

be developed in future versions.

The Corvus Workflow thus connects the sequence of

Exchanges to be executed in order. We require the Handlers to

abstract certain generic methods for running an Exchange

using their associated external software (see Section 2.4). This

allows Corvus to run through the entire workflow in an

automated way. Each step in the calculation is run in a sepa-

rate subdirectory so that the output from all the scientific

software is later accessible in an organized fashion. Once

finished, the output properties requested by the user are

pulled from the property dictionary and written to file.

2.2. Scientific workflows driven by physical properties

The Workflow objects (Fig. 3) are designed to contain the

minimal information required to allow Corvus to iterate

through the sequence of calculations easily. More specifically,

a Workflow consists of three main components: (1) a list of

target properties requested by the user, (2) a list of Exchange

operations to execute in order to produce the requested

properties, and (3) the minimum list of input properties

required from the user. Although the sequence of Exchanges

must be executed in a specific order to produce the desired

properties, as determined by the dependency tree spawned by

the target property, the actual executions of the Exchanges are

independent of each other. By breaking up the Workflow into

discrete Exchanges it is easy to build in checkpointing and

restarting of calculations. This is especially important when a

user has a simulation with a workflow that starts with a

computationally demanding calculation, but wants to rerun

the simulation with different physical parameters that only

affect later parts of the workflow.

The Exchange object is also lightweight, simply facilitating

the exchange of properties from the system dictionary to a

specified Handler, and vice versa. Thus Exchanges merely

contain a specification of the Handler to be used for calcula-

tion, and a list of input and requested output properties. With

this information, Corvus can automatically call upon the

specified Handler at each stage and have it generate the

necessary output from the provided input without any

knowledge of the Handler implementation details.

In addition to the Exchange there are currently two other

workflow sequence structures – Updates and Loops. An

Update is used to overwrite a given property (or list of

properties) in the system property dictionary. This is useful

for tasks like initializing a property and replacing it with an

optimized/converged value or parameter sweeps. The Loop

structure is used to run the same Exchange multiple times, but

iterating over a grid (or grids) of parameters by executing an

Update for each Exchange iteration. These control structures

cover a broad range of useful scientific workflows relevant

to the spectroscopy, chemistry and materials science commu-

nities, as demonstrated by the examples presented below.

Development to include more sophisticated possibilities like

branching and controlled loops is currently under way.

2.3. System property lookup table

All input and calculated quantities are stored in a single

lookup table, currently implemented as a Python dictionary.

Throughout the execution of a workflow, physical properties

of the system being studied can be polled, added and updated.

Typical properties currently stored in the System Properties

dictionary are the composition and structure of the system, its

electronic structure, the dynamical matrix, etc. The System

Properties dictionary is similar to the runtime database used

by NWChem (Valiev et al., 2010). By taking advantage of the
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Figure 3
The Corvus Workflow object consists of a sequence of Exchanges. Each
Exchange is an independent component of the Workflow, and uses its
assigned Handler to run the external scientific software that produces the
desired physical properties which are then passed back up to the System
Property dictionary, so they can be accessed in subsequent Exchanges.

Figure 2
Illustration of a typical dependency graph for the main physical
properties involved in the calculation of Debye–Waller (DW) factors
using the ABINIT and DMDW software packages (as described in
Section 3.2) User-provided properties are shown in orange, and the
primary calculated properties are shown in blue. The automatic workflow
Builder works backwards from the DW property determining its
dependencies until all are satisfied either from previous workflow steps
or from the user input.



Python dictionary structure, the state of the system can be

easily updated or expanded. Moreover, given that the contents

of the System Properties completely define the state of the

system, Corvus can checkpoint simply by saving the System

Properties dictionary. Another advantage is that the state of

the system can be ‘forked’ and looped over simply by dupli-

cating the dictionary or changing its internal properties during

the workflow. Finally, although the System Properties

dictionary is a single-run repository, its structure makes it very

well suited to be reused in other calculations.

2.4. Interfacing external software with Handlers

As shown in the previous sections, the structural design of

Corvus is such that the flow control can operate at the top

level without being hindered by technical details specific to the

external software used to calculate the physical properties.

This makes building workflows nearly effortless, but relies on

the necessary Exchanges being supported by the Handlers.

This has the additional advantage of making the infrastructure

tolerant to missing external packages in that, if a package is

missing, the construction of the Workflow will fail and Corvus

will generate an error before any calculations are attempted.

As such, the vast majority of technical developments lies in the

creation of appropriate Handlers for each software package

module. These interfaces are in essence the evolution of our

previous scientific workflow tools.

The Handlers are generally independent of one another,

so that the development for supporting the external scientific

software packages can be done independently as well,

simplifying the work of developers. To interface with the top-

level flow control, a Handler only needs to implement the

following set of basic functions used by Corvus to create

Workflows and run Exchanges:

canProduceðoutputÞ — returns true/false based on

whether or not the associated external software can produce

the given output(s).

requiredInputForðoutputÞ — returns a list of input

properties the associated external software requires to

produce the given output(s). This includes any output prop-

erties not supported by this Handler.

sequenceForðoutputÞ — returns the Workflow

sequence required to produce the given output(s).

prepðÞ — prepares a subdirectory where the external

software is run.

runðinput;outputÞ — runs the external software using

the input given the input dictionary, and returns the required

output in the output dictionary.

cleanupðÞ — does any necessary clean-up of the subdir-

ectory before finishing up the Exchange.

In addition, Handlers can have two helper functions dedi-

cated to generating the input and translating the output of the

different external packages:

generateInputðinput;outputÞ — creates the neces-

sary input files used by the external software to produce the

desired output and returns the list of files.

translateOutputðinput;outputÞ — extracts the

desired properties from the output generated by the external

software and translates them into the internal property

dictionary format and returns them as a dictionary to be

stored in the system property dictionary.

2.5. Usage

Corvus currently supports the following command line

arguments:

�i=��input ½filename� — specify input file (default

Corvus:inp).

�w=��workflow — specify pre-generated workflow file.

��prefix ½string� — specify a prefix/label for subdir-

ectories and output files, restricted to alphanumeric and ½� :�
characters (default = ‘Corvus’).

�c=��checkpoints — enable checkpointing.

�r=��resume — load savefile (½prefix�:nest) and

continue from last savepoint.

�s=��save ½filename� — specify savefile other than

default.

��parallelrun ½command string� — specify

command prefix for parallelized program commands,

e.g. }mpirun �np 24}. This includes any options, environ-

mental variables, settings, etc., to control the parallel execution

of an internal calculation.

For example, the command

run�corvus �i Cu�sf:inp �c ��parallelrun

}mpirun �np 96}

generates and runs a Workflow to produce the electron

spectral function, where the target is selected in the

Cu�sf:inp input file (Section 2), with checkpointing

enabled, and using the standard MPI parallel jobs command

mpirun with 96 processors.

The command

run�corvus �cr ��prefix old ��input

Cu�refresh:inp

loads, with checkpointing enabled, the saved Corvus state file

with prefix old () old:nest) and resumes where the

previous Workflow left off, refreshing the values of any

properties listed in the input file Cu� refresh:inp .

Finally,

run�corvus �w expansion:wf ��parallelrun

}aprun �np 240}

runs the pre-generated Workflow expansion:wf using

240 processors on a Cray supercomputer cluster, which uses

the aprun command for parallel jobs.

In addition to operating as a Workflow driver, Corvus can

be used as a software library for any of the workflow tools

written by our developers, e.g. input file generators or output

file parsers and translators, as they can be imported just as any

other Python module. This also allows users to use the Corvus

tools on-the-fly through the Python interpreter – useful for

tasks such as post hoc analysis, or construction of workflows,
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input files, etc. – or through user-made Python scripts. For

example, if a user wanted to change the value of a certain

property midway through a given Workflow this can be

achieved as shown in Fig. 4: the Workflow myworkflow:wf
is loaded, an update is generated for the temp property using

the Update method, and this update is inserted into the

Workflow at the desired point. Furthermore, by enabling

checkpointing, the user ensures that the entire system prop-

erty dictionary is saved to file. Since the saved file is formatted

using Python’s standard pickle module, the user can load

the saved state, either in the Python interpreter or in any

Python script, and manipulate any of the saved properties at

will. This is a more attractive alternative to the user than

having the additional step of parsing and translating output

data files themselves. This command line structure is also well

suited to the development of graphical user interfaces which

can hide details of the syntax in these commands. A GUI,

currently under development, would provide users with a

graphical method for constructing, visualizing, debugging and

running workflows, as well as visualizing output.

2.6. Input/output and configuration files

The input for Corvus has a generic property token driven

format similar to that used in the AI2PS, AI2NBSE and

OCEAN software packages developed in our group (Story et

al., 2014; Vinson et al., 2011; Gilmore et al., 2015). Their input-

parsing tool has been translated into a Python version called

Parsnip, which is an independent utility included in the Corvus

package. The input grammar is composed of a token string

followed by the input value(s) wrapped in curly braces (see

Fig. 5 for details on the generic syntax). Property tokens must

be one string of non-white-space characters. The input file

supports standard Python-style commenting as well. This

format is also used in the Corvus configuration and initi-

alization files, which set paths to external software packages

and default values for many parameters. This is very conve-

nient since the input tokens can thus be easily checked against

the currently implemented tokens. Moreover, new input

tokens can be added to Corvus without any recoding by simply

adding them to the configuration files. Once a token is added,

its value is automatically available to all Handlers. Finally, the

Corvus syntax and its internal Python representation as a

simple dictionary makes it well suited to be converted into

more standard formats such as XML and JSON. Corvus

modules for this purpose are currently under development.

Since Corvus makes use of external software to calculate

physical properties, there is output produced both by Corvus

and the external packages themselves. The raw output from

each Exchange is kept in the subdirectory where the external

software was run. The output from Corvus is currently limited

to the final target properties requested by the user, but the

amount of desired output can be easily tailored to the needs of

the user. In addition, all important data are stored in the saved

System Properties dictionary, and can be easily accessed after

the end of the calculation.

The list of input tokens and their default or expected values

is too long to include here but can be found in the Corvus

manual. Here we highlight a few examples of input tokens that

are important to control the way a Corvus run is executed,

some general methodological tokens, and a few of the physical

properties that can set in the input:

target list — a list of space-separated strings that

controls the targets of a given Workflow.

usehandlers — a list of the Handlers to be used to

control the generation of the Workflow. This token helps

Corvus manage targets that can be produced by multiple

Handlers.

method — this token helps the Workflow generator choose

which Handlers can produce properties with a particular

theoretical method, for instance, DFT, MP2 or CCSD.

cell vectors — this token sets the simulation cell

vectors for a periodic boundary conditions calculation.

2.7. Requirements and obtaining the code

One of the goals of the Corvus platform is to minimize

installation and management issues for the user. We therefore

kept this initial version of Corvus constrained to Python 2.7.

Nevertheless, we are currently working on porting the code

to Python 3, in preparation for this version becoming more

widespread. Additional Python packages that provide useful

analysis tools [e.g. Numpy (van der Walt et al., 2011)] can be

treated like any other external software package, and can be
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Figure 5
Example grammar for an input file read by Parsnip, the input parser used
in Corvus. As shown with token4, if an input value is a single entry with
no white-space, the curly braces can be dropped if desired. Comments can
be denoted by the # and/or ! characters.

Figure 4
Example of how to change a property value within a Workflow. The
required Corvus structures are imported from the Corvus module, a
property Update is created, and Exchange is inserted into the workflow.



enabled through their own Handlers. Consequently, users only

need Python 2.7 to install Corvus, and the Corvus workflows

that are possible will be determined by the specific external

software packages available on the user’s system. The code is

open source (BSD 3-clause license) and can be found in the

software website of the Theoretical Institute for Materials and

Energy Spectroscopies (TIMES) (TIMES, 2019).

3. Example applications

Our initial applications of Corvus focused on the simulation

of various spectral and thermal properties of molecular and

condensed matter systems. The following sections briefly

describe prototypical scientific workflows for a few key

properties in order to demonstrate the capabilities of

Corvus, in particular highlighting its usefulness to synchrotron

scientists.

3.1. Dynamic disorder in XANES

Experimental X-ray absorption spectroscopy (XAS)

measurements are often carried out at room temperature or in

heated samples (Vinson et al., 2014; Hedin & Rosengren, 1977;

Fujikawa et al., 1999; Uejio et al., 2008; Pascal et al., 2014;

Nemausat et al., 2015). These conditions induce thermal

dynamical disorder which generally leads to the broadening,

shift and, occasionally, the appearance of additional features

in the spectra. Peak shifts can be caused by thermal expansion

effects as the average bond distances change with tempera-

ture. Additional shoulder-like features involving new transi-

tions can also appear, arising from dynamical symmetry-

breaking around certain atoms. In this instance, X-ray dipole

transitions that are symmetry-forbidden in the 0 K structure

become allowed due to thermal fluctuations of the nuclear

positions (Pascal et al., 2014, 2015). These effects cannot be

reproduced simply by broadening spectra computed with a

0 K structure, and simulations must take into account the

temperature-induced dynamical disorder. One way to

straightforwardly introduce such effects in first-principles

XAS simulations is to average over ab initio molecular

dynamics (AIMD) trajectories (Uejio et al., 2008; Pascal et al.,

2014). This approach is most useful in large, disordered or

anharmonic systems involving, for instance, surfaces, solvent–

solute interactions, etc., where explicit calculations of the

vibrational frequencies and eigenmodes are either prohibi-

tively expensive or inaccurate. Furthermore, such an approach

can be generalized to excited-state non-adiabatic molecular

dynamics as well (Attar et al., 2017). Given that AIMD

trajectory-averaged XAS of molecular and nanoscale systems

are regularly needed, we implemented a Corvus workflow to

automate the process within NWChem (Valiev et al., 2010).

Fig. 6 shows a diagram of the workflow, while Figs. 7 and 8

show the Corvus input file and the results obtained for the

300 K AIMD-averaged C K-edge XAS of chloroacetylene,

respectively. It should be noted that, although in this example

we use NWChem to compute the XAS spectrum, this step

could also be accomplished using the Feff Handler, and, in the

future, an OCEAN (Story et al., 2014; Vinson et al., 2011;

Gilmore et al., 2015) Handler that is currently under devel-

opment. Moreover, unless otherwise stated, the input shown

here and in other figures is all that is required to produce the

requested target.
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Figure 6
Workflow diagram for the calculation of AIMD-averaged X-ray spectra
using NWChem.

Figure 7
Sample input file for calculations of AIMD-averaged X-ray spectra using
NWChem. The input declares the target, the structure of the molecule,
the temperature for the MD, and the parameters for the XAS calculation.

Figure 8
Comparison of the 0 K and AIMD-averaged C K-edge X-ray absorption
spectra of chloroacetylene computed with Corvus and NWChem.



In this example, the user simply provides a starting structure

in standard xyz format, and indicates that the output should

be an AIMD-averaged X-ray absorption spectrum through

the target list option opt xasavg. The option

opt xasavg indicates that the input structure should be

optimized before starting the AIMD. The only additional

information needed is the target temperature for the AIMD

simulation via the nwchem:qmd:targ temp option, as well as

the number of roots and relevant energy range for a TDDFT

simulation of the C K-edge X-ray absorption spectrum (Zhang

et al., 2012). Within NWChem, the number of roots dictates the

total number of excitation energies calculated in solving the

linear-response TDDFT Casida equations (Casida & Huix-

Rotllant, 2012). Additionally for X-ray absorption spectra, a

restricted energy window that includes the relevant core-

orbitals as initial states needs to be indicated to target

the desired subset of core-excitations (Zhang et al., 2012).

Together, these parameters control the range of energies over

which spectral transitions are calculated. With this minimal

input Corvus will carry out a series of steps to produce the

AIMD averaged spectrum shown in Fig. 8. The internal

Corvus NWChem input file is a combination of the user-

provided input and an extensive set of sensible defaults that

aim to strike a compromise between accuracy and efficiency.

The user can of course override the defaults by setting them

explicitly in the Corvus input file. In this example a total of 120

individual AIMD snapshots are used, each of which results in

one XAS spectrum. In the last step Corvus consolidates the

individual spectra, which are in the form of a list of excitation

energies and corresponding oscillator strengths, into a single

file to be post-processed by the user before plotting. The final

AIMD averaged output spectrum also includes a 0.1 eV core-

hole lifetime broadening. As expected, significant temperature

broadening of the spectral peaks as well as some additional

structure is observed.

3.2. Ab initio Debye–Waller factors

Debye–Waller (DW) factors describe the exponential

damping observed in X-ray spectra due to thermal vibrations

and configurational disorder. The effect of vibrations is

dominated by an average over the oscillatory behavior of the

scattering paths – as the atoms oscillate, so do the lengths of

the scattering paths – the largest contribution coming from the

mean square relative displacement of the scattering path

(Grimvall, 1986; Vila et al., 2007). These DW factors can be

efficiently and accurately calculated from a system’s dyna-

mical matrix (DM) of force constants, or Hessian, using the

standalone DMDW (Dynamical Matrix Debye–Waller)

module from the FEFF software package (Rehr et al., 2009;

Vila et al., 2007). The force constants, however, cannot be

calculated internally in FEFF and must be provided to the

DMDW module from an external source. Currently Corvus

includes handlers for ABINIT (Gonze et al., 2016, 2009; Gonze

& Lee, 1997) and NWChem (Valiev et al., 2010) that can

produce dynamical matrices and Hessians, respectively, and

can be used in DMDW calculations. The typical Corvus

workflow using the ABINIT Handler for such a calculation is

shown in Fig. 9. In this workflow the complicated process (Vila

et al., 2007) of generating the appropriate reciprocal space q-

point grid and converting the reciprocal space dynamical

matrix to real space is done automatically before passing it to

the DMDW module. Typical results from this workflow are

presented in Fig. 10, which shows a comparison of the

experimental (Ahmed et al., 2013) and theoretical tempera-

ture variation of the near-neighbor mean square relative

displacement for GaAs. It should be noted that, although

these DW factors can be included in EXAFS fits post facto,

this workflow can also be extended to compute EXAFS

spectra with ab initio DW factors directly by replacing the

DMDW step with a FEFF one that computes the DW factors

internally and includes them in the EXAFS calculation. This

workflow is currently under development.

Fig. 11 shows the result of a different Corvus workflow in

which the NWChem software package is used to generate

Hessians (the molecular equivalent of the dynamical matrix)

for a variety of diatomic, triatomic and tetratomic molecules.
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Figure 9
Workflow diagram for the calculation of EXAFS DW factors by passing
ABINIT dynamical matrices to the FEFF standalone DMDW module.

Figure 10
Comparison of the experimental (Ahmed et al., 2013) and theoretical
temperature variation of the near-neighbor mean square relative
displacement (MSRD) for GaAs.



Typical input and output files for these types of calculations

are shown in Figs. 12 and 13, and the supporting information

shows a comparison between a given Corvus input and all the

input files automatically generated for that workflow, high-

lighting the extreme simplification provided by Corvus. This

workflow also includes an automatic optimization of the

structures of the molecules. The simulated single-scattering

DW factors for the different types of bonds are compared with

experimental results (Dimakis & Bunker, 1998) and show that

they are mostly within the expected uncertainty (Crozier,

1997) of the experimental methods (�10%, gray region on

the plot).

3.3. Thermal expansion

A goal of many simulations is to calculate the temperature

dependence of phonon properties by including thermal

expansion effects. This entails first determining the structure

of the system as a function of temperature, then calculating the

physical properties with that structure. These types of calcu-

lations showcase the more advanced usage of Corvus,

including parameter sweeps and dynamically updated prop-

erties. The thermal expansion of a system is defined by its

equilibrium configuration at a given temperature for a range

of temperatures. At thermal equilibrium, the Helmholtz free

energy is minimized (Vila et al., 2007). Therefore, the proce-

dure for determining the lattice constant as a function of

temperature is as follows: (1) For a range of temperatures

calculate the Helmholtz free energy for a range of lattice

constants at this temperature, and (2) find the minimum of

the Helmholtz free energy with respect to lattice constant for

each temperature. This can be accomplished by building up a

Helmholtz free energy surface as a function of both

temperature and lattice constant, then minimizing at each

temperature. A typical workflow for this process is shown in

Fig. 14. DMDW itself produces results for a grid of tempera-

tures, so Corvus can collect these results for a grid of lattice

sizes to create the Helmholtz free energy surface. The

collection of property calculations is finally passed to the

Numpy Handler, which does the remaining analysis to deter-

mine the aðTÞ curve. Fig. 15 presents typical results for the

relative thermal expansion of Cu compared with experiment

(Nix & MacNair, 1941; White, 1973).

3.4. Structural optimization and RIXS/XES

One very common and important task for analysis of

spectroscopies is to optimize the structure of a system given an

initial structure based on, for example, crystallographic or
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Figure 12
Sample input file for calculations of DW factors using a combination of
NWChem and the DMDW module in FEFF. The input declares the list of
targets, the structure of the molecule, the basis set for the NWChem
calculations, and the parameters for the DMDW section.

Figure 11
Comparison of the experimental (Dimakis & Bunker, 1998) and
theoretical bond single-scattering DW factors at room temperature for
a variety of diatomic, triatomic and tetratomic molecules. The grayed area
indicates the typical uncertainty in experimentally determined DW
factors (Crozier, 1997).

Figure 13
Sample output file for calculations of DW factors using a combination of
NWChem and the DMDW module in FEFF. The target property (‘s^2’)
is reported as a function of temperature together with the parameters for
the scattering path, such as the indices of the atoms involved and the
length of the path. This output is in the form of a Python dictionary that
can be easily imported into other analysis tools.



molecular data of a similar system. The optimization can be

performed using DFT or hybrid functionals, or more accurate

methods. FEFF then takes the optimized structure as input,

and can produce a variety of spectroscopic quantities. In this

example, the X-ray emission spectrum (XES) and resonant

inelastic X-ray scattering (RIXS) of the [LMn(acac)N]+ cation

in [LMn(acac)N]BPh4 (shown at the top of Fig. 18, and where

the ‘L’ stands for 1,4,7-trimethyl-1,4,7-triazacyclononane) are

calculated at the initial structure using FEFF, optimization is

performed using ORCA (Neese, 2012), and the spectra are

calculated again using the optimized structure. This is a rela-

tively simple workflow (see Fig. 16), but can be directed by the

user, i.e. by specifying a set of targets as well as the order of

calculation of those targets. While the input to the two soft-

ware packages separately might be quite involved, especially

for the calculation of RIXS, the automation has reduced the

input to a minimal set of required properties, such as the

coordinates of the atoms in the molecule (cluster), the

absorbing atom, and the X-ray edge of interest, as shown in

Fig. 17.

Fig. 18 shows the RIXS spectrum (middle) of [LMn(acac)N]

BPh4 calculated at the optimized structure, and the XES

spectrum (bottom) calculated at the optimized structure

compared with that calculated from the initial structure and

experimental results (Smolentsev et al., 2009). Note the

appreciable improvement in agreement with experiment when

the optimized structure is used.

4. Conclusions

We have developed Corvus, a general property-driven scien-

tific workflow tool designed to interface multiple scientific
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Figure 15
Theoretical and experimental (Nix & MacNair, 1941; White, 1973)
relative thermal expansion for Cu.

Figure 16
Diagram of workflow for XES and RIXS from initial and optimized
structure.

Figure 14
Corvus workflow for calculating thermal expansion using the ABINIT
and DMDW Corvus handlers.

Figure 17
Sample input file for calculations of XES and RIXS using ORCA
and FEFF.



software packages, highlighting its application to excited state

and spectroscopic properties. In order to allow for automated

calculations and easy construction of scientific workflows,

Corvus keeps most technical details of the external scientific

software well separated from the flow control. In addition,

Corvus has hierarchical levels of complexity, allowing

inexperienced users to perform single-shot workflows, and

expert users to use it as an open library of functions for

customized workflows. We have demonstrated the versatility

of Corvus by applying it to calculations of excited state and

spectroscopic properties, using a variety of possible workflows

based on different external software packages, including

FEFF, NWChem, ABINIT and ORCA. Many extensions are

possible, both to other external packages for high-perfor-

mance computing and exascale resources, through integration

with other workflow tools such as SWIFT, and by creating

modules that interface to data sources such as the Materials

Project (Jain et al., 2013). We are currently developing a smart

workflow generator capable of creating more complex, non-

linear data flows. Finally we are developing a graphical user

interface that will enable users to create and execute their own

data flows in a simplified, intuitive way.
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Figure 18
Structure of the LMn(acac)N]+ cation (top) in [LMn(acac)N]BPh4, where
the ‘L’ stands for 1,4,7-trimethyl-1,4,7-triazacyclononane, its RIXS
spectrum (middle) at the optimized structure, and theoretical XES
(bottom) calculated at both the optimized (blue) and initial structure
(red), compared with the experimental result (Smolentsev et al., 2009)
(green crosses).
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