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Based on the the third-order aberration theory of plane-symmetric optical

systems, this paper studies the effect on aberrations of the second-order

accuracy of aperture-ray coordinates and the extrinsic aberrations of this kind

of optical system; their calculation expressions are derived. The resultant

aberration expressions are then applied to calculate the aberrations of two

design examples of soft X-ray and vacuum ultraviolet (XUV) optical systems;

images are compared with ray-tracing results using SHADOW software to

validate the aberration expressions. The study shows that the accuracy of the

aberration expressions is satisfactory.

1. Introduction

Soft X-ray and vacuum ultraviolet (XUV) optical systems are

widely used with synchrotron radiation, X-ray microscopy, etc.

(Owen et al., 2016; Yang et al., 2016; Underwood & Koch, 1997;

Shealy et al., 1995). The aberration analysis method is key

to the optical system design in order to gain sufficiently high

optical transmission in XUV optical systems, and researchers

need to adopt a scheme where grazing-incidence rays impinge

on the optical surface. Consequently, the shape of the wave-

front will deviate significantly from spherical, and the focusing

geometry of a light beam in the meridional plane will differ

from that in the sagittal plane, and thus result in the imaging

performance of a plane-symmetric optical system (Cao &

Lu, 2017).

Many aberration analysis methods have been developed for

plane-symmetric optical systems; for example, the light-path

function (LPF) (Beulter, 1945; Noda et al., 1974), analytic

formulas of the ray-tracing spot diagram (SD) (Namioka et al.,

1994; Masui & Namioka, 1999), Lie optics (Goto & Kurosaki,

1993; Palmer et al., 1998a,b) and wavefront aberration (WFA)

(Chrisp, 1983; Lu, 2008). Lu (2008) adopted a toroidal surface

as a reference wavefront to develop the third-order aberration

theory of plane-symmetric optical systems based on the WFA

method. The aberration theory was applicable to the aberra-

tions analysis of XUV optical systems of mirrors or gratings of

different surface types, but it adopted a linear approximation

of the aperture-ray coordinates and only considered intrinsic

aberrations of multi-element optical systems.

According to Gaussian optics, aperture-ray coordinates are

usually approximated linearly in an axially symmetric multi-

element optical system. In a plane-symmetric optical system,

however, the light beam often impinges on the optical surface

at oblique incidence, or even extremely grazing incidence. This

usually causes serious aberrations, which will then cause the

aperture ray to strongly deviate from the Gaussian optics. In
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addition, the aperture-ray coordinates of the optical surface

will be modified by the aberrations of its preceding optical

surface (i.e. extrinsic aberrations). Therefore, for an XUV

optical system with a small meridional curvature radius of an

optical surface or a large field angle of a point source, the

calculation accuracy of the third-order aberration theory of

plane-symmetric optical systems will have a significant error

(Lu, 2008). We also need to consider the effects on the aber-

ration due to the second-order accuracy of the aperture-ray

coordinates and the extrinsic aberrations. Lu & Lin (2010)

combined the WFA and SD methods to derive the aberration

expressions of the wave-aberration form of double-element

systems with the nonlinear accuracy of aperture-ray coordi-

nates; however, it is not an analytic analysis method and is not

suitable for multi-element optical systems. In this paper, we

propose an analytical analysis method for the effect on the

aberrations of the second-order accuracy of the aperture-ray

coordinates and extrinsic aberrations of XUV multi-element

optical systems.

In Sections 2 and 3 we introduce the definition and the

third-order aberration theory of plane-symmetric optical

systems (Lu, 2008), respectively, while in Section 4 the relation

of aperture-ray coordinates between adjacent optical surfaces

is fitted with a second-order polynomial, and, for the XUV

optical system, we study the variation of the aperture-ray

coordinates on the optical surface of the latter optical element

due to the aberrations produced by its preceding optical

element. In Section 5 we use the resultant aberrations

formulae to calculate the imaging of two design examples of

XUV optical systems, and the calculation results are validated

with the ray-tracing program SHADOW (Sanchez del Rio,

2011).

2. Definition of plane-symmetric optical systems

Fig. 1 shows a plane-symmetric optical system with an off-

plane object point S0 (Lu, 2008). The optical surface is

symmetrical with respect to the plane �Oz 0, where O is the

vertex of the optical surface. O0OO1, lying in the symmetry

plane, is defined as the base ray, whose angles of incidence and

reflection are � and �, respectively, and their sign will be

positive if rotation from the z 0-axis to the ray is counter-

clockwise. The ray S0PS1, emitted from source S0 and passing

through the center of the entrance pupil, is the principle ray;

it intersects the optical surface at P, which is stipulated to be

the origin of the pupil coordinates system xyz. u and u 0 are

the sagittal field angle in the object space and image space,

respectively.

The general form of a plane-symmetric surface can be

expressed in the vertex coordinate system of ��z 0 by the

equation (Lu & Cao, 2017)

z 0 ¼
P1
i¼ 0

P1
j¼ 0

ci; j �
i � j;

c0;0 ¼ c1;0 ¼ 0; j ¼ even:

ð1Þ

For the third-order aberration theory of plane-symmetric

optical systems, the power series needs to be kept up to the

fourth order; thus the figure equation is denoted by

z 0 ¼ c2;0 �
2
þ c0;2 �

2
þ c3;0 �

3
þ c1;2 � �

2
þ c4;0 �

4

þ c2;2 �
2 �2
þ c0;4 �

4; ð2Þ

where the coefficient ci, j has been given for toroid, ellipsoid

and paraboloid by Peatman (1997). For a toroidal surface,

ci, j is as follows,

c2;0 ¼
1

2R
; c0;2 ¼

1

2�
; c3;0 ¼ 0; c1;2 ¼ 0;

c4;0 ¼
1

8R3
; c0;4 ¼

1

8�3
; c2;2 ¼

1

4R2�
;

ð3Þ

where R and � are the major and minor curvature radii of the

toroid. If R = �, equation (2) becomes a spherical equation,

and, if R or � tend to infinity, then it becomes a cylindrical

equation.

3. Third-order aberration theory of a multi-element
plane-symmetric optical system

The wave aberration is derived from the light-path function;

however, the groove function of a grating will also contribute

to the wave aberration. The groove function n = n(�, �) for

holographic and mechanically ruled gratings is represented by

(Cao & Lu, 2017)

n ¼
�

�
þ

�

�

� n20

2
�2
þ

n02

2
�2
þ

n30

2
�3
þ

n12

2
��2
þ

n40

8
�4

þ
n22

4
�2�2 þ

n04

8
�4 þ . . .

�
; ð4Þ

where � is the groove spacing of the grating at the vertex, and

� and nij are given by equations (20)–(22) of Namioka et al.

(1994). The wave aberration of a plane-symmetric optical

system is represented by

W ¼
P4

ijk

wijk xi y j uk iþ jþ k � 4ð Þ: ð5Þ

The wave-aberration coefficients wijk are given by
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Figure 1
Optical scheme of a plane-symmetric optical system.



wijk ¼ Mijk �; rm; rs; lsð Þ þ �1ð ÞkMijk �; r 0m; r 0s; l 0sð Þ þ�Nijk;

ð6Þ

where x, y are the aperture-ray coordinates on the optical

surface; Mijk(�, rm, rs, ls) are the wave-aberration coefficients

of the object pencil and are listed in Appendix A of Lu & Zhu

(2012); the parameters rm, rs, r 0m, r 0s represent the meridional

and sagittal focal distances in the object and image space; l and

l 0 are the parameters representing the position of the entrance

and exit pupil; their expressions as well as Nijk are given by

Lu (2008) and � = ðm�=�Þ�.

Similar to Gaussian optics, the first- and second-order wave-

aberration should be zero to define the aberrations of plane-

symmetric optical systems. The parameters �, �, l, l 0, rm, rs, r 0m,

r 0s are determined by equations (4)–(7) of Cao & Lu (2017).

Therefore, the imaging aberration is contributed by the

remaining third- to fourth-order wave aberrations (Lu, 2008),

W ¼ w300x3 þ w120xy2 þ w400x4 þ w220x2y2 þ w040y4

þ w102xu2
þ w013yu3

þ w202x2u2
þ w022y2u2

þ w111xyuþ w031y3uþ w211x2yu:

ð7Þ

For multi-element optical systems, the total wave aberration

is the sum of the contribution from every optical element.

Therefore, for an optical system of g elements the wave

aberration is formulated as

W ¼ W 1ð Þ þW 2ð Þ þ . . . W gð Þ

¼
Pg

n¼ 1

P4

ijk

Wijk nð Þ x
i
n y j

n uk
n iþ jþ k � 4ð Þ: ð8Þ

If the relation of the aperture-ray coordinates and the field

angle between adjacent optical surfaces adopts the linear

approximation,

xi ¼ Ai xiþ1; yi ¼ �Bi yiþ1; ui ¼ � 1=Bið Þ uiþ1; ð9Þ

where Ai = r 0mðiÞ cos �iþ1=½rm iþ1ð Þ cos�i� and Bi = r 0sðiÞ=rs iþ1ð Þ.

For an XUV optical system with a small meridional curva-

ture radius of the optical surface or a large field angle of a

point source, the linear approximation is unsatisfactory; we

will discuss the modification of the wave aberration using a

second-order polynomial to fit the above relation in Section 4.

In the third-order aberration theory of plane-symmetric

optical systems, the aperture-ray coordinates and the field

angle on the final optical surface are usually assumed to be

the reference ones of the optical systems. With the transfer

equation (9), the wave aberration of equation (8) can be

transformed into

W ¼
P4

ijk

WT
ijk x i

g y j
g uk

g;

WT
ijk ¼

Pg�1

n¼ 1

Wijk nð ÞA
i
njg B

j�k
njg þWijk gð Þ;

ð10Þ

where WT
ijk is the wave-aberration coefficient with the linear

approximation of the multi-element optical systems; and the

coefficients of transformation with the linear approximation of

the aperture-ray coordinates, An|g and Bn|g, are calculated by

Anjg ¼
r 0mðnÞr

0
m nþ1ð Þ . . . r 0m g�1ð Þ cos �nþ1 cos �nþ2 � � � cos�g

rm nþ1ð Þrm nþ2ð Þ � � � rm gð Þ cos�n cos �nþ1 . . . cos �g�1

;

Bnjg ¼
r 0sðnÞr

0
s nþ1ð Þ . . . r 0s g�1ð Þ

rs nþ1ð Þrs nþ2ð Þ . . . rs gð Þ

:

ð11Þ

Furthermore, the third-order ray aberrations on the image

plane at a distance r 00 from the optical element and perpen-

dicular to the base ray OO1 are derived,

x 0 ¼ d100xþ d200x2
þ d020y2

þ d300x3
þ d120xy2

þ d002u2

þ d011yuþ d111xyuþ d102xu2; ð12Þ

y 0 ¼ h010yþ h110xyþ h210x2yþ h030y3 þ h003u3 þ h001u

þ h101xuþ h201x2uþ h021y2uþ h012yu2;

where the ray-aberration coefficients, dijk and hijk, are given by

Lu & Zhu (2012).

In addition, similar to an axially symmetric optical system,

the aberrations of a plane-symmetric optical system are

related to l, the position of the pupil of each optical surface.

The transfer equation of the pupil-position parameters is

(Lu & Zhu, 2012)

lnþ1 ¼
1

B 2
njnþ1

ln þ
dn

Bnjnþ1

: ð13Þ

where dn is the distance from the nth element to the (n+1)th

element.

4. Effect of second-order accuracy of aperture-ray
coordinates and extrinsic aberrations

4.1. Transfer relationship of aperture-ray coordinates with
second-order accuracy

Fig. 2 shows the optical scheme of an aperture ray S0P1P2

passing through a double-element optical system. S0O1O2 is

the principle ray, S0P1P2 is the aperture ray; the coordinate

systems xiyizi, x0(i)y0(i)z0(i) and x 00ðiÞ y
0
0ðiÞ z

0
0ðiÞ (i = 1, 2) corre-

spond to the optical surface, the entrance and exit wavefront,

respectively. x 01 y 01 z 01 is the coordinate system on the image
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Figure 2
Optical scheme of an aperture ray S0P1P2 passing through a double-
element optical system.



plane � positioned at O2, B1 is the intersection point of ray

P1P2 and �.

The calculation of the total wave aberration requires the

transformation of the aperture-ray coordinates of each

element to the reference ones. As given in equation (10), the

relation of the aperture-ray coordinates between adjacent

optical surfaces adopts a linear approximation. However, for

an XUV optical system with a small meridional curvature

radius of the optical surface or a large field angle of a point

source, if we also adopt the above transformation, it will result

in inaccuracy of the wave aberration calculation. In this paper,

we handle the transformation with the second-order poly-

nomial of the aperture-ray coordinates between adjacent

optical surfaces.

Since the field angle u is very small, the components

containing only u are ignored in the derivation of the transfer

relationship of the second-order accuracy of the aperture-ray

coordinates on the optical surface. In order to obtain the

relationship, we firstly need to know their transformation

between the entrance wavefront and the optical surface. The

expression of the second-order relation is

xi ¼
1

cos �i

x0ðiÞ þ 2 tan �i c0;2ðiÞ li y0ðiÞ ui

þ
sin �i

cos3 �i

c2;0ðiÞ �
cos�i

rmðiÞ

 !
x 2

0ðiÞ þ tan�i c0;2ðiÞ y
2
0ðiÞ;

yi ¼ tan �i 1�
li

rsðiÞ

 !
x0ðiÞ ui þ y0ðiÞ �

tan�i

rsðiÞ

x0ðiÞ y0ðiÞ; ð14Þ

where x0(i), y0(i), xi, yi are the aperture-ray coordinates on the

entrance wavefront and the optical surface of the ith element,

respectively.

Then, we can calculate the ray coordinate on the image

plane � that lies in the position of the entrance wavefront of

the (i + 1)th element using the aperture-ray coordinates on the

optical surface of the ith element, xi , yi ,

x 0i ¼ P100ðiÞ xi þ P011ðiÞ ui yi þ P200ðiÞ x
2
i þ P020ðiÞ y

2
i ;

y 0i ¼ T101ðiÞ xi ui þ T010ðiÞ yi þ T110ðiÞ xi yi;
ð15Þ

where the expressions for coefficients Pklm(i) and Tklm(i) are

given by

P100ðiÞ ¼ �mðiÞ cos�i; P011ðiÞ ¼ �2�mðiÞc0;2ðiÞ li sin �i;

P200ðiÞ ¼ �mðiÞ

cos�i

r 0mi

� c2;0ðiÞ

� �
sin �i;

P020ðiÞ ¼ ��mðiÞc0;2ðiÞ sin �i; T101ðiÞ ¼ �sðiÞ�
0
lðiÞ sin �i;

T010ðiÞ ¼ �sðiÞ; T110ðiÞ ¼
�sðiÞ sin �i

r 0si

;

ð16Þ

with �mðiÞ = 1� r 00=r 0mðiÞ, �sðiÞ = 1� r 00=r 0sðiÞ, �0lðiÞ = 1þ li=r 0sðiÞ; in

addition, r 00 = d in equation (15), and di is the distance between

the ith element and the (i+1)th element.

From Fig. 2, the coordinates x 0i , y 0i should be transformed

into the coordinate system of the entrance wavefront of the

(i + 1)th element, x0(i+1) y0(i+1) z0(i+1); the transformation rela-

tion is

x0 iþ1ð Þ ¼ � x 0i ;

y0 iþ1ð Þ ¼y 0i :
ð17Þ

We then apply equation (17) to obtain the aperture-ray

coordinates on the optical surface of the (i+1)th element, xi + 1,

yi + 1. Consequently, combining equations (14)–(17), the rela-

tion of the aperture-ray coordinates on the optical surface of

the second-order accuracy between the ith and (i+1)th

element can be obtained,

x2 ¼
1

A1

x1 þ 2	1u1y1 þ
	2

A1

x2
1 þ 	3y2

1;

y2 ¼ �
1

B1

y1 þ 	4u1x1 þ
	5

r 0s1

x1y1;

ð18Þ

where

	1 ¼ c0;2 2ð Þ l2 tan�2 �
c0;2 1ð Þ l1 tan�1

A1

; ð19Þ

	2 ¼
c2;0 2ð Þ tan�2

A1

� c2;0 1ð Þ tan �1 þ
sin �1 � �2ð Þ

r 0m1 cos �2

; ð20Þ

	3 ¼
c0;2 2ð Þ tan�2

B 2
1

�
c0;2 1ð Þ tan �1

A1

; ð21Þ

	4 ¼ �
sin �1

B1

�0s 1ð Þ þ
B1 sin �2

A1

�s 2ð Þ

� �
; ð22Þ

	5 ¼
sin �2

A1

�
sin �1

B1

: ð23Þ

4.2. Extrinsic aberrations

The definition of the intrinsic wave aberration is based on a

model of a single optical surface with the assumption of an

ideal point object. However, for a multi-element optical

system, the assumption of an ideal point object, to some

optical surface of the optical system (except the first one), is

no longer valid because of the effect of aberrations of its

preceding ones. Taking this into account, the resultant change

of aberration is regarded as extrinsic aberrations. Therefore,

the actual total aberration of the optical systems comprises

intrinsic aberrations and extrinsic aberrations (Sasian &

Acosta, 2014; Sasian, 2013; Lu & Cao, 2017).

Fig. 3 shows an optical system of two optical surfaces G1 and

G2; x 01 O 01 y 01 is the coordinate system of image plane � 01 at a

distance r �0 from optical surface G1. The coordinates of B1 are

determined by the second-order accuracy of the aperture-ray

coordinates, and those of B 01 also include the effect of the

extrinsic aberration.

According to the third-order aberration calculation

expressions of a plane-symmetric optical system, the aberra-

tions on the image plane positioned at G2 (i.e. in the case of

r �0 = d in Fig. 3) are calculated by
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�x 01 ¼
3dw300ð1Þ x

2
1

cos�1

þ
dw120ð1Þ y

2
1

cos�1

þ
dw111ð1Þ u1 y1

cos �1

�
dw102ð1Þ u

2
1

cos�1

;

�y 01 ¼ dw111ð1Þ u1 x1 þ 2dw120ð1Þ x1 y1: ð24Þ

Therefore, the aberrations will cause the aperture-ray coor-

dinates on the optical surface of G2 to change by the amount

�x2 ¼ �
�x 01

cos �2

; �y2 ¼ �y 01: ð25Þ

4.3. Modification of aberrations of a double-element optical
system with the second-order accuracy of the aperture ray
and extrinsic aberrations

According to the above discussions, the actual aperture-ray

coordinates on the optical surface of G2 should be

X2 ¼ x2 þ�x2

¼
1

A1

x1 þ 2	1 �
dw111 1ð Þ

cos �1 cos �2

� �
y1u1

þ
	2

A1

�
3dw300 1ð Þ

cos�1 cos�2

� �
x2

1 þ 	3 �
dw120 1ð Þ

cos �1 cos �2

� �
y2

1

�
dw102 1ð Þ

cos �1 cos �2

u2
1; ð26Þ

Y2 ¼ y2 þ�y2

¼ �
1

B1

y1 þ 	4 þ dw111 1ð Þ

� �
x1u1 þ

	5

r 0s1

þ 2dw120 1ð Þ

� �
x1y1:

Obviously, the first term of the right-hand side of equation

(26) represents the linear approximation of the aperture-ray

coordinates.

Therefore, the actual wave aberration of a double-element

optical system is given by

WT ¼ W 1ð Þ þW 2ð Þ; ð27Þ

where the calculation expressions of W(1) and W(2) are

W 1ð Þ ¼
X4

ijk

wijk 1ð Þ x1 y1 u1;

W 2ð Þ ¼
X4

ijk

wijk 2ð ÞX2 Y2 u2:

ð28Þ

In Section 3, the aberration expressions of equation (12) use

x2, y2, u2 as the aperture-ray coordinates and the field angle.

Therefore, the contribution of aberrations caused by the wave

aberrations of G1 should use x2, y2, u2 to calculate; and,

according to equation (26), the actual aperture-ray coordi-

nates and the field angle of the aberrations calculation of G2

should adopt X2, Y2, u2.

According to the above discussions, expressions of the

actual aberration coefficients can be obtained. For the

convenience of the aberration calculation, the calculation of

the aperture-ray coordinates of the aberrations in the case of

the linear approximation uses x2, y2, u2; in the remaining cases,

x1, y1, u1 are used to calculate the aberration. Therefore, they

are given by

x 02 ¼
P4

ijk

dijk x i
2 y

j
2 u k

2 þ
~ddijk x i

1 y
j
1 u k

1

� �
;

y 02 ¼
P4

ijk

hijk x i
2 y

j
2 u k

2 þ
~hhijk x i

1 y
j
1 u k

1

� �
;

ð29Þ

where the first parts of the right-hand sides of each equation,

dijk and hijk, are just the aberrations coefficients obtained with

the linear approximation of the aperture ray; the second parts

result from the total of the modification coefficients of the

aberrations due to the second-order accuracy of the aperture-

ray coordinates, and the extrinsic aberrations coefficients, ~ddijk

and ~hhijk, are given in the supporting information.

5. Numerical validation

To validate the aberration formulae derived above, we now

apply them to calculate the imaging of two design examples of

an XUV optical system and compare them with the ray-tracing

results from the SHADOW software. Optical system I is the

Tondello’s spectrograph: a spherical-grating monochromator

with a pre-focusing toroidal mirror, as shown in Fig. 4. The

optical system accepts from the source a light beam with a

diverging angle of 2
v � 2
h = 10 mrad � 20 mrad; the

monochromator uses a conventional spherical grating with a

groove density of N = 600 grooves mm�1, and works in a +1

diffraction order at a wavelength of 4.4 nm. Its other optical

parameters are listed in Table 1.

Optical system II is a modified design of optical system I.

The optical parameters to be modified are the major and

minor curvature radius of the toroidal mirror, R1 = 4300 cm,

�1 = 25 cm; and its other optical parameters are consistent with

that of optical system I. Using these optical parameters, we can

obtain r 0m2 = 119.35 cm, r 0s2 = 79.81 cm.

Fig. 5 shows ray spot diagrams of optical system I with an

image distance of r 00 = 150 cm: parts (a) show the calculation
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Figure 3
Optical system of two optical surfaces G1 and G2. B1 and B 01 represent the
aperture-ray coordinates on G2 with and without the extrinsic aberration,
respectively.



results using the aberration coefficients of the first term of

equation (29), dijk, hijk; parts (b) use the total aberration

coefficients of equation (29), dijk and ~ddijk, hijk and ~hhijk; and

parts (c) show the ray-tracing results from SHADOW. In the

spot diagrams (I), (II) and (III), point sources with field angles

of u1 = 0	, 0.1	 and 0.2	, respectively, are assumed.

Fig. 6 shows the ray spot diagrams of

optical system II. Ray spot diagrams (a),

(b) and (c) are obtained in the same way

as in (a), (b) and (c) of Fig. 5. Here, (I) is

for a point source with a field angle of

u1 = 0	 and an image distance of r 00 =

119.35 cm; (II) and (III) are for point sources with field angles

of u1 = 0.1	 and u1 = 0.2	 and an image distance r 00 = 200 cm.

As shown in Figs. 5 and 6, the results of aberrations

obtained with dijk, hijk are unacceptable, but the aberration

calculation accuracy obtained with dijk and ~ddijk, hijk and ~hhijk

are satisfactory compared with the ray-tracing results. The

difference is yielded by the contribution of the high-order

aberrations and high-order coordinate components in the

transfer of the aperture ray; but, for a source of dimension


1 mm, like a synchrotron radiation light source or laser, the

contribution of the high-order aberrations and the effect of

aberrations due to the high-order coordinate components in

the transfer of the aperture ray can be negligible; and thus the

aberration expressions derived in this paper have a satisfac-

tory calculation accuracy.

6. Conclusions

In this paper we propose a calculation method of the effect on

the aberrations due to the second-order accuracy of aperture-

ray coordinates and the extrinsic aberrations based on the

third-order aberration theory of plane-symmetric optical

systems, and derive their calculation expressions.

The resultant aberration formulae are applied to calculate
the imaging of two design examples of

XUV optical systems to compare their

results with those obtained from the

ray-tracing program SHADOW, and

they have a satisfactory calculation

accuracy.

Compared with the SHADOW soft-

ware, the method proposed in this paper

can analyze the contribution of different

types of aberrations, the relationship

between the optical parameters and

the aberrations, etc. Therefore, it will

provide an analytical measure and will

be helpful in the design and optimiza-

tion of XUV multi-element optical

systems.
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Figure 4
Optical scheme of optical system I.
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Figure 5
Ray spot diagrams for an optical system with an image distance of r 00 = 150 cm (axis units: cm). Ray
spot diagram (a) is obtained with the aberration coefficients dijk, hijk; (b) with dijk and ~ddijk, hijk and
~hhijk; and (c) with ray-tracing program SHADOW. (I), (II) and (III) are for point sources with field
angles of u1 = 0	, 0.1	 and 0.2	, respectively.
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Figure 6
Ray spot diagrams for optical system II. Ray spot diagrams (a), (b) and (c) are obtained in the same way as (a), (b) and (c) of Fig. 5; (I) is for the point
source with field angle of u1 = 0	 and image distance of r 00 = 119.35 cm; (II) and (III) are for point sources with field angles of u1 = 0.1	, u1 = 0.2	 and image
distance r 00 = 200 cm, respectively.
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