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The fact that a diffraction grating can provide twofold-smaller bandwidth when

operated in second-order diffraction is long known and applied routinely in the

laboratory for spectroscopy in the visible and ultraviolet spectral range. A

similar routine operation in monochromators for the soft X-ray range is not

reported yet. This study will thus address the feasibility of efficient diffraction of

soft X-rays in the second order at reflection gratings when operated at grazing

angles of incidence. The related systematic study could make profitable use of

a recently introduced simple analytical equation for the prediction of the

diffraction efficiency of blazed gratings with an ideal sawtooth profile. The

predictions are then verified by use of rigorous calculations. The principle

finding is that, by operation of gratings with lower groove densities, and thus

with higher efficiencies, in higher order diffraction, one can extend the tuning

in existing instruments with mechanical/optical limitations to larger photon

energies. The performance in terms of transmission and spectral resolving power

can be very similar to the performance of a grating with a larger groove density,

which would otherwise have to be used for accessing the same energy range.

This would allow operation of a single highly efficient grating over a larger

photon energy interval at a modern synchrotron radiation source, e.g. from 0.3

to 2.2 keV. Without any requirement for a sophisticated grating exchange

scheme, a related instrument promises to be sufficiently stable for the needs

imposed by the improvements in source point stability at diffraction-limited

storage rings.

1. Introduction

As long as the operation of monochromators for the soft

X-ray range (0.3–8 keV) is projected only up to the limit in

photon energy of about 2–2.5 keV, reflection gratings are

almost exclusively employed for the dispersion of the incident

radiation at shallow angles of deflection. The selection of the

wavelength � by use of these devices, as presented in Fig. 1, is

then based on the grating equation (see e.g. Hutley, 1982)

n� ¼ d cos �� cos �ð Þ; ð1Þ

where n (an integer) is the order of diffraction, d is the grating

periodicity and � and �, with � 6¼ �, are the angles of grazing

incidence and of grazing diffraction, respectively. The wave-

length (�) and photon energy (E) are related via �E =

1.23985 nm keV. Here the sign convention is n > 0 when � > �,

i.e. when the respective diffraction order is observed between

the incident and the specularly reflected beam. The minimum

achievable source-size-limited spectral bandwidth is obtain-

able from the derivative of equation (1),
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where �� is the intrinsic beam angular divergence limited by

the finite source size s and given by the ratio of this size s and

the source distance L. According to equation (2) the use of the

second (n = 2) or even higher orders can then help to reduce

the achievable spectral resolution at least twofold (see, for

example, Born & Wolf, 1980). This strategy is regularly applied

when the incident light from laboratory line sources, emitting

smaller photon energies from the visible spectral range up to

the vacuum ultraviolet (VUV), is dispersed at close to normal

incidence. In this case, interferences by integer multiples of

the respective wavelength need to be absent or need to be

eliminated by appropriate means such as filters. As far as

synchrotron radiation at larger photon energies in the soft

X-ray range is concerned, the latter suppression strategy for

the principle diffraction order with filters could be used as well

at bending-magnet sources, which emit a continuous spectrum.

Instead, the use of undulators would be more favourable as

they emit a line spectrum which is even tunable. Nevertheless,

for routinely operated monochromators for the soft X-ray

range the use of the first order (n = 1) is reported almost

exclusively for the monochromatization. The reason for this

lies in the flexibility, which is provided in monochromators for

the soft X-ray range in comparison with solutions for normal

incidence. The optics in soft X-ray monochromators needs

to be operated at grazing angles of incidence, and the most

flexible configuration for the monochromatization is achieved

when a double bounce is realized in a plane-mirror plane-

grating pair, in such a way that the deflection angle in the

dispersion process can be varied while the exiting mono-

chromatic beam remains stationary in position and angle.

This concept was introduced by Kunz et al. (1968) for use

in combination with plane optics and gratings with constant

periodicity and is discussed in detail by Petersen et al. (1995).

When such a pair is operated in a divergent incident beam, the

deflection angle variation needs to be restricted almost always

to a single operation curve on which the related aberrations

can be kept constant. Petersen et al. (1995) reported on the

monochromator operation with n = 2 under such conditions

and found an improvement in the spectral resolution which,

however, remained far from a factor of two. Later, Follath &

Senf (1997) introduced a collimation mirror in front of the

mirror/grating pair, which eliminated most of the aberrations

originating in the grating with constant groove density. Then,

in a collimated beam, the deflection angle at a plane grating

with constant periodicity can be chosen freely. Consequently,

this can be used in order to vary the spectral resolution, as

shown by Follath & Senf (1997) and by Follath (2001). Such a

variation can be by more than a factor of two, and then use of

the second order (n = 2) does not provide any advantage in

this respect; hence, this type of operation in the second order

will not be discussed here.

The second-order diffraction is always discussed in soft

X-ray monochromators, when the higher order suppression

capability is the important parameter. In this case, equation

(1) indicates that all integer fractions of the principle wave-

length can be diffracted into the same direction. Such photons

can thus be transmitted through a monochromator as an

undesired impurity or contamination when a source is emitting

photons also at the respective wavelengths (e.g. a bending

magnet at synchrotron radiation sources). This study will then

address the question of whether the higher-order contamina-

tion in conditions of poor higher-order suppression can

eventually offer advantages over the normal first-order

operation of the monochromator.

2. Conditions for ‘higher-order operation’ of soft
X-ray gratings

As laminar grating profiles have intrinsic higher-order

suppression capabilities (see, for example, Follath & Senf,

1997), only gratings with a sawtooth or blazed profile will be

considered in this discussion. The findings from a recent study

by Jark (2019) can then be used for the present discussion. In

the latter study, and whenever possible here, the small-angle

approximations for the sine and cosine functions are used. It

was shown by Jark (2019) that the diffraction efficiency of a

blazed grating with a perfect rectangular sawtooth profile in

bulk material can be approximated with little error compared

with more adequate rigorous calculations by use of an

analytical equation. For the orders n = 1 and n = 2, to which

the present discussion will be limited, the efficiency can be

calculated by the use of three independent multiplicative

factors,

en¼1;2 ¼ R �; �þ �ð Þ
�

�
S2

n¼1;2 �; �; �; �ð Þ; ð3Þ

where R �; �þ �ð Þ refers to the reflectivity of the coating, �=�
refers to the applied geometry, and only the structure factor

S2
n¼1;2 �; �; �; �ð Þ contains information about the grating

profile. The exact form of the latter for a grating with an ideal

sawtooth profile was derived by Lukirskii & Savinov (1963).

An approximation for the structure factor for practical

applications is discussed in Appendix A. It was shown by Jark

(2019) that it is here more convenient to use as the variable the

angle of grazing deflection �þ �. With � being the blaze angle

of the grating, i.e. the shallow angle of inclination of the

sawtooth profile with respect to the substrate surface, in the

condition �þ � ¼ � � � the intensity diffracted into a specific

diffraction order can be considered to have been specularly
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Figure 1
Diffraction of a radiation beam striking a diffraction grating with
periodicity d and an angle of grazing incidence of �, and which is
diffracted by an angle of � away from the surface. The situation is
presented for a blazed grating with blaze angle �. In the first two grooves
on the left, grey triangles indicate up to which inclination the sawtooth
angle can deviate from a right angle without affecting the diffraction
process. Here the angle ’ is referred to as the anti-blaze angle.



reflected at the inclined grating grooves. This condition is thus

called the blaze maximum condition (BM), in which case the

structure factor is maximum with S2
n¼1;2 �; �; �; �ð Þ ¼ 1. The

latter factor is valid for both beam paths, i.e. when the incident

radiation follows the trajectory presented in Fig. 1 and when it

follows the reversed trajectory. It can be shown that the

related blaze maximum wavelengths are given by

�BM ¼
d

n
�ð� þ �Þn;BM: ð4Þ

The geometrical factor �=� ¼ G is always G < 1, for which

reason the diffraction efficiency can never equal the reflection

coefficient for the inclined surface but is reduced even in blaze

maximum to at best

eBM ¼ R �; �þ �ð ÞG: ð5Þ

The discussion will herein be limited to gold coatings, which

are favoured for reflection gratings for the soft X-ray range.

Jark (2019) then showed for the photon energy range

considered here (0.3–2.5 keV) that, as long as one does not

consider the structure factor, each groove density 1/d of an

Au-coated grating is associated with a specific geometrical

factor G, i.e. a possible grating operation curve, close to which

the maximum of the efficiency is observed. According to Jark

(2019), such operation curves are given by

�þ �ð ÞG ¼
2�

d

� �1=2
1þG

1�G

� �1=2

: ð6Þ

This operation mode with constant G coincides with the

original operation mode of the plane-grating monochromator

as discussed by Petersen (1982). He introduced the fixed-focus

parameter cff = 1/G, which in an incident divergent beam

needed to be kept rigorously at a value of cff = 2.25, limiting

the optimum monochromator operation to a single working

curve. Even though the use of a collimated incident beam

permits us to abandon this operation mode, the concept of

operation with constant cff is still maintained; however, the

fixed-focus constant cff is varied according to the user needs,

either good higher-order suppression or high spectral resolu-

tion.

Jark (2019) found (empirically) for the best efficiency for a

gold coating a linear dependence between the latter fixed-

focus constant and the grating groove density (1/d), with the

relation

cff ¼
1

G
¼ 1:1þ

913 nm

d
ð7Þ

for gratings with groove densities between 50 mm�1 and

1200 mm�1, the latter being the current most favoured groove

density. As a consequence, when the grating is used at undu-

lators of length D at a diffraction-limited storage ring, the

spectral resolving power RP is constant for any cff value and

can be calculated ideally for first-order diffraction as

�

��

� �
n¼ 1

¼ RP ¼ 2
1

G2 � 1

� �1=2
L

ðdDÞ1=2
: ð8Þ

When the cff value is chosen according to equation (7), RP

increases approximately linearly with increasing groove

density. These latter dependencies in equations (5), (7) and (8)

are in line with previous experiences from monochromator

optimizations and successive experimental verifications: the

spectral resolving power is increasing with increasing groove

density, while inconveniently the diffraction efficiency is

decreasing in this case. According to equation (2), the spectral

resolution depends on the source size s, which varies at an

undulator at a diffraction-limited storage ring proportionally

to
ffiffiffi
�
p

. This was considered for the derivation of equation (8);

however, when it comes to second-order wavelengths in the

incident beam, one needs to consider that the related source

size is smaller by a factor of
ffiffiffi
2
p

. Thus when the exit slit is

properly matched to the reduced image sizes of higher-order

radiation, the related spectral resolving power in such a

higher-order operation scheme improves compared with

operation in the first order to

�

��

� �
n

¼ RP ¼ 2
1

G2 � 1

� �1=2 ffiffiffi
n
p

L

ðdDÞ
1=2
: ð9Þ

Instead, when the exit slit setting remains matched to the first-

order source size, the spectral resolving power is given by

equation (8) as well for all higher-order radiation.

The gold coating can be used efficiently and free of

absorption lines up to photon energies of E = 2.2 keV (� =

0.56 nm), where the Au M absorption edges will start to

reduce severely the instrument transmission. This photon

energy is still reflected with good efficiency with a beam

deflection angle of 3�. Petersen (1982) thus projected the

plane-grating monochromator for this minimum deflection

angle, and in subsequent work this lower limit has been kept in

the mechanical design of similar soft X-ray monochromators.

It is now assumed to be desirable to operate the grating at the

indicated limit (E = 2.2 keV, �þ � ¼ 3�) with the maximum

of the diffraction efficiency according to equation (5). From

equation (6), one obtains the wavelength down to which the

deflection angle remains larger than �þ � ¼ 3�,

�min ¼
d

2
�þ �ð Þ

2 1�G

1þG
: ð10Þ

The result for the maximum efficiency curve according to

equation (7) is plotted in Fig. 2 as the corresponding maximum

photon energy Emax depending on groove density. One finds

that only gratings with groove densities larger than about

600 mm�1 can provide their specific maximum diffraction

efficiency at a photon energy of 2.2 keV or larger. The

maximum diffraction efficiency is always found close to the

blaze maximum for the principle order n = 1, in which case

also the second order n = 2 is diffracted in blaze maximum.

In this condition S2
n¼1 �; �; �; �ð Þ ¼ S2

n¼2 �=2; �; �; �ð Þ ¼ 1 and

Gn¼1 ¼ Gn¼2. Then according to equation (3) the diffraction

efficiencies for both order should be similarly high, when both

reflection coefficients R �; �þ �ð Þ and R �=2; �þ �ð Þ are large.

Fig. 2. invites us to consider a very particular operation mode.

When the second-order diffraction occurs in blaze maximum

at the minimum possible deflection angle at a photon energy
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of 2.2 keV, then the blaze maximum for the first order under

the same conditions is 1.1 keV. According to Fig. 2 this is the

case for a groove density of around 120 mm�1. We then expect

that a grating with a groove density of 150 mm�1, for example,

as was discussed in more detail by Jark (2019), can provide

highly efficient tuning up to photon energies of 2.2 keV by use

of first- and second-order diffraction.

3. Discussion of the expected performance data for
‘higher-order operation’ of soft X-ray gratings

Without any further optimization, a comparison of the ideally

achievable efficiencies has now been made, depending on the

groove density and on the diffraction order. The chosen

groove densities of 150 mm�1, 300 mm�1 and 600 mm�1

correspond to frequently utilized fractions of the principally

used groove density of 1200 mm�1. The blaze angle and the

geometrical factor G were chosen by use of equations (4) and

(10) such that maximum efficiency was provided at or close to

the photon energies according to Fig. 2. In detail, a grating

with density (1/d) = 600 mm�1 can be tuned with high effi-

ciency to a photon energy of 2.2 keV (� = 0.56 nm), with � =

0.368� and G = 0.606, whereas a grating with 300 mm�1 can be

tuned in this way only to 1.72 keV (� = 0.72 nm), with � = 0.24�

and G = 0.782. The second order n = 2 for a density of

150 mm�1 can be tuned to 2.2 keV with � = 0.184� and G =

0.785. With the same values the tuning in first order is limited

to an energy of 1.1 keV (� = 1.12 nm). A comparison of the

diffraction efficiencies is presented in Fig. 3. These efficiencies

are calculated rigorously by use of the differential method as

presented by Nevière et al. (1974). The combined use of the

first and the second order in combination with 150 mm�1 then

provides the best diffraction efficiency at photon energies

below 1.1 keV and between about 1.7 keV and 2.2 keV.

According to equation (9), the spectral resolving power by use

of this grating at higher photon energies is almost identical to

the spectral resolving power of the grating with 300 mm�1.

The improvement compared with the operation at lower

energies in first order is then 1.4-fold. The grating with

600 mm�1 will then provide 2-fold improvement in the spec-

tral resolving power in the photon energy range 0.3–2.2 keV in

comparison with the combinations n = 1 and 300 mm�1 and

n = 2 and 150 mm�1. This grating with 600 mm�1 can scan the

entire indicated energy range with best performance, although

only with significantly smaller efficiency compared with the

lower-density gratings. As far as the gap of efficient tuning

from about 1.2 keV to 1.7 keV with 150 mm�1 is concerned,

the performance can be improved in this range in terms of

efficiency by use of more adapted G factors, but at the expense

of reduced resolving powers. When the same gratings are

operated at a fixed deflection angle of �þ � ¼ 3�, the

diffraction efficiencies vary as presented in Fig. 4. The

previous comments on the comparison between the effi-

ciencies in relative terms can also be applied here. From the

last two figures one can then observe the following advantage

for diffraction in the second order: it is a simple means of

extending the tuning range of gratings with high diffraction

efficiencies to larger photon energies, which might otherwise

require the use of an additional grating with a different groove

density.

It should also be noted that equation (4) permits the use of

gratings with blaze angles twice as large for the operation at

larger photon energies in the second order than in the

operation in the first order in this range. This could be an

advantage as the production of very shallow angles of the

order of fractions of a degree is technologically challenging as

discussed by Voronov et al. (2018).

As far as the effect of production errors in the grating

profile is concerned, it is assumed that it is now possible to
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Figure 3
Rigorously calculated dependence of diffraction efficiency e (Nevière et
al., 1974; Schäfers, 2008) on photon energy E for the three different
groove densities 150 mm�1, 300 mm�1 and 600 mm�1 when operated with
the constant geometrical factor G for which they provide maximum
diffraction efficiency according to equation (7). The blaze angle was
matched according to equation (4) to the latter condition to take place at
a deflection angle of � + � = 3�. A perfect sawtooth profile with
rectangular tip is assumed. The first-order diffraction efficiency is
presented for all discussed groove densities (black line, and blue and
green dashed lines), whereas the second-order diffraction efficiency is
presented only for the groove density of 150 mm�1 (red line).

Figure 2
Dependence of the photon energy Emax on the grating groove density at
which, according to equation (10), the maximum diffraction efficiency
according to equation (7) is achieved at a deflection angle of � + � = 3�.



produce the inclined slope of the sawtooth profile to be almost

perfectly flat even at very small angles, as shown by Voronov et

al. (2018). Hence the most significant imperfection will be a

not perfectly rectangular sawtooth. Ideally, the sum of the

blaze angle � and the anti-blaze angle ’, as presented in Fig. 1,

should be � þ ’ ¼ 90�. Nevertheless, for the beam path shown

in Fig. 1, the model presented by Jark (2019) is applicable for

sharp sawtooth tips as long as ’ > �, i.e. as long as the incident

beam does not impinge onto the anti-blazed part of the profile.

Sokolov et al. (2019) recently produced gratings with groove

densities of 2400 mm�1 and with blaze angles 0.6� < � < 1.0�, in

which the sum � þ ’ was as small as 1.9�. Then the sawtooth

tip angle is as large as 178.1�. It is found that such a large tip

angle will not alter the results of the calculations presented in

Figs. 3 and 4. Then only the surface roughness will affect the

diffraction efficiency. Boots et al. (2013) showed that the

roughness will not alter the shape of the efficiency curves,

but it will reduce the efficiency in second order more than

first order.

4. Conclusions

In conclusion, blazed gratings with perfect profiles could be

used efficiently in ‘higher-order operation’ in the soft X-ray

range. This applies especially to gratings with lower groove

densities and correspondingly larger diffraction efficiencies,

for which their range of operation could then be extended to

higher photon energies, which would otherwise not be possible

for existing mechanical concepts with a finite minimum

deflection angle.

APPENDIX A
In this study we intended to highlight that second-order

diffraction can provide interesting performance, which is

worth considering for future monochromator projects. For

such purposes, the blaze maximum condition may be selected

differently. One then has to recognize that the structure factor

S2
n¼1;2 �; �; �; �ð Þ is bell-shaped around the blaze maximum

condition. A good approximation can be made with a Gaus-

sian function as long as the deflection angle �þ � is signifi-

cantly larger than 2�,

S2
n¼1;2 �; �; �; �ð Þ ¼ exp �

n �BM � �ð Þ

0:54�

� �2
( )

¼ exp �
n E� EBMð Þ

0:54EBM

� �2
( )

:

ð11Þ

At this point it is more convenient to discuss the properties of

S2
n¼1;2 as they depend on the photon energy E. The full width at

half-maximum (FWHM) of this factor for a given deflection

angle is found between En, FWHM, min = (1 � 0.45/n)En, BM and

En, FWHM, max = (1 + 0.45/n)En, BM. Likewise, for a given photon

energy one finds (� + �)n, FWHM, min = (1 � 0.45/n)(� + �)n, BM

and (� + �)n, FWHM, max = (1 + 0.45/n)(� + �)n, BM. So in any

case the FWHM width for the normal operation with n = 1

is approximately twice the width of that for a ‘higher-order

operation’ with n = 2.
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al., 1974; Schäfers, 2008) on the photon energy E for gratings with the
same parameters (as indicated in Fig. 3) when operated at a constant
deflection angle of � + � = 3�.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ve5110&bbid=BB14

