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Through phase-space analysis of Dumond diagrams for a flat Bragg crystal, a

single bent Laue crystal and a monochromator consisting of double-bent Laue

crystals, this work shows that it is possible to match the flat Bragg crystal to both

the single-crystal and double-crystal Laue monochromators. The matched

system has the advantage that the phase space of the bent crystal’s output beam

is much larger than that of the flat crystal, making the combined system stable.

Here it is suggested that such a matched system can be used at synchrotron

facilities to realize X-ray dark-field imaging, analyzer-based imaging and

diffraction-enhanced imaging at beamlines using double-Laue monochromators.

1. Introduction

Flat Bragg crystals have been extensively used at synchrotron

beamlines as monochromators. A monochromator consisting

of two parallel crystals (dual-crystal) is necessary to bring the

output monochromatic beam parallel to the storage ring floor

and to keep the output beam at the same location when the

energy is tuned. Ideally, both crystals should have exactly the

same temperature and heat load to enable phase-space

matching between the two flat crystals. However, due to the

large heat load on the first crystal, such matching is difficult

(Lee et al., 2000; Zhong et al., 2000), and with the advancement

of more powerful insertion devices the heat-load problem

becomes worse. Cryogenic cooling, an expensive technique,

must be employed at most synchrotron beamlines nowadays.

However, even cryogenic cooling is having limited success at

some beamlines (Lee et al., 2000). Instead of crystal cryogenic

cooling, bent Laue crystals have been used at many high-

energy X-ray beamlines partly due to the smaller heat load of

the Laue crystal – most of the filtered beam power transmits

through the crystal instead of being absorbed, whereas a

Bragg crystal absorbs all the power in the beam. Bent Laue

crystals also have the advantage of larger and tunable band-

width. It would be ideal to develop a system that employs a

bent Laue crystal as the first crystal to solve the heat-load

problem as well as a traditional flat Bragg crystal as the second

crystal. Conventional wisdom suggests that the matching of a

Bragg crystal with a bent Laue crystal would be impossible,

and thus has never been utilized. Here we show, through

analysis of phase space, that it is indeed possible to match the

different crystals. Furthermore, the matched system has the

advantage that the first crystal’s output beam’s phase space

is much larger than that of the second crystal, making the

combined system more stable than the traditional Bragg–

Bragg arrangement.
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Practically, many synchrotron imaging beamlines use bent

Laue double-crystal monochromators to produce high-flux

beams with a large energy bandwidth. Examples include the

BMIT beamline at the Canadian Light Source (Wysokinski et

al., 2016), the JEEP ID12 beamline at Diamond Light Source,

UK (Drakopoulos et al., 2015) and The Biomedical Beamline

ID-17 of the European Synchrotron Radiation Facility

(Diemoz et al., 2010; Zhao et al., 2012). The HEX (high-energy

engineering X-ray scattering) beamline, being designed for

the NSLS-II, will also use a double-bent Laue–Laue mono-

chromator. The capability of these beamlines would be greatly

enhanced if phase-contrast methods such as X-ray dark-field

imaging (XDFI) (Ando et al., 2016), analyzer-based imaging

(ABI) (Bravin et al., 2013) or diffraction-enhanced imaging

(DEI) can be employed using an existing monochromator.

These phase-contrast methods all depend on the small

intrinsic rocking curve width of high-index reflection of

perfect flat Bragg crystals. We will use DEI from this point on

for simplicity, but the conclusions apply equally well to XDFI

and ABI. With the phase-space method we develop here, we

show that DEI can indeed be implemented with ease at

beamlines with bent Laue monochromators.

2. Phase space of a perfect flat crystal

The phase space of a perfect flat crystal is well understood and

is best depicted with a Dumond diagram. Fig. 1 shows the

Dumond diagram of the 111 reflection, typically used by

monochromators for diffraction and spectroscopy, and of the

333 reflection, typically used for DEI due to its much narrower

rocking-curve width. Using analytical formulas based on

dynamical theory of X-ray diffraction, a software code was

written using IDL programming language to simulate and

display the Dumond diagram. We assume an angular diver-

gence of 200 mrad, typical at modern synchrotron facilities

(Suortti et al., 2000). This diagram assumes that collimating

mirrors are not used. An X-ray energy of 30 keV is assumed.

It is seen that the vertical divergence of the beam dominates

the bandwidth of the output beam. The intrinsic Darwin width

is smaller in comparison, especially for the 333 reflection. For

each phase space, the horizontal width is the Darwin width.

The slope is 2dcos(�), where d is the d-spacing of the reflec-

tion. We note that there is little overlap, about 15 mrad,

between the 111 and 333 reflections. This means that if one

attempts to perform XDFI, ABI or DEI with the 333 reflec-

tion at a typical beamline with a 111 monochromator, the

beam for phase-contrast imaging will only be 15 mrad in

divergence compared with the 200 mrad divergence of the

incident beam, thus more than 90% of the beam will be lost.

This highlights the importance of matching crystals in phase

space.

3. Phase space of a bent Laue crystal

Phase space of bent Laue crystals involves consideration of

the bent crystal’s modification of divergence and the larger

bandwidth of the output beam. Fig. 2 is a schematic diagram of

a bent Laue crystal reflecting a diverging beam, where the

crystal is assumed to be cylindrically bent. The X-ray incident

beam from the point source is diffracted by the bent Laue

crystal. The plane of diffraction is in the figure plane. The

diffracted beam is focused at a virtual focal point.

The angle between the normal to the crystal surface and the

lattice planes used for diffraction is called ��B (the Bragg

angle) and is defined as the angle between an incident X-ray

beam and a set of crystal lattice planes used for diffraction.

The distance from the point source to the center of the crystal

is s and the distance from the virtual focus to the center of the

crystal is f. For the case in Fig. 2, f is negative since it is virtual.

The relationship between s and f can be expressed as

2

�
¼

cos �� �Bð Þ

s
�

cos �� �Bð Þ

f
; ð1Þ

where � is the bending radius of the bent crystal. � is positive

when the source point is on the concave side of the crystal (as

in Fig. 2) and negative with the source on the convex side

(Zhong et al., 2001). The upper sign corresponds to when the

source and the center of bending are on the same side of the

crystal’s lattice plane (as shown in Fig. 2). For the lower sign,

the source and the center of bending are on different sides of
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Figure 1
Dumond diagram of a two-crystal system consisting of a perfect crystal
with 111 reflection and a perfect crystal with 333 reflection.

Figure 2
Geometrical optics considerations for a cylindrically bent Laue crystal.



the lattice plane. We will assume the upper sign case herein

(i.e. the source and center of bending are on the same side of

the lattice planes).

In order to produce the highest monochromaticity, the

variation of the angle of incidence along the crystal surface

must be zero (�� = 0). Such condition is achieved when

s ¼ � cosð�� �BÞ ð2Þ

and

f ¼ �� cosð�þ �BÞ: ð3Þ

In this special case, commonly referred to as the inverse

Cauchois geometry, both the source and the focal point are on

the Rowland circle, which is a circle whose diameter equals the

bending radius of the crystal.

Fig. 3 shows the beam diffracted by a single bent Laue

monochromator striking a flat Bragg crystal. It shows that the

rays incident upon and diffracted by the bent Laue crystal

have different angles and consequently different wavelengths.

The angle–wavelength association (phase space) of the

diffracted beam that then strikes the flat Bragg crystal is

normally not matched to that of the Bragg crystal. Analysis of

the variation of the angle of incidence on the Bragg crystal

lattice planes is necessary to find the condition under which

the phase spaces match.

The Laue and Bragg crystals have lattice spacings of d1 and

d2 with corresponding Bragg angles �B1 and �B2, respectively.

In Fig. 3, � is the divergence from the central ray of an arbi-

trary X-ray striking the bent Laue crystal. This X-ray strikes

the bent Laue crystal at a different location to the center ray.

Since the crystal is bent, the lattice planes at the location are

tilted by �� relative to the planes struck by the center ray,

�� ¼
s�

� cosð�� �B1Þ
: ð4Þ

Assuming that the center ray makes �B with the lattice planes,

the incident angle of the X-ray is �B1 � � + ��. The deviation

of the incident angle (��B1) from �B1 is then

��B1 ¼ �ð�� ��Þ ¼ �

�
s

� cosð�� �B1Þ
� 1

�
: ð5Þ

The lattice spacing for a bent Laue crystal changes from the

front to the back face of the crystal, thus d1 denotes the

average lattice spacing of bent Laue crystal diffraction. The

side of the crystal closer to the center of bending is under

compressive strain and the other side is under tensile strain.

This effect contributes to a larger bandwidth of the bent Laue

crystal compared with a perfect crystal. The average lattice

spacing across the thickness is the same as that of a perfect

crystal. According to Bragg’s law, �1 ¼ 2d1 sin �B1; the devia-

tion of the wavelength, ��1, from that of the wavelength of

the center ray is

��1 ¼ 2��B1d1 cos �B1: ð6Þ

The deviation of the angle of the diffracted beam from the

nominal 2�B1 is

�’ ¼ 2��B1: ð7Þ

Assuming that the Bragg crystal is set so that its lattice planes

make the correct Bragg angle (�B2) with the center ray of the

beam diffracted by the Laue crystal, it is seen from Fig. 3 that

the deviation ��B2 of the incident angle from the Bragg angle

�B2 is

��B2 ¼ 2��B1 þ � ¼ �

�
2s

� cosð�� �B1Þ
� 1

�
: ð8Þ

Assuming that the Bragg crystal diffracts the incident X-ray

beam, then the deviation of the wavelength from the center

ray wavelength is ��2. According to Bragg’s law,

��2 ¼ 2��B2d2 cos �B2: ð9Þ

Since ��1 and ��2 concern the same X-ray beam, requiring

these to be equal results in the condition under which the

phase spaces of the crystals are matched. Thus the condition is

d2 cos �B2

2s

� cos ���B1ð Þ
�1

� �
¼ d1 cos �B1

s

� cos ���B1ð Þ
�1

� �
:

ð10Þ

The required bending radius of the Laue crystal for achieving

matching of the phase space can then be solved for each

known asymmetry angle, lattice spacing d1 and d2 and source-

to-crystal distance,

� ¼ s
2d2 cos �B2 � d1 cos �B1

cos �� �B1ð Þðd2 cos �B2 � d1 cos �B1Þ
: ð11Þ

Consider the special case where both crystals use the same

reflection, the condition above gives � as infinity. This is the

well known +� (non-dispersive) condition (Authier, 2012;

Guigay et al., 2013) for perfect, un-bent crystals. Thus it is

impossible to match a bent Laue with a flat Bragg crystal when

both crystals use the same reflection. This confirms the intui-

tive assessment made in the Introduction.

Now consider a special case where the bent Laue crystal

uses the 111 reflection of silicon, and the perfect Bragg crystal

uses the 333 reflection. In this case, d1 = 3d2. Using the

simplification that at high X-ray energies cos�B is approxi-

mately unity, we have the condition for matching of phase

space in this unique case,

� ¼
s

2 cos �� �B1ð Þ
: ð12Þ
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Figure 3
Schematic representation of a two-crystal system consisting of a
cylindrically bent Laue first crystal and a flat Bragg second crystal. The
diffraction orders and Bragg angles of the crystals can be different.



Comparing equation (2) with equation (12) shows that, in this

special case, the Laue crystal needs to be bent to – interest-

ingly – exactly half the radius required for inverse Cauchois

geometry to allow phase-space matching.

To implement this condition practically, one can construct a

Laue–Bragg monochromator, with the second crystal being a

Bragg crystal using 333 reflection, and bend the first crystal to

the radius specified in equation (12). This results in a mono-

chromator suitable for delivering a beam for DEI. To achieve

DEI, a Bragg 333 crystal analyzer is placed behind the Bragg

crystal shown in Fig. 3. Note that, since the 333 reflection has a

much larger Bragg angle than the 111 reflection, the mono-

chromatic output beam will be at an angle relative to the

incident white beam. This requires a small distance between

the monochromator and the analyzer to be practical.

To gain intuition into the above analysis, Dumond diagrams

were used to illustrate matching and non-matching conditions

for a few special cases. A software code was written using IDL

programming language to simulate and display the Dumond

diagram. The code takes input from the lamellar model (Erola

et al., 1990) to simulate the bandwidth of the diffracted beam

by the bent Laue crystal. The proposed HEX monochromator

parameters (thickness = 2 mm, asymmetry angle = 35.3�) are

used for generating the diagram. Note that 35.3� corresponds

to the angle between a 100 crystal surface and a 111 reflection

in a Laue crystal. �c is defined as s/cos(� � �B1) – the bending

radius of the inverse Cauchois geometry. Fig. 4 shows the

Dumond diagrams of a bent crystal using 111 reflection with

bending radii of 0.375�c, �c /2, �c, 2�c and infinity (un-bent

perfect crystal). The relative divergence (horizontal axis) and

wavelength (vertical axis) changes shown in Fig. 4 are from the

perspective of the Bragg 333 crystal. We assume 30 keV X-ray

energy. The 333 flat crystal phase space is also shown. At a

source distance (s) of 32 m, a bending radius of 37.5 m

corresponds to the inverse Cauchois geometry.

It is observed that, as the bending radius changes, the widths

and slopes of the output beam phase spaces change character.

For example, the slope can change from positive (for an

unbent crystal) to 0 (at � = �c). Compared with the difficulty of

matching flat 111 and 333 crystals due to their different slopes,

here with the ability to adjust the bending radius it would be

possible to perfectly match the phase space of a bent Laue

crystal with 111 reflection with that of a flat 333 reflection.

At � = �c, as predicted by the inverse Cauchois geometry,

the output beam of the bent Laue crystal has the same

wavelength regardless of the divergence. This explains the

rectangular shape of the phase space. The vertical height of

the rectangle corresponds to the large bandwidth of the

monochromatic beam due to the crystal being bent. This gives

us confidence that the program generating the Dumond

diagram is correct.

The vertical line corresponding to � = 2�c means that in this

case the output beam is a parallel beam with a divergence of 0.

When the bending is twice what is required for inverse

Cauchois geometry, a bent Laue crystal outputs a parallel

beam, as derived theoretically and proven experimentally by

Zhong et al. (2001). This special case again validates the

Dumond diagram.

We note that due to the much larger bandwidth (vertical

height in the diagram) of the bent crystal, a monochromator

constructed of a bent-Laue/flat-Bragg crystal is more stable.

We also note that, while the bent crystal modifies the diver-

gence of the beam, the flat 333 crystal perfectly accepts the

beam with much larger divergence for cases when the bending

radius of the first crystal is either �c /2 or 0.375�c (the diver-

gence is expanded by a factor of 3 for � = �c /2, and a factor of

4.3 for � = 0.375�c). At these bending radii, the two-crystal

system essentially acts as a beam expander. Beam expansion is

typically achieved with much difficulty via asymmetric Bragg

crystals, with limited energy-tunability. Thus, a dual-crystal

monochromator using a bent Laue and a flat Bragg crystal

has the potential to be a viable alternative beam expander

providing a uniform beam with better energy tunability.

4. Double Laue–Laue phase space

A double Laue monochromator employs two crystals bent in

the same direction at approximately the same bending radius.

Unlike single bent Laue crystals discussed previously, the

double-crystal monochromator does not modify the diver-

gence of the beam. This is because the modification made by

the first crystal is canceled by the second one reflecting the

opposite way.

Both crystals are typically bent towards the source to

minimize energy difference between top and bottom parts of

the beam. As noted previously, replacing the second crystal

with a perfect Bragg crystal allows phase-space matching, but

has the undesirable effect that the output beam is not parallel

to the incident beam. For performing DEI experiments, it is

more desirable to deliver the double-bent Laue beam into the

experimental hutch and then use a 333 perfect Bragg crystal as

a post-monochromator. Here we derive the condition for
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Figure 4
Dumond diagram for the two-crystal system shown in Fig. 3, with the first
crystal bent to representative radii of 0.375�c, �c / 2, �c 2�c and infinity. A
bending radius of infinity (flat 111) corresponds to a perfect crystal.



phase-space matching a double-crystal Laue monochromator

with a perfect Bragg flat crystal.

As with the single Laue crystal case, the wavelength of the

beam at angle � relative to the central ray is defined by the

source-to-crystal distance, asymmetry angle and the bending

radius according to equation (6). The output beam maintains

the same divergence as the incident beam for the double-

crystal monochromator. Thus, assuming that the Bragg crystal

is set so that its lattice planes make the correct Bragg angle

(�B2) with the center ray of the monochromatic beam

produced by the double-Laue monochromator, Fig. 5 shows

that in this case the deviation ��B2 of the incident angle from

the Bragg angle �B2 is simply

��B2 ¼ ��: ð13Þ

Again, assuming that the Bragg crystal diffracts the beam, the

deviation of the wavelength from the center ray wavelength

��2 is

��2 ¼ �2�d2 cos �B2: ð14Þ

Requiring ��1 in equation (6) to be the same as ��2 results in

a bending radius that allows the phase space of the Bragg pre-

monochromator to match that of the double-Laue mono-

chromator,

� ¼ s
d1 cos �B1

cos �� �B1ð Þðd1 cos �B1 � d2 cos �B2Þ
: ð15Þ

For the special case where both crystals use the same reflec-

tion, the condition above requires that � is infinity, meaning

that the Laue crystals are un-bent. This is the well known +�+

(non-dispersive) condition (Authier, 2012; Guigay et al., 2013)

for perfect, un-bent Bragg crystals. The analysis above

confirms that the same condition holds true when two of the

three crystals are Laue crystals.

Now consider the special case where the first two bent Laue

crystals use the 111 reflection of silicon and the perfect Bragg

crystal uses the 333 reflection. This situation is realistic since

many high-energy X-ray imaging beamlines (BMIT at the

Canadian Light Source, IMBL at the Australian Light Source,

JEEP at the Diamond Light Source in UK and the Biomedical

Beamline at the ESRF) use a 111 bent Laue crystal, whereas

many DEI experiments (Chapman et al., 1997; Dilmanian et

al., 2000; Rigon et al., 2008; Zhao et al., 2012) use a 333 perfect

Bragg crystal. In particular, the ABI setup at the Biomedical

Beamline of ESRF is based on a double-Laue monochromator

with 111 pre-monochromator followed by a flat Bragg 333

monochromator/analyzer. In this case, d1 = 3d2, we have the

condition for matching of phase space in this unique case,

� ¼
3s

2 cos �� �B1ð Þ
: ð16Þ

Comparison of equation (2) with equation (16) shows that in

this special case the Laue crystal needs to be bent to 1.5 times

the radius required for inverse Cauchois geometry to allow

phase-space matching.

To gain intuition into the above analysis, Dumond diagrams

were used to illustrate matching. Fig. 6 shows the Dumond

diagrams of the phase space of the output beam from a

double-crystal bent Laue monochromator at 30 keV. Both

crystals are assumed to be using 111 reflection bent to �c /2, �c,

3/2�c, 2�c and infinity (un-bent perfect crystal). The 333 flat

crystal phase space is also shown. The proposed HEX

monochromator parameters (thickness = 2 mm, asymmetry

angle = 35.3�, source-to-monochromator distance s = 32 m)

are used for generating the diagram.

Fig. 6 shows that, at 56.3 m bending radius, when � is 3/2�c,

with both crystals bent towards the source, there is perfect

matching between the phase space of a 333 perfect crystal and

the double-crystal bent Laue–Laue monochromator. It is seen

that the output beam of the 333 Bragg crystal has a divergence

of 200 mrad, which is the same as that of the beam produced by

the double-Laue monochromator. This divergence is large

compared with the Darwin width of the 333 reflection at

1.9 mrad. To perform DEI in this system, one needs to place a

333 Bragg crystal analyzer behind the 333 Bragg crystal

(shown in Fig. 5) in a +� arrangement and position the sample

between the two Bragg crystals. Despite the large divergence

of the incident beam, the rocking curve of the analyzer crystal

will be triangular with a narrow full width at half-maximum

(FWHM) of approximately 1.9 mrad. The idea of realizing a

narrow rocking curve, which enables DEI, with a pair of 333
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Figure 5
Schematic representation of a phase-contrast imaging system consisting
of a double-bent Laue monochromator and a flat Bragg crystal.

Figure 6
Dumond diagram for the bent Laue monochromator and analyzer system
shown in Fig. 5, with the monochromator crystals being flat and bent to
representative radii of 0.5�c, �c and 1.5�c.



crystals in a beam with much larger divergence is illustrated

and experimentally proven by Zhong et al. (2001).

Using the lamellar model (Erola et al., 1990), the FWHM

for the bent Laue crystal reflection is 42 mrad. This suggests

that DEI can be implemented at imaging beamlines using

double-bent Laue monochromators with excellent intensity

stability.

As with the Laue/Bragg case shown above, it is seen that in

the double-Laue/Bragg system, as the bending radius changes,

the width and slope of the output beam phase space change

character. The slope can change from negative (for � = �c /2)

to 0 (at � = �c) and progressing to positive as the crystal is bent

less (larger �) towards the source. We again note that, due to

the much larger bandwidth (vertical height in the diagram) of

the bent crystal, a system constructed of bent double-Laue/flat

Bragg crystals is more stable. Unlike the Laue/Bragg case, the

double-Laue/Bragg system has the advantage that it does not

modify the divergence of the beam.

5. Discussion

The Dumond diagrams shown above all assume an X-ray

energy of 30 keV. One advantage of synchrotron radiation is

energy tunability. It would be desirable to maintain phase-

space matching when energy is tuned without changing the

bending radius. At the high X-ray energies concerned, the

Bragg angle �B1 is small, making 2cos(� � �B1) approximately

independent of small changes in the Bragg angle. Applying

this approximation, equations (12) and (16) show that indeed

the bending radius does not need to change when the energy

is changed.

The reflectivity of a perfect flat crystal is close to 100%. The

reflectivity of a bent Laue crystal depends on X-ray energy,

bending radius and asymmetry angle. We need to ensure that,

at matching conditions, the reflectivity of bent Laue crystal is

acceptable. Simulation using the lamellar model for the case

where the double-crystal Laue monochromator matches

Bragg 333 shows that the reflectivity is about 60%.

Until now it was thought that the non-dispersive condition

with perfect phase-space matching was only possible with two

reflections of exactly the same d-spacing. Typically the phase

space is given by the nature of the reflection chosen, with

limited ability to manipulate to suit the optical needs. We show

that by using bent Laue optics one can achieve non-dispersive

conditions for reflections of different reflection indices. Since

the derivations above depend only on the d-spacing, perfect

phase spacing is possible between silicon and diamond crys-

tals. Furthermore, we introduced the concept of manipulating

the phase space via adjusting the bending radius of a bent

Laue crystal. In addition to making it possible to perform

XDFI, ABI or DEI with high-index 333 reflection at a

beamline equipped with a typical bent Laue monochromator

using low-index reflection 111 (in this case, the 333 Bragg

crystal is a pre-monochromator), we believe this new concept

of phase-space manipulation could have profound implica-

tions for other areas of research involving X-rays such as

construction of a novel beam expanding monochromator via

combining a bent Laue crystal and a higher index Bragg

crystal.

6. Conclusions

Analysis of the variation of angle and wavelength phase space

was performed for a system consisting of a single bent Laue

crystal and flat Bragg crystal, and a system consisting of a

monochromator with double-bent Laue crystals and a flat

Bragg crystal. In both cases it was shown that it is possible

to match the flat Bragg crystal to the bent Laue crystals

of different reflections, thus realizing a perfect phase-space

match between different reflections. Dumond diagrams for a

flat Bragg crystal and the two bent Laue crystal systems were

created to illustrate the concept of phase-space manipulation

by adjusting the bending radius. Furthermore, the Dumond

diagrams show that the matched system has the advantage that

the phase space of bent crystal’s output beam is much larger

than that of the flat crystal, making the combined system

stable. We prove that such a matched system can be used

at synchrotron facilities to realize, for example, diffraction-

enhanced imaging at beamlines using double-Laue mono-

chromators.

Acknowledgements

We are grateful to Milinda Abeykoon, Jianming Bai, Lonny

Berman, Dean Chapman, Michael Drakopoulos, Daniel

Fischer, Sanjit Ghose, Daniel Hausermann, Steven Hulbert,

Cherno Jaye, Gihan Kwon, Wah-Keat Lee, Daniel Olds, Bruce

Ravel, Qun Shen, Xianbo Shi, Peter Siddons, William Thom-

linson, Ke Yang, Conan Weiland, Joseph Woicik and Tomasz

Wysokinski for helpful discussions about this work. We would

like to thank Jennifer Zhong for proof-reading the manuscript.

Funding information

This work is supported by the National Synchrotron Light

Source II, a US DOE Office of Science User Facility operated

for the DOE Office of Science by Brookhaven National

Laboratory (contract No. DE-SC0012704 awarded to ZZ, AB,

ED and ML) and by the Qatar University (grant No. QUUG-

CAS-DMSP-2017-1 awarded to MH).

References

Ando, M., Sunaguchi, N., Shimao, D., Pan, A., Yuasa, T., Mori, K.,
Suzuki, Y., Jin, G., Kim, J. K., Lim, J. H., Seo, S. J., Ichihara, S.,
Ohura, N. & Gupta, R. (2016). Phys. Med. 32, 1801–1812.

Authier, A. (2012). Acta Cryst. A68, 40–56.
Bravin, A., Coan, P. & Suortti, P. (2013). Phys. Med. Biol. 58, R1–R35.
Chapman, D., Thomlinson, W., Johnston, R. E., Washburn, D., Pisano,

E., Gmür, N., Zhong, Z., Menk, R., Arfelli, F. & Sayers, D. (1997).
Phys. Med. Biol. 42, 2015–2025.

Diemoz, P. C., Coan, P., Glaser, C. & Bravin, A. (2010). Opt. Express,
18, 3494–3509.

Dilmanian, F. A., Zhong, Z., Ren, B., Wu, X. Y., Chapman, L. D.,
Orion, I. & Thomlinson, W. C. (2000). Phys. Med. Biol. 45, 933–
946.

Drakopoulos, M., Connolley, T., Reinhard, C., Atwood, R.,
Magdysyuk, O., Vo, N., Hart, M., Connor, L., Humphreys, B.,

research papers

1922 Zhong et al. � Phase-space matching between bent Laue and flat Bragg crystals J. Synchrotron Rad. (2019). 26, 1917–1923

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5209&bbid=BB9


Howell, G., Davies, S., Hill, T., Wilkin, G., Pedersen, U., Foster, A.,
De Maio, N., Basham, M., Yuan, F. & Wanelik, K. (2015). J.
Synchrotron Rad. 22, 828–838.

Erola, E., Eteläniemi, V., Suortti, P., Pattison, P. & Thomlinson, W.
(1990). J. Appl. Cryst. 23, 35–42.

Guigay, J.-P., Ferrero, C., Bhattacharyya, D., Mathon, O. & Pascarelli,
S. (2013). Acta Cryst. A69, 91–97.

Lee, W.-K., Fernandez, P. & Mills, D. M. (2000). J. Synchrotron Rad. 7,
12–17.

Rigon, L., Astolfo, A., Arfelli, F. & Menk, R. (2008). Eur. J. Radiol.
68, S3–S7.

Suortti, P., Fiedler, S., Bravin, A., Brochard, T., Mattenet, M., Renier,
M., Spanne, P., Thomlinson, W., Charvet, A. M., Elleaume, H.,

Schulze-Briese, C. & Thompson, A. C. (2000). J. Synchrotron Rad.
7, 340–347.

Wysokinski, T. W., Ianowski, J. P., Luan, X., Belev, G., Miller, D.,
Webb, M. A., Zhu, N. & Chapman, D. (2016). Phys. Med. 32, 1753–
1758.

Zhao, Y., Brun, E., Coan, P., Huang, Z., Sztrókay, A., Diemoz, P. C.,
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