
research papers

J. Synchrotron Rad. (2020). 27, 119–126 https://doi.org/10.1107/S1600577519013742 119

Received 20 December 2018

Accepted 9 October 2019

Edited by A. Momose, Tohoku University, Japan

Keywords: coherence; imaging; microscopy.

Translative lens-based full-field coherent X-ray
imaging

Carsten Detlefs,a,b Mario Alejandro Beltran,b Jean-Pierre Guigaya and

Hugh Simonsb*

aEuropean Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France, and bDepartment of Physics,

Technical University of Denmark, 2800 Kgs Lyngby, Denmark. *Correspondence e-mail: husimo@fysik.dtu.dk

A full-field coherent imaging approach suitable for hard X-rays based on a

classical (i.e. Galilean) X-ray microscope is described. The method combines a

series of low-resolution images acquired at different transverse lens positions

into a single high-resolution image, overcoming the spatial resolution limit set

by the numerical aperture of the objective lens. The optical principles of the

approach are described, the successful reconstruction of simulated phantom

data is demonstrated, and aspects of the reconstruction are discussed. The

authors believe that this approach offers some potential benefits over

conventional scanning X-ray ptychography in terms of spatial bandwidth and

radiation dose rate.

1. Introduction

Lens-based full-field X-ray microscopy, in which an objective

lens between the object and detector creates a magnified

image of the object, offers the possibility to image extended

objects in a single acquisition. As such, it is well suited

for investigating dynamic processes, such as in materials

(Snigireva et al., 2018), chemical reactions (Meirer et al., 2011)

and biological systems (Meyer-Ilse et al., 2001). However,

the spatial resolution of a lens-based full-field microscope is

physically limited by the finite numerical aperture (NA) of its

objective lens, which tends to be small (0.01 or less) at hard

X-ray energies (E > 15 keV). Recent developments in X-ray

optics have yielded substantial improvements in NA (Schroer

& Lengeler, 2005; Morgan et al., 2015; Mohacsi et al., 2017;

Matsuyama et al., 2019), but often at the cost of reducing the

working distance to an impractical degree.

Synthetic aperture microscopy offers an alternative route

to increasing the NA. One such approach is Fourier ptycho-

graphic microscopy (FPM) (Zheng et al., 2013), which involves

combining a series of low-resolution intensity images in

Fourier space and subsequently back-propagating to the

object plane to recover the exit surface complex wavefield.

Varying the angle of the incident full-field illumination

samples a wider range of scattering directions, thus improving

the space-bandwidth product without the need to move the

sample, objective lens or detector (Lohmann et al., 1996).

FPM’s image recovery procedure therefore differs from that

of conventional X-ray ptychography (for example, see

Rodenburg & Bates, 1992; Faulkner & Rodenburg, 2004;

Rodenburg & Faulkner, 2004; Rodenburg et al., 2007; Thibault

et al., 2008; Maiden & Rodenburg, 2009; Dierolf et al., 2010;

Maiden et al., 2010; Humphry et al., 2012) in that the object

support constraints are imposed in Fourier space rather than

real space. The original implementation of FPM used a
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conventional optical microscope (i.e.

visible light) with a small magnification

(2� objective) and NA (0.08) to achieve

a synthetic NA of 0.5, resulting in a

spatial resolution comparable with a

20� objective while maintaining the

much larger field of view and depth of

field of the original low-magnification

configuration.

Adapting FPM to the X-ray regime

could potentially address two key

shortcomings of lens-based full-field

X-ray microscopy: the compound image

corresponds to a larger, synthetic NA,

while digital wavefront correction may be used during the

image recovery procedure to compensate for lens aberrations

(which may be appreciable) (Koch et al., 2016). Furthermore,

as this recovery procedure yields a complex image, one could

exploit the phase contrast to dramatically increase sensitivity

to weakly interacting objects (Förster et al., 1980; Snigirev et al.,

1995; Cloetens et al., 1997). A practical X-ray implementation

of FPM requires subtle differences to the original approach,

however, since at large-scale facilities (e.g. synchrotrons) one

cannot directly rotate the incident beam angle in the manner

originally proposed by Zheng et al. (2013). Very recently,

however, Wakonig et al. (2019) experimentally demonstrated

FPM in the X-ray regime by moving a pinhole positioned at

the aperture of a condensing lens (Wakonig et al., 2019), thus

steering the incident beam angle at the sample position. Here

we describe an alternative approach, where we instead move

the lens, collecting images at various overlapping regions.

Crucially, the lens and detector are moved transversely to the

optical axis in order to avoid the mechanical complexity and

imprecision associated with coupled translations/rotations.

This approach is conceptually similar to downstream pinhole-

scanning methods (e.g. Tsai et al., 2016; Faulkner & Roden-

burg, 2004; Guizar-Sicairos & Fienup, 2008), albeit using a

focusing lens instead of a pinhole.

In this paper, the theory and methodology outlining the

idea of lens translation imaging (LTI) is structured as follows.

Section 2 describes the image formation problem via mathe-

matical formalisms pertinent to scalar coherent wavefield

propagation. The LTI image acquisition method is depicted in

Section 3 and accompanied with numerical simulation exam-

ples. In Section 4 we detail the iterative phase-retrieval

process that reconstructs the wavefield of the exit surface of

the imaged object (see Fig. 1). Results from numerical simu-

lations are also shown.

2. Theory of image formation (forward problem)

Fig. 1 illustrates the LTI imaging configuration. Monochro-

matic coherent X-ray plane-wave electromagnetic illumina-

tion with wavelength � propagates rightwards along the

optical axis z. The incident radiation traverses an object or

specimen where the intensity and phase changes incurred are

imprinted on the complex wavefield �obj exiting the object.

This exit field then propagates downstream a distance z1

reaching the entry plane �in of an optically thin converging

lens with finite aperture size and focal length f. The field

transmitted through the lens �out propagates a further

distance z2 to give �det, where a spatially sensitive detector is

placed that measures the square modulus (intensity) of the

wavefield �det

�� ��2, thus excluding all phase information.

We derive an analytical expression for the wavefield �det

utilizing the linear operator theory of imaging (Nazarathy &

Shamir, 1980). The formalism treats the propagation and

passage of optical wavefields though a system as a linear

operator acting on some input to yield an associated output.

This enables the problem in Fig. 1 to be undertaken in a

‘cascading’ approach, resulting in the following expression for

the wavefield at the detector plane,

�detðr2Þ ¼ Pz2

�
T r1 � snð Þ Pz1

�obj r0ð Þ
� ��

: ð1Þ

Here, r0 = ðx0; y0Þ, r1 = ðx1; y1Þ and r2 = ðx2; y2Þ are the

Cartesian coordinates normal to z corresponding to the object

(�obj), lens (�in and �out) and detector plane (�det), respec-

tively. Note that all x and y axes at each plane are assumed to

be parallel to each other. Tðr1 � snÞ is the transmission func-

tion of the lens, where the vector sn = ðsx; syÞ with magnitude

jsnj represents the translation position of the center of the lens

in relation to the r1 plane. The index n is an integer used as an

indicator of the lens position.

The operator Pz, which forward propagates a complex

wavefield by a distance z, is the operator form of the Fresnel

diffraction integral (Goodman, 2005; Paganin, 2006; Born &

Wolf, 1999),

�zðrjþ1Þ ¼ Pz �ðrjÞ
� �

¼
�i

�z
exp

i2�z

�

� �
exp

i�jrjþ1j
2

�z

 !

� Frjþ1
exp

i�jrjj
2

�z

 !
�ðrjÞ

( )
: ð2Þ

This operator maps a field in a plane defined by the coordi-

nates rj = ðxj; yjÞ onto a propagated field defined by the

coordinates rjþ1 = ðxjþ1; yjþ1Þ, where j takes on non-negative

integer values ( j = 0, 1). For example, j = 0 would correspond

to the field mapping of �ðr0Þ ! �ðr1Þ. The operation acts
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Figure 1
Schematic of the lens translation imaging (LTI) setup.



from right to left as follows: (i) multiply the input wavefield by

a quadratic phase factor in rj; (ii) take the ‘scaled’ Fourier

transform which projects a complex function from rj to rjþ1;

(iii) multiply the result by the quadratic phase factor in rjþ1

and the constant complex phase shift set by z. The Fourier

transform convention used here is

Frjþ1
gðrjÞ
� �

¼

Z Z 1
�1

gðrjÞ exp �
2�i

z�
rjþ1 � rj

� �
drj

¼

Z Z 1
�1

gðrjÞ exp �2�i kj � rj

	 

drj; ð3Þ

where
kj ¼ rjþ1=z�:

We note the use of the term ‘scaled’, as the Fourier transform

used here differs slightly from a conventional Fourier trans-

form in that it maps a complex function from real space onto

another complex function also in real space that is re-sampled

by a scale factor 1=�z (Goodman, 2005; Paganin, 2006).

The complex transmission function of the lens denoted by

Tðr1 � snÞ can be decomposed into four separate functions

corresponding to the phase shift Q
r1
f , absorption A

r1
sn

, lens

aberration �ðr1; �pqÞ and masking H
r1

sn
(due to the finite

aperture size) of the transmitted wavefield. That is,

Tðr1 � snÞ ¼ H r1
sn

Ar1
sn

Q
r1
f exp i�ðr1; �pqÞ

� �
; ð4Þ

where

Q
r1
f ¼ exp �

i�jr1 � snj
2

�f

� �
:

The complex function Q
r1
f quantifies the phase shifts imparted

by the, assumed to be thin, lens on the entering wavefield �in

(Paganin, 2006). These phase shifts are consistent with the

condition needed to create focus fields, where the phase

exiting the surface of the lens must be such that a spherical

wave is collapsed towards a point (Paganin, 2006). The

amplitude attenuation suffered by �in is determined by the

function A
r1
sn

. It is important to note that in this section the

amplitude function is kept arbitrary in order to accommodate

for the various types of X-ray focusing elements that exist.

However, for the simulation shown in Section 3 this function

takes on the form of a Gaussian distribution corresponding to

refractive optics such as compound refractive lenses (CRLs)

(Simons et al., 2017). H
r1

sn
represents the finite aperture size of

the lens and serves to transmit only the spatial frequencies of

the wavefield �in, within the radius of the physical aperture

(Simons et al., 2017). �ðr1; �pqÞ is the aberration function of the

lens, which is characterized by the aberration coefficients �pq,

where p and q are non-negative integers representing the

aberration order (Born & Wolf, 1999). In the case of an ideal

thin lens, as is considered in this study, we assume zero aber-

rations are present [�ðr1; �pqÞ = 0]. Note, however, that in

practical settings these lens aberrations need to be either

corrected using aberration balancing techniques or iteratively

refined in the phase retrieval process – similar to the deter-

mination of the illumination function in classical ptycho-

graphy. This, however, is beyond the scope of this work.

Given that all terms and symbols have been defined in

operator form, equation (1) can now be expressed as

�detðr2Þ ¼C z1
z2

Q
r2;sn

z2; f Fr2



H r1

sn
Ar1

sn
Q r1; f

z1;z2
exp

2�i

�f
sn � r1

� �

�Fr1
Q r0

z1
�objðr0Þ

� ��
; ð5Þ

where

Q r0
z1
¼ exp

i�jr0j
2

�z1

� �
;

Q r1; f
z1;z2
¼ exp

i�jr1j
2

�

1

z1

þ
1

z2

�
1

f

� �� �
;

Q
r2;sn

z2; f ¼ exp
i�

�

jr2j
2

z2

�
jsnj

2

f

� �� �
;

C z1
z2
¼
�1

�2z1z2

exp
i2�ðz1 þ z2Þ

�

� �
:

Equation (5) is generally applicable to all systems in which a

lens is placed between the object and detector. This includes

two special cases:

The Fourier transforming condition, where the object is

placed very close to the lens plane (z1 ! 0) such that �in =

�obj, the detector is placed in the back focal plane (z2 = f ) and

the lens is completely transparent (A
r1
sn

= 1). In this config-

uration, the measured intensity of the ‘focused field’ becomes

the squared modulus of the Fourier transform of object field

(i.e. j�detj
2
/ jF �obj

� �
j
2). This results in a variation of

coherent diffraction imaging in which the lens can be used to

reduce the large propagation distances necessary to achieve

far-field diffraction patterns in the short-wavelength regime

(Quiney et al., 2006).

The imaging condition – considered in this study – corre-

sponds to where the object, lens and detector are placed

according to the famous thin lens formula,

1

f
¼

1

z1

þ
1

z2

: ð6Þ

In this condition the term Q r1; f
z1;z2

becomes unity, substantially

simplifying equation (5) in the context of the forward

problem. More importantly, the detected image will resemble

an inverted version of the object’s exit surface (Iobj) – a

valuable asset that will be exploited in the inverse problem

described in Section 4.

3. Methodology of LTI

This section describes the image acquisition method for LTI.

Returning our attention to the lens plane r1 in Fig. 1, one sees

that the finite size of the lens aperture means that a single

j�detj
2 measurement will only register information corre-

sponding to a limited region of j�inj
2. Therefore, acquiring

multiple j�detj
2 measurements at different lens translation

positions becomes paramount if one wishes to record a higher

portion of spatial frequency data (real and complex) and
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subsequently improve the spatial resolution of the compound

image.

Fig. 2 depicts a flow-chart for the LTI methodology, in which

a complex test image (�obj) is successively forward propagated

to the lens plane (�in and �out) and to the detector plane

(�det). Importantly, the schematic embodies the key idea

behind LTI where the lens is translated to different position sn

in a way that several overlapping areas of �in are imaged at

the detector.

The forward simulations shown in Fig. 2 were chosen to

be representative of a typical full-field transmission X-ray

microscope operating at hard X-ray energies (Snigireva et al.,

2018) and with an X-ray magnification of approximately 18�.

The complex object wavefield [i.e. �obj = Aobj expði�objÞ, see

far left of Fig. 2] consisted of standard test images of a mandrill

and peppers for the amplitude and phase, respectively. The

physical size of this wavefield was 25.6 mm (W)� 25.6 mm (H),

and the wavelength was chosen to be � = 0.75 Å, corre-

sponding to a photon energy of 16.5 keV. This field is propa-

gated by a distance z1 = 0.264 m where the output field �in

�� ��2
according to the Fresnel number Nf = ð�x2Þ=ð�z1Þ ’ 10�4 lies

in the far-field regime for the given object pixel size of �x =

50 nm (not to be confused with the detector pixel size of

�0.9 mm). For a focus distance f = 0.25 m the detector

distance will be z2 = 4.736 m to satisfy the condition in

equation (6) yielding a geometrical magnification of M = 17.9.

To approximate experimental conditions, the detected inten-

sity images incorporated Poisson noise, which varied from

approximately 1.5 to 20% from the central to the outermost

lens position. We note that the signal-to-noise is expected

to decrease as the corresponding image intensity decreases

towards the most distant lens positions from the central axis

ðx1; y2Þ = (0, 0). The attenuation properties of the lens were

approximated by an apodized Gaussian distribution,

Ar1
sn
¼ exp �

jr1 � snj
2

2�2

� �
;

with a variance of � = 25 mm and a physical aperture of radius

rphys = 75 mm, which is typical for commercially produced two-

dimensional Be-based CRLs with this focal length and energy

(Simons et al., 2017).

The far right of Fig. 2 shows two examples of simulated

detected intensity images, labeled as corresponding to lens

positions s1 and sn. As equation (5) predicts, the intensity

corresponding to the central axis position, j�
s1
detj

2, is approxi-

mately an inversion of Iobj. The resolution, however,

is considerably poorer due to the masking of high spatial

frequencies outside the aperture of T1. Furthermore, residual

features from sharp gradients in the phase map are visible as

mild intensity variations in this centered image (Zernike,

1942). The off-centered image j�
sn

detj
2 corresponds to a region

of �
sn
out with mostly higher spatial frequency data. The inten-

sity variations in this image thus reveal a higher fraction of

morphological detail associated with the phase map, with

visible features similar to those seen in differential inference

contrast images (Kaulich et al., 2002; Ou et al., 2013). This type

of contrast is typical in images attained using X-ray imaging

techniques such as diffraction-enhanced imaging (Förster et

al., 1980), grating-based interferometry (Pfeiffer et al., 2006)

and speckle-based phase contrast (Morgan et al., 2012;

Bérujon et al., 2012).

4. Iterative phase-retrieval (inverse problem)

The iterative phase-retrieval aims to recover the object

wavefield [�obj = Aobj expði�objÞ] from a series of spatially

overlapped translated images, each of which has only ampli-

tude information.

We explain the phase-retrieval procedure with the aid of

Fig. 3. While only two sn positions are used for explanatory

reasons, it can be trivially generalized to arbitrarily many

positions (n > 2). The procedure (described here in the case of

s1) is as follows. (i) Make an initial guess of the object wave-

field � guess
obj . (ii) Forward propagate � guess

obj by a distance z1

using equation (2) to obtain � N¼ 1
in . (iii) Multiply � N¼ 1

in by the
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Figure 2
Forward simulations and an illustration of the LTI data acquisition process, from the input amplitude and phase (left), to the intensity at the lens plane
(center), to the resulting intensity on the detector (far right). Amplitude and intensity images are scaled from 0 to 1, while phase images are scaled from
�� to þ�. Note that the images include a padding area of zeros around their perimeter.



lens transmission function for the position T1 to give �
s1
out.

(iv) Forward propagate �
s1
out by a distance z2 to determine

�
s1

det. (v) Replace the ampitude with the square root of the

measured intensity at that position. (vi) Back propagate by a

distance �z2 to give an updated �
s1
out. (vii) Update � N¼ 1

in in

the area corresponding to position s1 using the extended

ptychographic iterative engine (E-PIE) approach of Maiden &

Rodenburg (2009),

� new
in ¼ � old

in þ
T �1

jT1j
2
max

�
�

s1;new
out ��

s1;old
out

�
: ð7Þ

(viii) Move to the neighboring position s2 and repeat steps

(iii)–(vii). This process [steps (i)–(viii)] is then carried out up

to sn and repeated for N iterations or until the error metric E0

has reached a minimum value. The error metric used here is

defined as (Maiden & Rodenburg, 2009)

E0 ¼

P
r0

�objðr0Þ � �� N
recðr0Þ

�� ��2P
r0

�objðr0Þ
�� ��2 ; ð8Þ

where

� ¼
�objðr0Þ � N

recðr0Þ
� ��

� N
recðr0Þ

�� ��2 :

Here, � N
recðr0Þ is the reconstructed object wavefield after a

particular iteration N. The final step (ix) involves back

propagating the Nth iteration of � N
in by a distance �z1,

therefore fully recovering � rec
obj .

The reconstruction procedure was applied to a series of n =

25 intensity images calculated for n = 25 different lens posi-

tions corresponding to a 2.38� increase in NA with an average

overlap of 80% of their physical aperture (radius 150 mm). The

initial guess utilized the centered intensity measurement as the

initial guess of the object’s amplitude j� guess
obj j =

ffiffiffiffiffiffi
I s1

p
. For the

initial guess of the object’s phase, three options were explored:

(i) a phase grid with a constant value of 0 across the plane

[i.e. � guess
obj =

ffiffiffiffiffiffi
I s1

p
expði�constantÞ]; (ii) a phase grid generated

with statistically random values that fluctuate uniformly in the

range ½0; 2�� [� guess
obj =

ffiffiffiffiffiffi
I s1

p
expði�randomÞ]; (iii) a phase grid

constructed using the relation between intensity and phase

based on the arguments made by Paganin et al. (2002); that is,

�guess ¼
�

2
ln I s1ð Þ; ð9Þ

where the ratio � = 	=
 relates to the object’s complex

refractive index distribution nr = 1� 	þ i
. A key assumption

of this relation is that the value of � is constant throughout the

object’s volume predicating it is largely composed of a single

material. To test the effectiveness of each guess, the recon-

struction of � rec
obj was attained after N = 1, 10, 100 and 1000.

The respective results are shown in Fig. 4.

In all three cases, the amplitude reconstructions presented

in Fig. 4 require fewer iterations to reach an acceptable

solution in comparison with the phase. This is primarily due to

the understandably close resemblance of the initial guess to

the true amplitude of the exit wavefield at the object. We

additionally note that the speckle-like noise pollution for

the random phase guess below N = 100 is likely due to the

strong phase gradients being manifested in the intensity, and

disappears by N = 1000.

The choice of �guess clearly has a decisive effect on the

quality and convergence rate of the final phase reconstruc-

tions, shown in Fig. 5. Both the convergence plot [Fig. 5(a)]

and the quantitative accuracy of the amplitude and phase

[Figs. 5(b) and 5(c)] strongly favor the flat phase or single

material assumption over the random phase guess. This is a

somewhat surprising observation, as the test phase image

(peppers) contained large variations over 2�, including

significant phase gradients. These large phase gradients

appeared to cause some significant errors in the recovered

phase related to phase-wrapping, though in general the

recovered phase is quantitatively similar to the phase of the

original test image. More surprising, however, is the improved

convergence rate of the single material assumption from

N > 200, given that there was no correlation between the

phase and amplitude of the test image, which undoubtedly

violates its key premise in equation (9). This observation

supports recent work by Gureyev et al. (2015), which showed
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Figure 3
Flow-chart illustrating the iterative phase-retrieval procedure used in LTI.



that the single material assumption can extend to a broader

class of samples without significant loss of generality. For

further details, the reader is encouraged to refer to Gureyev et

al. (2015).

5. Discussion and conclusion

Lens translation imaging provides a practical approach to

synthetically increasing the numerical aperture, spatial band-

width product and phase sensitivity of classical full-field hard

X-ray microscopes. The methodology is described here in

detail using coherent scalar wave optics theory to derive a

generalized mathematical expression for the wavefield as it

traverses the entire LTI system, and includes a formulation of

the iterative phase-retrieval algorithm based on the popular

E-PIE algorithm.

In addition to providing the mathematical framework for

developing simulation and image recovery code, the analytical

expressions also provide valuable physical insights into the

image contrast mechanism. In particular, we note that the

forward simulations [based on equation (5)] suggest that the

off-axis intensity images contain clear contrast in the form of

differential phase contrast (DPC). By paying specific attention

to the lens amplitude function A
r1
sn

, we note the term

exp½ðsn � r1Þ=�
2� arises once the squared binomial jr1 � snj

2 is

expanded. Taylor approximating this term to the first order

and then invoking the Fourier derivative theorem explains the

origin of the DPC signal and how its contribution is propor-

tional to the shifting jsnj. From this it becomes clear that this

type of contrast is the same as that observed and studied in

visible-light FPM setups (Ou et al., 2013).

Realizing LTI means that the compound image must be

recovered without access to the true amplitude and phase

maps as benchmarks for convergence, as was the case here in

equation (8). To this end, we recommend calculating the error

metric relative to the measure images taken at the various lens

positions via the following formula,

E0 ¼
1

n

X
n

P
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I

sn
measðr2Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I

sn
N ðr2Þ

p��� ���2P
r2

I
sn

measðr2Þ

0
B@

1
CA; ð10Þ

where I
sn

measðr2Þ is the measured intensity for a certain sn, andffiffiffiffiffiffiffiffiffiffiffiffiffi
I

sn
N ðr2Þ

p
is the calculated intensity at the same sn for a parti-
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Figure 4
Reconstruction of the object’s wavefield performed with N = 1, 10, 100
and 1000 iterations.

Figure 5
(a) Plot showing the evolution of E0 versus number of iterations N for
all linitial phase guess choices. (b, c) Display overlaid profiles taken
horizontally across the center of the reconstructed phase and amplitude
images for N = 1000. The black curve corresponds to the original (true)
phase and amplitude input map.



cular iteration N. The above error metric takes into consid-

eration the average over all lens positions.

Our study of the iterative phase recovery revealed the

importance of the initial guess on the rate of convergence and

the ultimate quality of the compound image. Like FPM, LTI

has an extremely significant advantage that the central image

may be used as an accurate guess for the amplitude. However,

although the single-material assumption offers some advan-

tages of a constant phase guess, we believe there is still room

for improvement. Given that elements of DPC are clearly

present in the off-axis images, it seems intuitive that this

information could be utilized to provide a more accurate guess

of the object phase that would significantly improve the

convergence rate.

As a full-field X-ray imaging technique, LTI might have the

potential to offer a significantly reduced radiation dose rate

(as opposed to accumulated dose) in comparison with scan-

ning-probe methods, such as conventional X-ray ptycho-

graphy. While the mechanisms of radiation damage vary

greatly between specimens, many have clear dependencies on

the radiation dose rate (Berejnov et al., 2018). In the typical

cases of a scanning nanoprobe with a 200 nm probe diameter

and a full-field microscope with a 200 mm diameter, one could

anticipate a reduction in dose rate of six orders of magnitude.

In the case of the latest generation of high-brilliance coherent

X-ray sources (Eriksson et al., 2014), this reduction may be an

important consideration. On the other hand, the attenuation

of X-rays by the objective lens implies that LTI will have a

higher accumulated radiation dose than conventional (i.e.

‘lensless’) X-ray ptychography for a given field of view and

spatial resolution. However, we speculate that this disadvan-

tage may be mediated to an extent by reducing exposure times

at small scattering angles, where the intensity is high.

Perhaps most importantly, however, LTI has the potential to

be both intuitive and widely accessible at synchrotron beam-

lines. By retaining the ‘what you see is what you get’ character

of full-field microscopy, it provides users with the ability to

quickly and decisively design and perform measurements,

and to seamlessly switch from fast overviews of the entire

specimen (narrow scan range) to detailed inspections of

individual elements (broad scan range). Because LTI is based

on the classical Galilean geometry used by full-field micro-

scopes around the world, it can also be implemented with little

to no additional hardware. Given the imminent improvements

in brilliance and coherence of synchrotron sources, we believe

LTI could be a convenient, valuable and effective new tool for

the broad spectrum of X-ray microscopists.
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