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X-ray near-field speckle-based phase-sensing approaches provide efficient

means of characterizing optical elements. Presented here is a theoretical review

of several of these speckle methods within the framework of optical

characterization, and a generalization of the concept is provided. As is also

demonstrated experimentally in a parallel paper [Berujon, Cojocaru, Piault,

Celestre, Roth, Barrett & Ziegler (2020), J. Synchrotron Rad. 27, (this issue)],

the methods theoretically developed here can be applied to different beams and

optics and within a variety of situations where at-wavelength metrology is

desired. By understanding the differences between the various processing

methods, it is possible to find and implement the most suitable approach for each

metrology scenario.

1. Introduction

With wavelengths of the order of an ångström or shorter, hard

X-rays put stringent requirements on the optics needed to

tailor and transport the beams produced by advanced accel-

erator-based light sources such as synchrotrons or X-ray free-

electron lasers (XFELs). In order to preserve the intrinsic

properties of such radiation – such as its temporal and spatial

coherence, time stability, flux, and spectral characteristics –

specific and difficult-to-manufacture optics must be employed.

The material and shape of X-ray optics must be controlled at a

scale approaching the working wavelength in order to fulfil the

Rayleigh criterion and not degrade the beam properties

(Attwood & Sakdinawat, 2017). To achieve diffraction-limited

focusing performance, state-of-the-art hard X-ray mirrors can

now be manufactured with reflective surfaces offering height

errors less than a nanometre from the theoretical perfect

elliptical figure (Mimura et al., 2009; Yabashi et al., 2014).

Refractive X-ray optics working in transmission have shape-

error requirements approximately three orders of magnitude

less demanding than for reflective optics. In such optics the

physical curvature has to be much larger (implying much

smaller radii for lens surfaces) to obtain equivalent focusing

properties, making the manufacture of large numerical aper-

ture optics equally challenging (Roth et al., 2017).

Optical metrology instruments such as long trace profilers,

nano-optical machines and interferometers are invaluable

tools assisting in the design and fabrication of ever better

performing reflective X-ray optics. Nevertheless, at-wave-

length metrology of X-ray optics is now considered to be the

ultimate tool for characterizing the performance of optics at

synchrotron and XFEL beamlines. The optimum operating

parameters can be attained only by measuring the state of

the X-ray beam under working conditions. In addition to
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providing the necessary input for the alignment of optical

components, online metrology can also yield information

regarding the beam vibrational stability, the thermal load and

the mechanical constraints on the optics.

For the most demanding applications, at-wavelength

metrology methods should be able to reach a sensitivity of the

order of a hundredth of a wavelength or better with micro-

metre-scale spatial resolution. This corresponds to an angular

sensitivity for X-rays better than tens of nanoradians,

combined with micrometric resolution. While such a

metrology performance makes its implementation difficult,

the weak interaction of X-rays with matter renders the task

even more challenging.

Current state-of-the-art grazing-incidence X-ray mirrors for

use with coherent illumination must typically present a figure

accuracy better than one nanometre over several tens of

millimetres (Soufli et al., 2008). Metre-long mirrors in opera-

tion at the European XFEL now fulfil these characteristics

(Vannoni et al., 2016). In contrast, when compound refractive

lenses (CRL) working in transmission are stacked together,

the accumulated shape error must remain below a few

micrometres (Seiboth et al., 2017). For such transmission

optics the individual characterization of each of the lenses can

provide precious information, not only for the shape errors

but also for the sub-surface material structure (inclusions,

porosity etc). Thus, with a view to manufacturing X-ray optics

with better performance, online metrology is expected to

provide the ultimate information beyond the limitations of

offline metrology. Apart from the advantages of measuring the

optics under working conditions, the much shorter wavelength

of X-rays compared with visible light provides greater sensi-

tivity and resolution (Sawhney et al., 2013).

Active optics is another application where online metrology

is particularly powerful. Many X-ray optics can be optimized

using different methods for wavefront correction, including

the insertion of a phase plate or deformable optics. Within the

X-ray reflective optics domain this is done using dynamically

deformable mirrors. These optical component surfaces can be

distorted, up to a certain extent, to tune and shape a beam.

This optimization can be achieved more readily if reliable

at-wavelength metrology methods are made available

(Matsuyama et al., 2016).

A variety of online metrology approaches have been

developed at synchrotrons over the years. As the quality of the

X-ray optics kept increasing, the need for a better metrology

was felt more strongly. Although the pencil-beam approach

(Hignette et al., 1997) probably remains the most widespread

technique today due to its simplicity of implementation,

limitations arise from its limited spatial resolution. Addition-

ally, with pulsed sources such as the new XFELs and with very

low emittance storage rings, online metrology performed out

of focus is highly preferred since the flux density at the focal

point can easily damage even the most robust detector.

Many other approaches exist and are sometimes imple-

mented for more complete characterizations (Weitkamp et al.,

2005; Mercere et al., 2005; Engelhardt et al., 2007; Brady &

Fienup, 2006; Revesz et al., 2007; Kewish et al., 2010; Wang et

al., 2011; Matsuyama et al., 2012; Sutter et al., 2012; Kayser et

al., 2017; Liu et al., 2018). However, at-wavelength metrology

has only recently been implemented at synchrotrons as a

systematic and routine inspection tool for optical components.

X-ray near-field speckle-based phase-sensing methods are

amongst the most recent approaches introduced for online

X-ray at-wavelength metrology. Some important advantages

of these methods have already been demonstrated, such as the

high angular sensitivity combined with an attractive simplicity

of experimental implementation. Using partially coherent

light from a synchrotron source, these methods have been

shown to be fast, efficient and accurate (Berujon & Ziegler,

2016) while the feasibility of applying the methods at

laboratory sources has also been validated (Zanette et al.,

2014).

Here, we review the fundamental differences between the

available processing schemes operating in real space for at-

wavelength metrology.

2. Theory

This section reviews the fundamental principles of X-ray

speckle-based metrology and the various numerical processing

approaches developed over the years. The recovery of the

scattering signal, also accessible with these speckle-based

techniques, will not be discussed here, since it is of reduced

interest for metrology applications. Conversely, the recovery

of the wavefront phase signal allows for the determination of

proper focusing and wavefield propagation of the X-rays.

2.1. Metrology modes

We define two different two kinds of metrology, or, to be

more precise, two types of characterization, described further

as the ‘absolute’ and ‘differential’ modes.

2.1.1. Differential metrology. Differential metrology is

comparable with what is sensed when performing phase-

contrast imaging. In this method only the phase shift induced

by a sample or optical element is measured. For this approach,

two data sets are collected, one with the sample present in the

beam and one without; the wavefront difference is inferred

from these two data sets. Each data set is either a single

detector image, or a series of detector images that have been

taken at different positions of the speckle generator, moved

perpendicularly to the beam.

Fig. 1 shows two configurations used for the recovery of the

wavefront in differential mode for an object, (a) in transmis-

sion and (b) in reflection. For such measurements, the speckle

generator, an object with small phase-shifting features, is

generally located upstream of the sample, i.e. the optics under

investigation. The propagation distance d used for the calcu-

lation of the deflection angle generated by a wavefront

distortion is the distance from the sample to the detector.

Alternatively, the scattering screen can be placed downstream

of the sample, provided that the magnification factor is

correctly taken into account in the calculation (for focusing

optics).
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2.1.2. Absolute metrology. Absolute metrology is sensitive

to the full state of a beam, which includes the contributions of

the source and of all optical elements located in the beam

path. In other words, absolute metrology permits the

measurement of the X-ray beam’s wavefront at any position,

for instance at a sample position or downstream of a set of

optical elements. Such metrology is necessary to optimize the

optical configuration of a beamline and also to provide

reference values when comparing different beams. To perform

the optimization of active optics, absolute metrology is

required to measure the wavefront and ultimately to correct it.

Typical parameters obtained using absolute metrology are

the radius of curvature of the beam and the optical aberra-

tions. Such data permit the measurement of the focal length

and of the beam size at the focal plane.

Fig. 2 shows different geometries employed for absolute

metrology. For the X-ray speckle tracking (XST, see Section

2.2.2), X-ray speckle vector tracking (XSVT, see Section 2.2.3)

and X-ray speckle scanning (XSS, presented in Section 2.2.4)

methods in absolute mode, the detector has to be moved along

the beam axis between two data-set acquisitions, d being the

distance between the two detector planes. However, for XSS

in self-correlation mode (described in Section 2.2.5), where a

single scan is needed, and similarly for the differential mode,

the distance d used for the calculation is that from the sample

to the detector position denoted d in Fig. 1.

2.2. Principles

2.2.1. Generalities. The techniques explained in this article

are expected to be applicable over a wide spectral range, but

they become particularly advantageous in the X-ray regime as

the shorter wavelength leads to an extended near-field range.

Indeed, near-field speckle was demonstrated not to change in

size and shape over a propagation distance D�/�, � being the

wavelength, � the size of the random phase modulator (e.g. the

‘grain’ size) and D the transverse coherence length (Cerbino

et al., 2008). Over this distance, the distortion of the speckle

interference pattern is only governed by the wavefront

distortions. In the hard X-ray regime, this distance ranges from

several millimetres to many metres, depending on the source

divergence and coherence, thereby allowing the small devia-

tion angles coming from the wavefront distortions to be

measured.

The speckle pattern used to modulate the wavefront can be

obtained either through an interferometric process, meaning

that the random pattern is a true speckle pattern, or from

an absorption mask with random small apertures. In practice,

the speckle observed with X-rays is often a combination of

interference and absorption processes.

The experimental simplicity of the speckle-based techni-

ques comes at a higher computational cost than alternative

techniques which are more demanding of instrumentation.
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Figure 1
(a) The measurement configuration for the optical characterization of
a lens in transmission. The detector is fixed at all times. (b) The
configuration for the optical characterization of a mirror upon reflection.
Here, the detector can be moved transverse to the beam propagation
direction between scans, in order to intercept the reflected X-ray beam.

Figure 2
Data collection for the absolute mode, (a) in line and (b) upon reflection
of the X-rays at an optical element. In both cases the detector collects
images in two different propagation planes separated by a typical distance
d of about 10 to 1000 mm.



Speckle-based techniques rely on tracking similar or resem-

bling signals either in different propagation planes or at

different times or configurations, as is the case for the differ-

ential metrology mode (Berujon et al., 2012b). Since each

speckle is or can be assumed to be unique, each grain acts as

a marker allowing the determination of the ray’s propagation

direction in a geometric way. Using a series of detector images

with a slightly shifted speckle generator or membrane

increases the resolution provided by the tracking principle up

to that of the detector and also offers increased robustness.

Here, for the signal tracking, i.e. in order to follow or find

the size of the lateral displacement of a speckle on the

detector plane, we will solely use the originally introduced

method that searches for the maximum of a correlation peak

(Berujon et al., 2012b; Morgan et al., 2012). Since then, other

authors have employed different algorithms based on the

minimization of a square sum difference (Zanette et al., 2014;

Vittoria et al., 2015; Zdora et al., 2017) with or without

randomness in the wavefront modulator. Nevertheless, these

numerical recipes are equivalent if we set the dark-field signal

issue aside.

Let us assume two ‘speckle’ signals (s1, s2), or random sets

of 2D intensity patterns on a detector, that are functions of

(r, �). The parameter r represents a pixel position on the

detector in the (x, y) basis transverse to the X-ray beam

propagation direction z. The controllable parameter �
describes the position in (x, y) of the speckle generator, which

can be moved perpendicular to the beam direction using high-

precision motors. Both signals (s1, s2) can thus have a dimen-

sion up to four: two dimensions for the 2D position of a point

on the detector r(x, y) and two other dimensions for �(x, y).

The signals are collected at different propagation distances,

e.g. s1 = s(r, �, z = z1) and s1 = s(r, �, z = z2) in the absolute

mode, or when the detector is kept fixed with z1 = z2 while the

beam state is changed by, for instance, the insertion of an

object in the differential mode.

Similarity in the signals is found numerically by calculating

the normalized cross-correlation coefficients C which can be

written in the most general case as

Cðv; uÞ ¼

ZZ es1s1ðrþ v; � þ uÞes2s2ðr; �Þ dr d�: ð1Þ

The operator ess denotes a signal normalization over the

window function wr0;�0
ðr; �Þ = wðr� r0Þwð� � �0Þ centred

around r0 and �0 and fulfilling the normalization conditionZZ
wr0;�0
ðr; �Þ dr d� ¼

Z
wr0
ðrÞ dr ¼

Z
w�0
ð�Þ d� ¼ 1: ð2Þ

Whilst wr0
ðrÞ is used to define the position of the detector, i.e.

where the calculation is performed, w�0
is usually defined by

the range of speckle generator positions that are scanned. In

practice, a window wr0
with larger dimensions will result in a

lower spatial resolution as a trade-off for a greater accuracy

gain. For w�0
, a larger window corresponds to increased data

collection but also to higher accuracy.

We have then for s(r, s)

essðr0; �0Þ ¼
wr0;�0

s� s

�ðsÞ
; ð3Þ

with s the mean of s over the window,

sðr0; �0Þ ¼

ZZ
wr0;�0

s dr d�; ð4Þ

and �(s) its standard deviation,

�½sðr0; �0Þ� ¼

ZZ
wr0;�0

s� s
� �2

dr d�

� �1=2

: ð5Þ

As indicated above, some authors prefer to use an alternative

operator instead of the cross-correlation one (Zanette et al.,

2014; Zdora et al., 2017), called the normalized sum of square

difference, B, that must be minimized:

Bðv; uÞ ¼

ZZ es1s1ðrþ v; � þ uÞ �es2s2ðr; �Þ
� �2

dr d�: ð6Þ

The relation between the operators C and B is simply

B ¼ 2½1� C�; ð7Þ

if, again, one does not take into account the dark-field signal.

The different speckle approaches, explained in the

following sections, were initially introduced within the

extreme cases of w�0
ð�Þ = �ð� � �0Þ for XST or wr0

ðrÞ = �ðr� r0Þ

for XSS, where � denotes the Dirac distribution. However,

improved methods were later established by using larger

window functions, hence providing an information gain from

the neighbouring pixels as well as integrating redundant

information, which helped increase the sensitivity and noise

robustness of the methods.

The displacement vector � from (s1, s2) for a pixel at posi-

tion r0 on the detector is defined as

� ¼ ðv0 þ u0Þ ¼ arg max
ðv;uÞ

C ¼ arg min
ðv;uÞ

B: ð8Þ

The tracking of the speckle signals is used to infer geome-

trically the trajectory of the X-rays and to recover the wave-

front W. The relation is valid within the first Born

approximation and in a homogeneous medium of optical index

n. In that case, ndp/dz0 = grad W, where p is the position

vector of a typical point on the ray with direction z0 (Born &

Wolf, 2008). The beam phase � is thus linked to the wavefront

through the approximate geometric view, � = kW, k being

the wavenumber.

Using the notation r for the del (nabla) operator, the beam

phase and wavefront can be linked to the displacement vector

by

	 ¼ r� ¼ krW ¼ �k
�

d
; ð9Þ

where � is a geometric magnification scalar, cf. Fig. 3 and

Berujon & Ziegler (2015), and d is the relevant propagation

distance defined above.

This signal tracking principle can be implemented in

different geometries and adapted for different applications.

The sample can be placed either upstream or downstream of

the speckle generator, while the detector position can be
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varied in several ways. Next, we briefly review the different

techniques based on the signal tracking principle.

2.2.2. X-ray speckle tracking (XST). X-ray speckle tracking

(XST) in differential and absolute modes was the first near-

field speckle-based processing approach described in the

literature (Berujon et al., 2012b; Morgan et al., 2012). It is

directly inspired by numerical recipes employed in mechanics

and particle image velocimetry where digital image correla-

tion algorithms are used intensively to infer mechanical

deformation or fluid fields (Palance et al., 2016; Raffel et al.,

2018).

XST consists of recording only two images of the same

speckle pattern with and without a sample inserted into the

beam for the differential mode, or at two propagation

distances in the case of the absolute mode, the speckle

generator being kept static at all times. The first image

represents the signal s1(r) and the second one the reference

signal s2(r). Given that this method is not a scanning tech-

nique, s1 and s2 are independent of �. The displacement vector

is simply recovered from equations (1) and (8):

� ¼ v0 ¼ arg max
v

CXST½s1ðrÞ; s2ðrÞ�

¼ arg max
v

ZZ es1s1ðrþ vÞes2s2ðrÞ dr; ð10Þ

where u is equal to zero and wr0
r has a typical size of about 7 to

23 pixels in diameter. Here the spatial resolution of the

technique is lower than that of the detector. However, the

need for a single exposure of the sample makes it more readily

applicable to time-resolved or dynamic studies.

In the differential mode, XST is quite straightforward to

apply, with two images being taken with and without the

sample inserted into the beam, the detector remaining in a

fixed position.

In this case, � from equation (9) is equal to 1 and r� =

kv0 /d in the plane of the sample when the speckle generator is

placed upstream of the sample. For the case where the posi-

tions are inverted, the � factor must be adjusted accordingly.

Using the notation Rs for the distance from the source to the

sample and l for the distance between the speckle generator

and the sample, then � = 1 + l /Rs.

XST in the absolute mode was first described by Berujon et

al. (2012b). In this mode, the two images are taken at different

distances downstream of the speckle generator and subsets of

the first image are tracked across the second one. The speckle

grains are used as markers to materialize the trajectory of

the X-rays between the two propagation planes. The setup is

depicted in Fig. 2, where the detector is located at two distinct

positions separated by a distance ranging from a few tens of

millimetres for photons of a few kiloelectronvolts energy to a

few metres when working at a higher energy, a typical distance

being a few hundreds of millimetres.

In the XST absolute mode, the subsets tracked from one

image to the other can be strongly distorted due to the setup

geometry. While the tracking of the correlation peak, as

defined by equation (10), does not take into account the subset

distortion induced by the sample, more robust methods exist,

consisting of maximizing CXST of equation (10) as a function of

six or more variables. These algorithms take into account the

subset distortions and improve the robustness and accuracy of

the method, although at greater cost in terms of computing

resources (Berujon et al., 2015).

The XST principle was also demonstrated for single-pulse

metrology using an experimental setup in which a semi-

transparent X-ray detector is followed by a second down-

stream detector (Berujon et al., 2015, 2017), thus allowing

images to be recorded on both detectors simultaneously. This

experimental setup permits the temporal tracking of the

absolute variation in the beam.

Recently, a fast Fourier transform based algorithm was

shown to be able to quickly recover the speckle displacement

for a whole image with high resolution (Paganin et al., 2018).

However, this mathematical processing displays a singularity

at the zero-frequency position in the Fourier space that

requires a regularization process for the formula to be stable.

Unlike for imaging where small features matter the most, and

particularly for computed tomography where low spatial

frequencies are usually filtered out in the reconstruction

process, this regularization is problematic in the case of

metrology applications since we are mainly interested in the

low-order aberrations. The use of real-space methods avoids

this amplification of low-frequency noise.

2.2.3. X-ray speckle vector tracking (XSVT). The X-ray

speckle vector tracking (XSVT) processing scheme was first

described in the second part of the paper by Berujon &

Ziegler (2017). In this scanning technique, two sets of multiple

images are collected at N different transverse positions

(initially randomly chosen) of the speckle generator �(xi, yi),

i 2 [[1, N]]. During the acquisition of the first set, the sample

is inserted into the beam. This set of images constitutes the

signal s1, which is reorganized into a three-dimensional array
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Figure 3
An illustration of the origin of the � factor for the case of a diverging
source and a speckle generator located upstream of the sample. The
photon deflection angle induced by refraction in the sample is
represented by 	 (located in the sample plane). When the displacement
vector corresponds to the vector illustrated by �1 (in the case of XSS)
rather than �2 located on the detector (for instance with XST or XSVT),
one must scale the displacement vector by a � factor to recover 	 through
the relationship linking the angles: 	 = 
 + �. Equivalent considerations
can be used when employing a setup where the speckle generator is
placed after the sample.



by stacking the images. Then the signal s2 is built repeating the

very same scan, but this time with the object under investi-

gation removed from the beam or located at a different

propagation distance z.

Although s1 and s2 are 3D, the correlation is operated over r

and with u = 0:

� ¼ v0 ¼ arg max
v

CXSVT½s1ðr; �Þ; s2ðr; �Þ�

¼ arg max
v

ZZ es1s1ðrþ v; �Þes2s2ðr; �Þ dr d�: ð11Þ

As for XST, � = 1 if the membrane is located upstream of the

sample, or � = 1 + l /Rs if the membrane is downstream. When

the method was first introduced, XSVT used wr0
ðr� r0Þ =

�ðr� r0Þ, � being the Dirac delta function. Later, the technique

evolved with the use of a small wr0
window, losing some of the

resolution as a trade-off for gaining more accuracy without the

need to increase the amount of data collected (Berujon &

Ziegler, 2016). In order to avoid computing time issues, one

should select a window size such that the total number of

elements in the vector does not exceed 100. While for

metrology purposes a large number of images N and a unitary

wr0
window size are preferable, for imaging applications one

aims to use only a few images while increasing the wr0
window

size until sufficient statistics can be obtained, e.g. resulting in a

typical size for wr0
of 3 � 3 to 6 � 6. XST can be seen as a

special case of XSVT with w�0
ð� � �0Þ = �ð� � �0Þ.

The considerations made for XST in the absolute and

differential metrology modes can be applied to XSVT in an

equivalent manner. By recording the signals (s1, s2) at

different propagation planes, one can access the absolute

metrology, in contrast with the differential metrology obtained

when signals are recorded at the same location but at different

times or under different conditions.

2.2.4. X-ray speckle scanning (XSS). The X-ray speckle

scanning (XSS) approach was first described by Berujon et al.

(2012a) and later simplified in terms of data collection by

Berujon & Ziegler (2017). It was shown that this processing

method is equivalent to the one used in grating interferometry

where one of the gratings is scanned in the phase-stepping

mode. In this case, the signals (s1, s2) are built by scanning the

speckle generator position � using a fine mesh. The signals

(s1, s2) are four-dimensional and the cross correlation is done

over � with v = 0:

� ¼ u0 ¼ arg max
u

CXSS½s1ðr; �Þ; s2ðr; �Þ�

¼ arg max
u

ZZ es1s1ðr; � þ uÞes2s2ðr; �Þ dr d�: ð12Þ

For XSS, the � factor of equation (9) depends on the geometry

and the divergence of the setup. As one can see in Fig. 3, the

displacement vector calculated with XSS corresponds to �1, a

length located in the plane of the speckle generator. The �
factor here permits the scaling of the angle 	 as a function of

�1. With a source located at a distance Rs and the object placed

at a distance l from the speckle generator, it was demonstrated

that � = (Rs + l + d)/Rs for scaling the angles at the sample

position (Berujon & Ziegler, 2015). When a collimated probe

beam is used, � is reduced to 1.

Another XSS scheme often used is based on a 1D scan

followed by the use of a highly asymmetric window w(r � r0)

for the cross-correlation calculation. This variant, often

presented as XSS-1D, is equivalent to XSS in the dimension

orthogonal to the scan direction and to the XSVT method

in the other beam transverse direction (Berujon et al., 2012a;

Wang et al., 2016). For a scan in the x direction, the previous

equation is transformed for this method into

ux0
; vy0
¼ arg max

u;v

ZZ es1s1ðrþ vy; � þ uxÞes2s2ðr; �Þ dr d�: ð13Þ

The displacement vector is hence separated into orthogonal

components by forcing the use of the projections ux = u � x and

vy = v � y.

In the work of Berujon & Ziegler (2017), a variant of the

XSS processing scheme showed ways of reducing the amount

of data collected in an attempt to infer each time injective

functions of s1 to s2. The strategy explained therein mainly

consists of collecting a complete reference scan by performing

fine, though limited in size, mesh scans of s2 while recording

fewer points for s1 with the speckle generator positioned at the

central points Pk of the previous meshes. In that case, the

reorganized data for s1(r, �, Pk) and s2(r, �, Pk) go up to

dimension five, the correlation simply becoming

CXSSðs1; s2Þ ¼
1

N

XN

k

ZZ es1s1ðr; � þ u;PkÞes2s2ðr; �;PkÞ dr d�:

ð14Þ

When XSS was first presented by Berujon et al. (2012a), the

processing was done pixel by pixel, i.e. with wr0
ðr� r0Þ =

�ðr� r0Þ. However, as in the case of XSVT, a gain in accuracy

could be achieved by enlarging the window wr0
at the cost of a

reduced spatial resolution (Berujon & Ziegler, 2017). Simi-

larly to XSVT, a simple way of numerically implementing this

feature consists of concatenating data from different pixels of

s along a fourth or fifth dimension. However, this numerical

processing, although trivial to program, can quickly become

memory intensive if no care is taken.

2.2.5. Speckle-scanning self-correlation mode. In the self-

correlation speckle-scanning processing method, a variant of

XSS, only one large 1D or 2D scan of the speckle generator is

performed, with the optics in the beam. Although this method

gives access to the wavefront curvature that includes the

defects of the probe beam, here the distance d is that from

the sample to the detector as shown in Fig. 1. In this method,

s1 = s2 and a self-correlation of this signal among different

pixels is operated,

� ¼ u0 ¼ arg max
u

CXSSabs½s1ðr; �Þ; s1ðrþ�r; �Þ�

¼ arg max
u

ZZ es1s1ðrþ�r; � þ uÞes1s1ðr; �Þ dr d�: ð15Þ

From the calculation of �, one can deduce the local absolute

beam curvature � = R�1 = @2W/@r2 (in the detector plane)

using the relation of the magnification,
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� ¼
��1

��1 � l � d
¼

�r

�
; ð16Þ

which gives

� ¼
1� �=�r

l þ d
: ð17Þ

Minimizing l in the experimental setup or using a collimated

probe beam, the expression usually reduces to � =

ð1� �=�rÞ=d.

In practice, �r is of the order of a few pixels and wr0
is often

equal to wr0
ðrÞ = �ðr� r0Þ. This processing scheme assumes a

well known and constant pixel size over the full detector active

area. This parameter can be extracted using speckle-based

methods, as explained by Berujon et al. (2015). Hence, by

calculating four curvature fields, the absolute wavefront maps

can be recovered through a double integration.

Within the small-angle approximation, the curvature fields

being linear, the differential phase induced by a sample can

also be recovered by integrating a difference of curvature.

One can obtain the curvature fields of two optical configura-

tions by performing two XSS self-correlation scans and the

difference can be obtained by simple subtraction if the beam

did not move too much between scans.

As with the XSS technique, one can proceed by operating a

one-dimensional scan and use an asymmetric window in the

correlation operation. That will again allow a reduction in the

data-acquisition time at the cost of a moderate loss in spatial

resolution in the dimension orthogonal to the scan direction.

This 1D XSS self-correlation scheme is highly beneficial for

the purpose of reducing the data-collection time when the

problem can be projected in the orthogonal directions (e.g. for

the focusing of a KB system).

As we shall show below, this processing method is found to

be of interest for measuring optics that strongly distort the

wavefront.

2.2.6. Hybrid tracking: XSVT–XSS. While the XSVT and

XSS methods restrict the search of � by cross correlations

solely over either the r or � parameters, we can come back to

equation (8) in which the cross correlation is operated over

both v and u. Now, let us consider the signals s1 and s2

collected during scans of the speckle generator whose range is

much larger than a demagnified pixel size pix/�.

We now consider v 6¼ u 6¼ 0 and � = v + u, as in the general

case. In practice, as for XSS, the hybrid method merging XSS

and XSVT starts with the recording of s1 and s2 by operating

two 2D scans of the speckle generator. The signals from

different pixels are numerically correlated to track their shift

over the two variable parameters v and u using

� ¼ u0 þ v0 ¼ arg max
u;v

CXSShyb½s1ðr; �Þ; s2ðr; �Þ�

¼ arg max
v;u

ZZ es1s1ðrþ v; � þ uÞes2s2ðr; �Þ d� dr: ð18Þ

Although slightly more complicated to implement and more

demanding in terms of computation time, this processing

method can be useful when high sensitivity is required for

strongly curved wavefronts, both in absolute and differential

modes. When used within a magnifying setup, the � factor of

the method has two distinct components for v and u.

Note that, as with the other processing methods, the size of

wr0;�0
can be larger than unity for both parameters, thus

increasing the amount of data injected into the correlation

calculation and requiring further computing resources.

3. Relevance of the methods

Inferring from theoretical considerations, one can evaluate the

differences between the various processing schemes, thus

assessing where the use of a particular scheme becomes more

relevant than the others.

When phase sensing is used for imaging, the context asks for

the lowest number of exposures per projection. In imaging,

one is often willing to sacrifice some of the quantitative

accuracy for a gain in visual quality. In a computed tomo-

graphy scan, hundreds to thousands of projection images are

collected around a sample to reconstruct its volume numeri-

cally. Algorithms with a single exposure per angular projection

are thus highly desirable when working with sensitive mater-

ials, in order to keep both the scanning times and the depos-

ited dose as low as possible. The algorithm proposed by

Paganin et al. (2018), for instance, is very well suited to this

purpose. Additionally, the ramp filter used in the tomographic

reconstruction combines with that for 2D numerical integra-

tion in Fourier space to form a phasor, eventually greatly

reducing the artefacts generated independently by each filter.

As mentioned earlier in this article, the previously mentioned

algorithm is not as well suited to metrology applications as it is

to imaging. Operating in Fourier space requires dealing with

the singularity of the filter around the zero frequency

component. Any regularization of these low frequencies in a

projection mode will be likely to generate low-frequency

artefacts which have a dramatic impact on metrology appli-

cations.

In contrast with imaging purposes, metrology applications

call for a higher sensitivity and quantitative accuracy, even if

this leads to longer scans. For most optical characterization,

however, this does not pose a problem.

Fig. 4 offers a quick overview of the parameters and char-

acteristics of the various schemes.

The XST technique offers the poorest resolution among the

presented approaches since it uses a whole subset of pixels to

map the trajectory of a ray. However, given that the technique

only requires two images (of which one acts as a reference), it

permits monitoring of dynamic processes. As we shall see, the

technique can prove useful for stability assessments. On the

downside, XST can sometimes suffer from numerical artefacts

generated by absorbing or diffracting elements in the beam or

by a wavefront highly perturbed near the spatial frequencies

of the speckle grains.

XSVT is an attractive technique that provides both a good

resolution (which can be as good as that of the detector) and

a good performance, with robustness to noise due to the

redundancy of the data. More importantly, XSVT is a very
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versatile technique that provides an almost infinite dynamic

range in angular sensitivity while offering an opportunity to

tune the scan length to obtain the desired accuracy and

resolution.

The XSS technique is experimentally the slowest one, since

it requires long scans (N 2 images when applied in two

dimensions). On the other hand, at the same time it provides

the best angular sensitivity in both the differential and self-

correlation modes. This is due to the smallest displacement

vector vmin that can be sensed with this technique, equal to a

fraction of the demagnified detector pixel vmin < pix /�. Since

XSS allows � to be very large, smaller displacement vectors

and angles can be sensed down to a single nanoradian.

The XSS self-correlation mode is also of interest since it can

provide the absolute local curvature of the beam with high

angular precision and without the need to move the detector

during the measurements. As we demonstrate in our parallel

paper (Berujon et al. 2020), this technique offers high

performance for characterizing the absolute wavefront and

provides a robust alternative when differential measurements

are made impossible due to strongly focusing optics.

The hybrid technique allows one to combine the strength of

both the XSVT and XSS approaches, yet at the cost of a higher

complexity in the numerical implementation.

In our complementary article (Berujon et al. 2020), we

present several experimental applications and discuss the

choice of techniques depending on each metrology scenario.

4. Conclusions

Several aspects of speckle tracking using various geometries

and processing schemes have been reviewed. X-ray near-field

speckle methods can be used to extract both absolute and

differential characteristics of the X-ray beam wavefront, thus

allowing characterization of the optics using at-wavelength

metrology. The configurations presented here are not

exhaustive but they enable an illustration of the core princi-

ples of the methods and the way they relate to each other. The

combination of a setup and a processing scheme can be

adapted to operate optimally to characterize a wide range of

X-ray optical elements.

In our accompanying paper (Berujon et al. 2020), experi-

mental applications are detailed in order to illustrate the

potential of the reviewed methods for a variety of situations

and purposes. For instance, we demonstrate how the methods

can provide important information regarding the performance

and defects of refractive and reflective optics. While the

presented data were obtained at a synchrotron, it is worth
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Figure 4
A comparative table of the different techniques. The parameter 
 is set by the nature and robustness of the cross-correlation algorithm used. In practice,
d will be limited by the transverse coherence of the beam (going too far from the scattering object, no speckle will be visible) and the divergence of
the beam.



mentioning that the techniques are expected to work with

other kinds of X-ray sources (Zanette et al., 2014) at a variety

of energies (Wang et al., 2016) and even with visible light

(Berto et al., 2017).
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