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New calibration tools in the pyFAI suite for processing scattering experiments

acquired with area detectors are presented. These include a new graphical user

interface for calibrating the detector position in a scattering experiment

performed with a fixed large area detector, as well as a library to be used in

Jupyter notebooks for calibrating the motion of a detector on a goniometer arm

(or any other moving table) to perform diffraction experiments.

1. Introduction

According to an internal survey of the beamline scientists at

the European Synchrotron (ESRF) in 2016, the factor limiting

user productivity at diffraction beamlines is the calibration of

the experimental setup before the raw data can be reduced

to analysable data. The calibration issue is currently worked

around by providing users with the proper geometry

description or even the reduced data; however, this prevents

re-processing at home institutes and also re-interpretation of

data, which is needed as a part of the open-data initiative

(Wilkinson et al., 2016).

At X-ray facilities such as synchrotons, large area detectors

are preferred for gathering the maximum number of photons

in scattering experiments (powder diffraction, small-angle

scattering, etc.). Using a fixed-position setup combined with

the speed of modern detectors (up to a few kHz), it is easy to

follow chemical reactions or other physical processes in situ.

Even with fixed geometries, determining the detector position

is still an issue for the majority of users. Hence, a new

graphical user interface has been developed for the Python

fast azimuthal integration library pyFAI (Kieffer et al., 2019),

focusing on the user experience to grant them autonomy in

data analysis once they have returned to their home institutes.

Laboratory source diffractometers are commonly equipped

with (small) area detectors mounted on moveable goniometer

arms for powder diffraction (for example, the Rigaku HyPix-

3000 detector). Detectors at synchrotrons are often mounted

on goniometer or translation tables to provide the degrees

of freedom (hereafter DoFs) needed to align the beamline,

although those DoFs are rarely used for data acquisition.

One counter-example is reported by Gao et al. (2016), where

the beamline is equipped with a moving strip-detector, the

Mythen detector (1D) from Dectris, but the Mythen is not

an area detector.

Pair distribution function (PDF) analysis typically requires

very large area detectors and higher energies to be able to

cover the needed high q-range in one single frame (Chupas et

al., 2003). When speed is not critical, PDF experiments can be

performed with small area detectors mounted on a motorized
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arm, and moved in front of the sample during data acquisition

to cover a larger solid angle. A new pyFAI module which

handles goniometers and moving detectors is also presented.

It offers the ability to exploit the positioning system of the

detector (often readily available on beamlines) to acquire

powder diffraction or PDF data on a larger q-range with no

additional cost or investment.

The pyFAI library (Ashiotis et al., 2015) is first briefly

introduced, then the merging of multiple diffraction images

acquired at different positions is demonstrated, as shown by

Kieffer & Wright (2013). After summarizing how calibration

works in pyFAI, the new graphical user interface is presented.

Finally, the procedure on how to calibrate the absolute posi-

tion of every single pixel in the detector when mounted on a

goniometer (or on a translation stage) as a function of motor

positions is described.

2. The Python fast azimuthal integration library

pyFAI is a Python (van Rossum, 1989) library used to trans-

form 2D diffraction images into 1D powder diffraction

patterns by re-binning the pixel positions in polar coordinates.

The radial units are typically the scattering angle 2� or the

momentum transfer q = 4�sin(�)/�. pyFAI also provides

additional tools to calibrate the detector position, i.e. to

determine its location in space by means of Debye–Scherrer

conical rings resulting from the intersection of the diffracted

X-ray beam with the detector surface. The observed rings are

deformed into ellipses when the detector is planar but slightly

inclined. The azimuthal integration is performed in two steps.

The first is a pixel-wise transformation corresponding to the

image correction,

Icor ¼
signal

normalization
¼

Iraw � Idark

F�PAI0

; ð1Þ

where Iraw is the raw signal of the detector, Idark is the dark

current image (it may also be the background image for

certain experiments), F is the factor accounting for the flat-

field correction, � is the solid angle subtended by a given

pixel, P is the polarization correction term and A represents

the detector’s apparent efficiency due to the incidence angle of

the photon on the detector (for integrating detectors, high-

energy photons with larger incidence angles see larger sensor

thickness, and thus have a higher detection probability). Iraw

may be normalized by the incoming flux I0, which is inde-

pendent of the pixel position. The numerator of equation (1)

will hereafter be referred to as the ‘signal’, whilst the

denominator will be referred as ‘normalization’. The

‘variance’ associated with the signal of every single pixel can

be estimated from statistical distributions assuming, for

example, that the detector has a Poissonian behaviour. This

variance needs to be scaled in a similar way when considering

error propagation.

The second step is the re-binning of the data, which is

carried out using histograms of the radial positions, weighted

by either the signal or normalization as described by Kieffer

& Ashiotis (2014). This histogram sums the signal (resp.

normalization) for all pixels having a radius corresponding to

a given radial bin (this set of pixels is denoted binr). The

intensity averaged over all pixels located at a given radial

value is then simply the ratio of the two histograms which bin

corresponds to the radius of interest [equation (2)]. The

propagated error (standard error of the mean) is given in

equation (3),

hIir ¼

P
i2 binr

ci � signali

P
i2 binr

ci � normalizationi

; ð2Þ

�rðIÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2 binr

c2
i � variancei

r
P

i2 binr

ci � normalizationi

: ð3Þ

In equations (2) and (3), ci is used to describe pixel splitting

and corresponds to the fraction of the pixel area falling into

the specific histogram bin (0 � ci � 1). The multiple pixel-

splitting schemes available in pyFAI, called full-splitting,

bounding-box-splitting and no-splitting, have been described

by Ashiotis et al. (2015).

The integration scheme presented in equation (2) is an

improvement over former versions of pyFAI (version <0.18),

which used equation (4) where the error propagation was

not properly performed as pixels with smaller normalization

factors were over-represented in the associated errors,

hIir ¼

P
i2 binr

ci � signali

�
normalizationi

� �
P

i2 binr

ci

: ð4Þ

3. Azimuthal integration of multiple frames taken at
multiple geometries

The pyFAI integration scheme of multiple images taken at

various positions was first reported by Kieffer & Wright

(2013). The procedure is conceptually similar to the integra-

tion on a single image, except that all histograms need to be

calculated over the very same grid (bin positions) to allow

histograms from all images to be summed together, as

described in equation (5),

hIir ¼

P
imges

P
i2 binr

ci � signali

P
imges

P
i2 binr

ci � normalizationi

: ð5Þ

The normalization for solid-angle correction, �, has to be

performed using an absolute solid-angle reference system as

different geometries may have very different sample-to-

detector distances. This is different from the integration in

single-frame mode, where pyFAI uses the solid angle relative

to the point of normal incidence (PONI). Hence, integrated

intensities in multi-geometry mode are orders of magnitude

larger than usual, the scale factor being the solid angle of one

pixel at the PONI, i.e. dist2/(pixel1 � pixel2). Errors are
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propagated in an similar way to equa-

tion (3), taking into account the abso-

lute solid-angle normalization.

4. Calibration of the detector
position

4.1. Principle of the calibration using
a Debye–Scherrer diffraction image

The calibration of a detector posi-

tion is performed using several Debye–

Scherrer rings collected from a refer-

ence powder called the calibrant. The

rings are extracted automatically from

the image (by subtracting a smoothed

version of the image) and control

points are placed at the local maxima

on the rings. The geometry of the

experiment is obtained by refining

geometric parameters using a least-

square fitting of the 2� values calcu-

lated for the different control points.

Intuitively, the easiest geometry to perform the calibration

is built upon the beam-centre definition, which is the inter-

section of the direct beam with the detector. This geometry

was first introduced in FIT2D (Hammersley et al., 1996) and

re-used in many software packages such as GSAS-II (Toby &

Von Dreele, 2013) and DAWN (Filik et al., 2017) which also

offer user-friendly interfaces. The FIT2D geometry reaches its

limits when the detector is heavily tilted, and it is not even

possible to describe a detector mounted parallel to the beam

(which is sometimes used on laboratory sources in reflection

geometry). The geometry used in pyFAI is based on the

definition of the PONI (Fig. 1), which is the orthogonal

projection of the sample position (the origin in pyFAI) on the

detector plane (or the plane z = d3 = 0 when the detector is

non-planar and z varies from pixel to pixel). This geometry is

inspired by SPD (Boesecke, 2007) and is capable of describing

any detector position in space. It is worth noting that the

PONI is co-located with the beam centre when the detector is

not tilted, i.e. mounted orthogonal to the direct beam. More-

over, the PONI is more likely than the beam centre to be

located within the detector surface when the detector is

heavily tilted (since the detector gathers more photons when

facing the sample). Some geometry conversion tools are

provided by pyFAI and documented by Detlefs & Kieffer

(2019).

The geometrical parameters to be refined are the following:

(i) dist: the distance (in metres) from the sample position to

the PONI. (ii) poni1 and poni2: space coordinates of the PONI

(in metres) within the detector plane (z = d3 = 0) along the

slow- and fast-reading dimension of the detector image (1 and

2 usually refer to the row and the column axis, i.e. y and x,

respectively). (iii) rot1, rot2 and rot3: the rotation angles

(expressed in radians) of the detector placed at the proper

distance from the sample, with respect to the three axes of the

laboratory reference system. The detector is first rotated

around the vertical axis (rot1), then around the horizontal axis

(rot2) and finally around the incoming beam direction (rot3).

In a more mathematical way, this gives

R ¼ R3R2R1 ð6Þ

where

R1 ¼

1 0 0

0 cosðrot1Þ sinðrot1Þ

0 � sinðrot1Þ cosðrot1Þ

2
4

3
5; ð7Þ

R2 ¼

cosðrot2Þ 0 sinðrot2Þ

0 1 0

� sinðrot1Þ 0 cosðrot2Þ

2
4

3
5; ð8Þ

R3 ¼

cosðrot3Þ � sinðrot3Þ 0

sinðrot3Þ cosðrot3Þ 0

0 0 1

2
4

3
5: ð9Þ

It is worth mentioning that rotations R1 and R2 are left-

handed, while R3 is right-handed, which is a legacy from

previous versions of pyFAI.

The strength of this geometry parameterization is that it

describes any detector position in space. The drawback is that

some parameters are correlated or not optimized:

(i) dist-wavelength: reducing the wavelength is nearly

equivalent to increasing the distance unless the diffraction

angle is large (2� > 30�). It is advisable to fix one of these two

variables unless the data quality are good enough and the

scattering range is very large. This is an intrinsic limitation of

the single-image approach.

(ii) rot1-poni2 and rot2-poni1: as small rotations can be

mistaken for larger translations. Fixing one of the two

decreases the uncertainty of the other by several orders of
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Figure 1
Geometry used in pyFAI.



magnitude. The user interface offers a ‘SAXS constrains’

button to lock the detector normal to the direct beam.

(iii) rot3: cannot be refined from Debye–Scherrer cones as

they are, by definition, invariant by rotation around the

incoming beam. The rot3 parameter can be assessed using an

anisotropic contribution such as the polarization effect or

some textures in the sample. This rot3 parameter is used to

describe the azimuthal rotation of the experimental setup or

of the sample, for example, when calculating pole figures.

Those calibration parameters containing the geometry of

the experimental setup are saved in text files with a .poni

extension, also containing the detector definition and the

wavelength. Such a file can subsequently be loaded into an

azimuthal integrator object, ready to perform the azimuthal

regrouping of images coming from the detector.

4.2. Graphical user interface

A semi-graphical calibration tool has been available as part

of pyFAI since the origin of the project (Ashiotis et al., 2015),

but this tool was considered too difficult to use by inexper-

ienced users. Thus, many groups have developed their own

graphical user interface on top of pyFAI, often optimized

for their specific setup or experiment: Dioptas (Prescher &

Prakapenka, 2015) focusing on high-pressure experiments,

Dpdak (Benecke et al., 2014) for online SAXS, NanoPeakCell

(Coquelle et al., 2015) for serial crystallography, PySAXS

(Taché et al., 2015), WiSAXS or xPDFsuite (Yang et al., 2014)

to cite a few.

Following the survey conducted among the beamline

scientists of the ESRF, a new graphical user interface (GUI)

design was developed on top of pyFAI. This new GUI, called

pyFAI-calib2, is based on the silx scientific widgets (Knobel et

al., 2017), itself based on the PyQt5 library (Thompson, 2013).

The pyFAI-calib2 tool has been specifically designed to

address the needs of novice users, but should perform equally

well regardless to the scientific field or experimental setup.

The calibration of the experimental setup based on Debye–

Scherrer rings is carried out in five steps and presented as a

software wizard with five subsequent tabs within the graphical

interface:

(i) Experimental settings. This first tab lets the user select

the wavelength (or the energy), the reference material for

calibration (calibrant) and choose the type of detector, either

from a list of 50 provided, or by defining a new detector

(Fig. 2).

(ii) Mask drawing. This tab allows us to mask-out unwanted

regions/pixels from the image, either based on their intensity

(thresholding) or simply by drawing polygons on the image.

Different masks can be saved, retrieved and assembled (Fig. 3).

(iii) Peak picking. Individual peaks and arcs of rings can be

segmented out (automatically) and assigned (manually) to

different rings, each associated with a single reflection of the

calibrant (Fig. 4).

(iv) Geometry fitting. At this stage, the detector position

and wavelength are fitted against peak positions and ring

numbers. Any of the parameters can be fixed or let free for

computer programs
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Figure 2
The experiment settings tab is used to load the calibration image, set the
energy, the calibrant and select the detector for the subsequent analysis.
The binning mode of the detector is automatically guessed.

Figure 4
The peak-picking tool automatically selects a group of contiguous local
maxima in the image close to the clicked peak which then needs to be
assigned to the correct calibrant ring number in the right-hand side panel.

Figure 3
The mask-drawing tool is used to exclude pixels using a rectangular,
polygonal or pencil selection. Pixels can also be selected according to
their value (thresholding).



refinement, possibly with boundaries. The (calculated) posi-

tions of the beam centre and the PONI, and the expected

positions of rings are overlaid onto the diffraction image to

visually assess the quality of the fit. The sample, detector and

direct beam can also be visualized in 3D (Fig. 5).

(v) Integration. This tab displays the 1D and 2D integrated

patterns (i.e. powder diffraction profile and caked-image) to

further validate the modelling of the experimental setup

(Fig. 6). The algorithm used for integration, the pixel splitting

scheme and the radial unit can also be changed in this tab.

Diffraction profiles can be saved as text files or images as well

as the experimental setup description file (.poni file) for

subsequent use with other tools from the pyFAI suite.

The online documentation of pyFAI contains a quick

tutorial (Valls & Kieffer, 2019) designed for novice users to

provide them with their scattering geometry in a couple of

minutes. Diffraction images can be provided in HDF5 format

(Collette, 2013) or any of the dozens of file formats supported

by the FabIO library (Knudsen et al., 2013).

5. Calibration of a detector on a moving stage

Calibration of a detector mounted on a translation stage along

the direct beam has successfully been exploited by DAWN

(Filik et al., 2017) and GSAS-II (Horn et al., 2019) to remove

the correlation between the detector distance and the energy

of the beam. While these two software packages offer an

intuitive user interface for those experiments, the modeliza-

tion of the translation stage remains hard-coded. This section

explains how to describe, programmatically, a moving stage in

pyFAI, calibrate the proposed model and use it to perform the

azimuthal integration with many images.

The calibration of the detector position on a fixed goni-

ometer position can be performed with pyFAI as long as

several rings of the chosen calibrant are present in the image

and that five control points can be extracted from one ring and

at least one point from another ring. Of course, more points

provide a better fit but this limit of two visible rings may be

an issue when very small area detectors are used (e.g. the

ImXPAD S10).

5.1. Transformation of geometry

Here, the difficulty is not in the calibration, but rather in

the variety of goniometers and translation stages which may

be controlled by one or multiple motors. The goniometer

description implemented in pyFAI accepts an arbitrary

number of motors attached to the goniometer/translation

stage. Let motors be a list of n motors moved during the

acquisition: (motor1, motor2, . . . , motorn).

Calibration of the goniometer involves defining a model

and optimizing it:

(i) Choose a list of m static parameters for the model which

are used to describe the position of the detector, m being the

number of DoFs of the model: params = (param1, param2, . . . ,

paramm).

(ii) Define the six transformation functions < which trans-

form the motor positions (motors) and goniometer parameters

(params) into the six PONI parameters used to initialize an

azimuthal integrator in pyFAI:

PpyFAI ¼ ðdist; poni1; poni2; rot1; rot2; rot3Þ ¼ <paramsðmotorsÞ:

ð10Þ

(iii) Optimize the parameter set of the goniometer (params)

so that, for any position of the motors, the detector position is

expressed as a PONI-parameters set.

The six PONI parameters returned are then used to

calculate the experimentally observed 2�exp position of the

peaks over all control points. Those 2�exp are compared with

the theoretically expected 2�theo values calculated from the

calibrant d-spacing and the wavelength,

�2� ¼ 2�exp � 2�theo ¼ arctan
rðPpyFAIÞ

dðPpyFAIÞ

� �
� 2 arcsin

�

2d

� 	
:

ð11Þ

The average of the squares of these differences is used as

a cost function to optimize the parameters using the scipy.

optimize.minimize function from SciPy (Jones et al., 2001),
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Figure 5
In the geometry fitting tab, each variable can be fixed or left free for
refinement within a given range. A 3D representation of the experimental
setup allows visualization of the relative position of the sample, direct
beam and detector after fitting.

Figure 6
The cake and integration tab displays the 1D curve and 2D integrated
image with the calibrant ring positions overlaid to allow easy validation of
the quality of the calibration.



CostFunct ¼

P
i2CtlPts

ð�2�iÞ
2

countðCtlPtsÞ
: ð12Þ

From a computer engineering perspective, these transforma-

tion functions present several contradictory challenges: the

user should be able to express any numerical transformation

(flexibilty), but should be prevented from executing any

arbitrary code (security). Moreover, those functions should

be made persistable on disk (i.e. saved) and their restoration

should be possible without having to re-perform the calibra-

tion, nor creating vulnerabilities.

The NumExpr library (Cooke et al., 2009–2017) allows the

evaluation of textual mathematical formulae into numerical

functions, offering an arbitrary number of parameters for

the goniometer definition and as many motors as needed.

NumExpr, being a mathematical compiler, cannot execute

other types of code. The mathematical expressions provided

by the user are simply saved together with the motor names

and parameter names and values in a JSON-format (Crock-

ford, 2017) on the disk.

In the following example, the definition of those functions

is simply the creation of an object from the Geometry-

Transformation class (i.e. instantiation), with a list of motor

names (pos_names), parameter names (param_names), as

well as a set of six formulae, one for each of the six PONI

parameters.

5.2. A simple example: the translation table

At the ESRF, the protein crystallography beamlines use

large area pixel detectors (typically Pilatus 6M from Dectris)

placed on a translation table which allows collection of the

data at the optimal distance: shorter sample-to-detector

distances to explore the region for high-q or longer distances

for better Bragg peak separation.

The MX-calibrate tool from the pyFAI suite is available for

the calibration of many images taken at various distances. This

can also be interpreted in terms of the goniometer setup

(actually a translation stage), where the sample-to-detector

distance is modelled as a simple linear function of the table

position:

In the example above, a six-parameter model was chosen for

the goniometer geometry, most parameters matching exactly

those of pyFAI: poni1, poni2, rot1 and rot2. rot3 is forced to zero

while the distance is defined as a linear function of the motor

position.

The content of this tutorial is available as a Jupyter note-

book (Pérez & Granger, 2007) and forms part of the official

documentation of pyFAI (Kieffer & Flot, 2017); it is directly

visible in a web-browser. In addition, one can replay the

notebook with Jupyter as it is self-consistent: all images are

automatically downloaded and cells can be modified or

adapted. The notebook presents the usage of the geometry

transformation class together with the translation table

refinement. Initially, this set of data was calibrated using the

‘MX-calibrate’ tool which automatically extracts the control

points from images taken at the ESRF ID29 beamline (energy

12.75 keV) from the metadata written in the image headers,

thus a set of control points is available prior to data proces-

sing. The translation table is calibrated using all control points

and this geometry transformation object. As a result, all

images have been integrated azimuthally. Fig. 7 shows the first

two Bragg peaks of CeO2 calibrated using this methodology.

The blue curve corresponds to this initial model refined; the

two peaks look ‘doubled’, indicating a poor modelling of

the geometry.

To address this poor modelling, another transformation

function is defined, with a few additional DoFs on the PONI

position (hypothesis: the translation table is not perfectly

parallel to the incident beam). Once three parameters (dist,

poni1 and poni2) have been re-fitted and all data integrated

with the new model, one obtains the orange curve in Fig. 7. Its

peaks are much sharper and the residual cost is about five

times smaller, indicating a much better fit.

This example shows that the PONI is moving on the

detector plane by 1% horizontally and 4% vertically. This

‘large’ vertical deviation has been confirmed by the beamline

staff and is related to the last focusing mirror placed just

before the sample, causing the beam to deflect away from

the horizontal. Once everything is fitted, the quality of the

geometry obtained is perfectly suited to powder diffraction

experiments for any detector position.
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Figure 7
Powder diffraction profile obtained from seven images acquired at
various distances from 15 cm to 45 cm. The translation table position is
combined with six (resp. eight) parameters model-fitted, where dist (resp.
dist, poni1 and poni2) depends linearly on the table position.



In this example, all motor positions used for calibration

were within the accessible range, hence positions have been

interpolated. The next example will validate that extrapola-

tion outside the calibration range is also possible.

5.3. A more realistic example: the single-axis goniometer

Probably the main application of this work is to place a

small area detector on a goniometer 2� arm in replacement

of a punctual detector (e.g. diode) for powder diffraction

measurements. The initial idea was to use a small region of

interest (ROI) in the centre of an area detector, and check

whether it was possible to rebuild a powder diffraction pattern

when moving the detector at various goniometer angles. This

ROI has to be of limited size in the dimension orthogonal to

the ring and as extended as possible in the tangential direction,

with the limit of the curvature of the ring (especially at low 2�
angles). We considered an ROI 10 pixels wide within a Pilatus

100k (487 pixels � 195 pixels) which means using only 2% of

the total width of the detector (different lines being used for

different bins). By using the full detector area, the signal/noise

ratio could be improved by a factor of seven [(487/10)1/2] if the

movement of the detector on the goniometer is perfectly

predictable and reproducible.

When the detector arm is moving in the vertical plane

(around an horizontal axis), a simple geometry transformation

is defined with rot2 (in radians) as a linear transformation of

the motor position (pos is the default motor name), here

measured in degrees by the goniometer. The scale parameter,

scale = �/180, is used to convert angular units. The other

parameters dist, poni1, poni2 and rot1 are directly mapped to

pyFAI’s parameters. As done previously, rot3 is kept fixed

at zero:

This example is also available in a Jupyter notebook (Kieffer &

Hennig, 2017) and the workflow used is depicted in Fig. 8. This

experiment has been performed using a single-module Pilatus

(100k) detector which is mounted on a 2� arm, moving from 5�

to 65� in 0.5� steps on the ROBL beamline (Kvashnina &

Scheinost, 2016), ESRF BM20. In this experiment, 121

diffraction images of LaB6 reference compound material were

acquired. Due to the small size of the detector, some of the

images present no rings at all (especially at low 2� angles),

most have only one ring and only a few images display two

rings. Even if those images are technically suitable for static

detector calibration, they still present a challenge due to the

large diffraction angles (2� > 30�), the low curvature of the

rings and the difficulty in assigning the picked peaks with the

proper calibrant ring number.

Four images have been manually calibrated, fixing the

vertical rotation axis of the detector (rot1 = 0) to guarantee

some consistency between the calibrations.

An initial simple model with a set of parameters where rot2

is equal to the goniometer angle has first led to convergence

with some constraints and bounds. In a second step, 20 images

in the vicinity of the first set were added to the model, their

peaks extracted according to the initial model and the model

refined using the control points from the 20 images. Then, all

other images were added to the model, and additional control

points were automatically extracted from all images according

to the previous geometry model. Finally, all constraints and

bounds were removed, and the model was refined again and

used to generate a MultiGeometry object, which is suitable for

integrating many images together. After integration of all 121

images, the powder diffraction pattern displayed in Fig. 9 is

obtained (orange curve). All peaks of the curve appear at the

correct scattering angle but the first few peaks look exceed-

ingly broad.

This broadening is confirmed by looking at the first ring’s

image, where the goniometer angle was set to 10� (Fig. 10).

The expected position of the ring (dashed red line) does not

properly correspond to the actual ring (yellow on the image).

The control points extracted and used in the fitting are plotted

in blue.

The fitting procedure averaged the rot1 value (rotation

around the vertical axis) over all images, but Fig. 10, which is

taken on the first ring, suggests this value is slightly wrong. The

images of the last rings (visible in the notebook) indicate a

computer programs
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Figure 8
Workflow used to calibrate a set of 121 images collected with a Pilatus
100k mounted on a moving 2� arm and detailed in the Jupyter Notebook
given by Kieffer & Hennig (2017).



small offset but in the other direction. The fact that both shifts

are small suggests to use a first-order correction on rot1. A new

model was tested where both the rot1 and rot2 values are

scaled with the motor position. After refinement, the cost

function dropped by a factor two and the low-angle peaks

became sharp (blue curve in Fig. 9).

This parameter set was saved and allowed a few other

compounds to be analysed and compared with the same

pattern recorded with the Pilatus being considered as a point

detector. The signal/noise ratio was found to be much better

with an acquisition time 24 times faster (10 min instead of 4 h).

The average peak resolution full width at half-maximum

FWHM = 0.02� obtained on LaB6 (see notebook) is a factor of

ten worse than the highest achieved resolution with secondary

monochromator on insertion devices (Dejoie et al., 2018), but

such an experiment requires 24 h acquisition.

A third example of goniometer calibration is available in

the work by Kieffer & Blanc (2017). It corresponds to the

calibration of an ImXPAD detector (Boudet et al., 2003)

composed of eight stripes of seven modules, many of which are

defective. This detector is mounted on the goniometer arm at

the D2AM beamline (Ferrer et al., 1998), ESRF BM02. This

example is conceptually the same as that from the ROBL

beamline, with a few differences: (i) all images are fitted

directly with eight DoFs; (ii) the detector is larger, hence the

calculation time is longer, especially when it comes to ring

extraction; (iii) the mask needs some extra care to remove a

few hot pixels; the detector is mounted, rotated by 90� on the

arm, thus rot3 = �/2.

This generic method has even been extended to strip

detectors like the Mythen detector manufactured by Dectris

as shown in the tutorial on the calibration of the array of nine

Mythen detectors (Kieffer & Picca, 2018) mounted on the

goniometer arm of beamline Cristal at Synchrotron Soleil.

6. Outlook

The goniometer description in this work can be adapted to

many types of goniometers. The transformation function class

presented in this manuscript may be extended in the future to

use libhkl (Picca, 2010–2016), which already contains many

diffractometer geometries with their associated rotation

matrices.

Different generations of pixel detectors have seen their

pixel sizes shrinking: from 172 mm for Pilatus, 130 mm for

ImXPAD, 75 mm for Eiger and 55 mm for Medipix-based chips,

and probably even less for future-generation detectors dedi-

cated to coherent diffraction imaging. As the resolution of the

powder diffraction pattern obtained is often limited by the

pixel size (and the sample-to-detector distance), this shrinkage

of pixel sizes naturally leads to higher quality powder

diffraction patterns. Unfortunately, to keep the covered 2�
range constant, one would need to multiply the number of

pixels by the square of the pixel size reduction factor, and

the associated infrastructure for read-out and data transfer

accordingly. Moving the detector offers a flexibility which

removes this limitation but makes the experiment slightly

slower – though still suitable for in situ experiments.

7. Conclusions

The new graphical user interface of pyFAI has been developed

to ease the calibration of an experimental setup with static

detectors, especially for novice users. The concept of calibra-

tion of the detector position has been extended to fit the

detector position as a function of the motion of a goniometer.

Once a few fixed positions of the goniometer have been cali-

brated, a model can be optimized and the detector position

can be extrapolated at any goniometer configuration. By

acquiring multiple images at various positions, these images

can be integrated together to produce a high-q powder

diffraction pattern of quality equivalent to that acquired with

a much larger detector, opening up new opportunities for

computer programs
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Figure 9
Powder diffraction pattern obtained from 121 Pilatus 100k images
acquired at goniometer angles ranging from 5� to 65� on an LaB6
reference sample at 16 keV. The insert is a close-up view of the first peak
showing the sharpness of the signal depending on the model. The orange
curve corresponds to the simple model where rot2 depends linearly on the
goniometer angle (six DoFs). The blue curve corresponds to an advanced
model where both rotations (rot1 and rot2) depend linearly on the
goniometer angle (seven DoFs).

Figure 10
Diffraction image taken with the goniometer arm at 10�. The control
points are in blue and the expected ring of the simple model [rot2 =
f (pos)] is the dashed red line. This highlights the need for rot1 to depend
on the goniometer position.



in situ experiments and PDF measurements on most

synchrotron diffraction beamlines.
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