
research papers

386 https://doi.org/10.1107/S1600577519016345 J. Synchrotron Rad. (2020). 27, 386–395

Received 2 October 2019

Accepted 3 December 2019

Edited by S. M. Heald, Argonne National

Laboratory, USA

‡ Currently affiliated to Physikalisch-Technische

Bundesanstalt, Berlin, Germany.

Keywords: X-ray standing wave;

grazing-incidence X-ray fluorescence;

periodic nano-structures.

A semi-analytical approach for the characterization
of ordered 3D nanostructures using grazing-
incidence X-ray fluorescence

K. V. Nikolaev,a*‡ V. Soltwisch,b P. Hönicke,b F. Scholze,b J. de la Rie,a
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Following the recent demonstration of grazing-incidence X-ray fluorescence

(GIXRF)-based characterization of the 3D atomic distribution of different

elements and dimensional parameters of periodic nanoscale structures, this

work presents a new computational scheme for the simulation of the angular-

dependent fluorescence intensities from such periodic 2D and 3D nanoscale

structures. The computational scheme is based on the dynamical diffraction

theory in many-beam approximation, which allows a semi-analytical solution

to the Sherman equation to be derived in a linear-algebraic form. The

computational scheme has been used to analyze recently published GIXRF data

measured on 2D Si3N4 lamellar gratings, as well as on periodically structured

3D Cr nanopillars. Both the dimensional and structural parameters of these

nanostructures have been reconstructed by fitting numerical simulations to the

experimental GIXRF data. Obtained results show good agreement with nominal

parameters used in the manufacturing of the structures, as well as with

reconstructed parameters based on the previously published finite-element-

method simulations, in the case of the Si3N4 grating.

1. Introduction

Achievements in the field of science and technology related to

the manufacturing of nanoscale devices are usually associated

with the systematic decrease of the characteristic sizes of the

structures within such devices. Such a decrease in character-

istic sizes can lead to a strong performance dependency on

minor variations in the device structure, its geometry and the

elemental composition of different elements inside the struc-

ture. Prominent examples of such nanoscale device structures

can be found in the microelectronics industry (Markov,

2014; Buitrago et al., 2016). Understanding and improving

the performance of such devices therefore requires the use

of nanometrology techniques which, at best, are capable of

reconstructing the geometry of the structure and the three-

dimensional (3D) atomic concentration distributions of

different elements. Such element-selective analysis can be

performed using grazing-incidence X-ray fluorescence

(GIXRF) (Soltwisch et al., 2018; Andrle et al., 2019). GIXRF is

based on the X-ray standing wave (XSW) which is excited due

to the interference between incident and reflected radiation.

Its position- and angle-dependent amplitude can substantially

modulate the GIXRF intensities of an element depending on

its location within the nanostructure. By varying the angle

of incidence and/or incident photon energy, the location of

the XSW field nodes and anti-nodes can be varied inside

the nanostructure. Consequently, the emission of fluorescence
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radiation depends on the incident angle and the incident

photon energy, as well as on the spatial distribution of the

fluorescent atoms.

Measurement procedures and data analysis for one-

dimensional (1D) depth distributions of fluorescent atoms

have been well developed (Bedzyk et al., 1989; Jörg & Kazi-

mirov, 2013) and implemented for the study of epitaxial layers

(Kröger et al., 2011), multilayers (Yakunin et al., 2014),

Langmuir–Blodgett films (Bedzyk et al., 1989; Novikova et al.,

2003) and shallow ion implant profiles (Hönicke et al., 2010),

among others. However, if nanoscale devices, e.g. light-trap-

ping structures in solar cells (Kröger et al., 2011), field emitter

arrays (Fletcher et al., 2013) and nanorods (Malerba et al.,

2015), are to be characterized, the calculation of the XSW is

more complex. The depth atomic distribution profiles of such

structures can still be analyzed in the framework of the

conventional 1D XSW method with use of the effective layer

approximation (Kennedy et al., 1999). In this approximation,

the atomic concentration distribution is averaged along the

lateral directions. But this approach does not take into account

the diffraction on the lateral structure of the sample and is

therefore only applicable in the case of randomly distributed

objects. Inherently, the information about lateral distribution

is lost within the effective layer approach, and the effective

atomic concentration profile can never fully explain the

properties of such 2D or 3D devices.

In recent works (Soltwisch et al., 2018; Dialameh et al.,

2018), the sensitivity of GIXRF to the lateral distribution of

atomic concentration in 2D and 3D structures of periodically

arranged gratings and nanocolumns has been experimentally

demonstrated. To achieve such sensitivity, a new experimental

scheme has been employed, where measurements are carried

out under different grazing-incidence and azimuthal-orienta-

tion angles. The incidence angle is typically varied within the

range from zero to about 3�c where the critical angle �c is

calculated for the bulk material. This procures formation of

the standing wave in the structured layer. Variation of the

azimuthal angle changes the distribution of XSW also in the

lateral direction. The optical matrix method (Gibaud & Hazra,

2000) used for the analysis in conventional XSW (Yakunin et

al., 2014) does not allow analysis of the lateral distribution of

the XSW.

This problem of GIXRF data analysis for well ordered

structures has been addressed by Soltwisch et al. (2018), where

the 2D structure of a lamellar Si3N4 grating has been analyzed.

The experimentally measured GIXRF curves were analyzed

by solving Maxwell’s equations by means of a finite-element

method (FEM) (Pomplun et al., 2007). However, applicability

of FEM is limited due to its high demand in computational

effort. It quickly increases with the increase of the incident

photon energy, the size and the dimensionality of the struc-

ture. The FEM simulations for the experiments on the 3D Cr

nanocolumns published by Dialameh et al. (2018) for instance

are practically unrealisable.

Thus, in this study we provide an alternative approach for

the calculation of the XSW field intensities within regular

nanostructures by deriving semi-analytic equations based on

the dynamical diffraction theory. We derive the solution of

the Sherman equation (Sherman, 1955; Hönicke et al., 2010)

for the GIXRF intensity induced by XSW in the 3D periodic

structure in linear-algebraic form. In order to test the new

computational scheme, we perform numerical simulations for

the same 2D lamellar grating as published by Soltwisch et al.

(2018) and compare them with the results of FEM simulations

and measurements. The semi-analytical nature of the derived

equations allowed us to strongly reduce the computational

effort, and to perform analysis of GIXRF also from a 3D

nanostructured surface for the first time using the experi-

mental data previously published by Dialameh et al. (2018).

2. Theory

In Sections 2.1–2.3 we consider the theoretical background of

the dynamical diffraction theory in the many-beam approx-

imation (Mikulı́k & Baumbach, 1999) [in the literature also

referred to as the rigorous coupled-wave analysis (Chateau &

Hugonin, 1994)]. In Section 2.5 we derive the solution of

the Shermann equation in linear-algebraic form, which will

further allow us to calculate GIXRF intensities of 2D and

3D structures.

2.1. Many-beam dynamical diffraction theory

The experimental geometry used by Dialameh et al. (2018)

and Soltwisch et al. (2018) for the GIXRF measurements is

shown in Fig. 1(a). An X-ray beam impinges onto a sample

surface under the grazing-incidence angle � and azimuthal

angle �. The excited fluorescence emission is measured using

an energy-dispersive silicon drift detector D. To simulate the

fluorescence intensity from the sample, the near-field (NF)

distribution within the nanostructure must be calculated. The

problem of the NF calculation is formulated by the Helmholtz

equation,

�þ k 2
0

� �
EðrÞ ¼ �k 2

0�ðrÞEðrÞ: ð1Þ

Here, for simplicity we consider the Helmholtz equation in a

scalar approximation, as the effect of polarization is negligible

in grazing-incidence geometry in the X-ray spectral range;

EðrÞ is the electric field, the sample structure is represented by

the dielectric susceptibility function �(r) and k0 = 2�/� is the

wavenumber of the incident beam with wavelength �. The

Helmholtz equation can be solved using the FEM, kinematical

diffraction theory or dynamical diffraction theory. With FEM

being computationally challenging, and kinematical theory

not sufficiently precise under grazing-incidence conditions

(Mikulı́k & Baumbach, 1999), we further consider the dyna-

mical diffraction theory. Furthermore, to take into account

the lateral structure of the sample one needs to consider the

dynamical diffraction theory in the many-beam approximation

(MBDDT).

In the dynamical diffraction theory, equation (1) is solved

assuming that NF is represented as a Bloch wave,
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EðrÞ ¼
X

h

EhðzÞ exp ikhk � r
� �

; ð2Þ

and the structure is represented as the Fourier series,

�ðrÞ ¼
X

h

�h expðih � rÞ; ð3Þ

where �h is the Fourier component,

�h ¼
1

�

ZZ
�ðx; yÞ exp �i h � rð Þ dS: ð4Þ

Here, integration is taken over the unit-cell area � for the

corresponding reciprocal space vector,

hx;y ¼
2�nx;y

Dx;y

ex;y; ð5Þ

with nx, y the order of the diffraction index and Dx, y the

periods along x or y directions. The parallel component of

the wavevector of the hth diffraction order khk = k0k þ h is

translationally invariant along the z direction; i.e. khk is

constant across all medias in a layered system for given h,

while the vertical component is generally different in each

medium and defined with the spherical dispersion equation,

q2
hz ¼ k 2

0 1þ �0ð Þ � k 2
hk: ð6Þ

This equation is derived assuming that diffraction scattering is

an elastic process: kh = (1 + �0)k0 and assuming translational

invariance of khk mentioned above. Finally, substituting

equations (2), (3) and (6) into (1), considering a property

of the Fourier components, i.e. �g expðih � rÞ= �g�h, results in a

system of inhomogeneous linear ordinary differential equa-

tions (ODEs) of second-order,

q2
hz EhðzÞ þ

d2

dz2
EhðzÞ þ k 2

0

X
g 6¼ h

EgðzÞ�g�h ¼ 0: ð7Þ

The general solution of such a system of ODEs is a linear

combination of particular solutions of corresponding homo-

geneous ODEs, where the nth particular solution has the form

of a standing wave with amplitudes Tn and Rn. Thus, the hth

solution of equation (7) has the form

EhðzÞ ¼
X

n

Tn exp �iknzz
� �

þ Rn exp iknzz
� �� �

Ehn; ð8Þ

with linear combination coefficients Ehn. Therefore, the

distribution of the NF is defined with equations (2) and (8).

Thus, the problem of NF calculation is reduced to finding kn, z,

Ehn, Tn and Rn.

2.2. Characteristic equation

In this section we discuss the calculation of kn, z and Ehn.

Variable kn, z has a physical meaning as the vertical component

of the wavevector [see equation (8)]. It defines the phase of

the standing wave in the structured layer. One can assume that

kn, z is defined with spherical dispersion kz = qz; however,

under that assumption equation (7) has no solutions. There-

fore, values of kn, z deviate from spherical dispersion. To

calculate the precise value of kn, z in the structured layer one

can substitute equation (8) into (7). The result is represented

as the eigenvalues–eigenvectors problem,

A� k 2
znI

� �
En ¼ 0; ð9Þ

where k 2
zn is an eigenvalue of matrix A and En is an eigen-

vector composed of the coefficients Ehn from equation (8):

En = ð. . . E�1;n;E0;n;E1;n . . .ÞT ; A is of the form

A ¼ k 2
0 C� X: ð10Þ

Matrix C is the Toeplitz circulant matrix,

C ¼

. .
.

�0 ��1 ��2

�1 �0 ��1

�2 �1 �0

. .
.

26666664

37777775; ð11Þ

and X is the diagonal matrix with diagonal

ð. . .� k2
�1;k;�k2

0;k;�k2
1;k . . .Þ. Circulant matrices have a

remarkable property: with increasing circulant matrix size,

their eigenvalues asymptotically approach the exact values for

an infinite matrix (Gray, 2006). Therefore, one can use a finite

amount of Fourier components in equation (3) to approximate

the exact solution of equation (7). Consider a set of 2N+1

Fourier components f��N; ��Nþ1; . . . ; �0; . . .�N�1; �Ng. These
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Figure 1
(a) Sketch of the experimental geometry of GIXRF. D: energy-dispersive silicon drift detector; �: angle of incidence; k0: wave vector of the incident
beam. (b) Sketch of a 2D structure (grating: periodic in x direction, finite depth in z direction), with the azimuthal rotation angle �. (c) Sketch of a 3D
periodic structure (nanocolumns: periodic in x and y directions, finite depth in z direction).



Fourier components constitute a circulant matrix C of size

C 2 C M�M, where M = N + 1. Solving the characteristic

equation (9) will give M eigenvalue–eigenvector pairs.

2.3. Boundary conditions

In this section we calculate the transmission Tn and reflec-

tion Rn amplitudes. Consider a sample as a stratified medium,

consisting of layers. Tn and Rn are calculated in each layer

using continuity conditions of the electric field and its first

derivative. The continuity conditions (Born & Wolf, 2013) for

the jth and ( j + 1)th pair of layers can be written in a matrix

form,

P ð jÞ
T ð jÞ

R ð jÞ

� �
¼ P ð jþ1ÞQ ð jþ1Þ T ð jþ1Þ

R ð jþ1Þ

� �
: ð12Þ

Here T and R are vectors composed of amplitudes Tn and Rn,

T ¼ T�N=2;T�N=2þ1; . . . ;T0; . . . TN=2�1;TN=2

� �T
: ð13Þ

Equation (12) links amplitudes T ( j), R( j) at the interface

between the ( j � 1)th and the jth layer, and amplitudes T ( j+1),

R( j+1) at the interface between the jth and the (j + 1)th layer.

Matrix P is the refraction matrix. For a structured layer it has

the form

P ¼
E E

�Ekz Ekz

� �
; ð14Þ

and for a homogeneous layer

P ¼
I I

�kz kz

� �
: ð15Þ

Here, the matrix E is composed of columns of eigenvectors

and matrix kz is a diagonal matrix filled with kz, n. Refraction

matrix P is a 2 � 2 block matrix, thus P 2 C 2M�2M. Finally Q is

the propagation matrix,

Q ¼
Qþ 0

0 Q�

� �
; ð16Þ

where Q� are diagonal matrices with corresponding diagonals

. . . exp �ik�h;zdj

� �
; exp �ik0;zdj

� �
; exp �ikh;zdj

� �
. . .

� �
; ð17Þ

where dj is the thickness of jth layer. Although these equations

can be used to calculate Tj and Ri, solving equation (12) might

be problematic due to the poorly conditioned transmission

matrix in the case of a sufficiently large thickness of the sample

and/or in the case of a sufficiently high number of Fourier

components used in the calculation.

2.4. Numerical stability

The problem of numerical stability in the matrix formalism

of dynamical diffraction theory was considered by Stepanov et

al. (1998). There the problem of numerical stability has been

solved for the dynamical diffraction theory in a two-beam

approximation (only ��1, �0 and �1 have been taken into

account). It has been solved by dividing matrices into 2 � 2

block matrices and solving equation (12) separately for each

block matrix by using recurrent formula. Although the

recurrent matrix equations of Stepanov et al. (1998) were

derived for the two-beam case, they are generally applicable to

the many-beam case. For brevity, we present these equations

explicitly written for a three-layer system (see Fig. 2), which is

relevant to the experimental data we will consider further.

The continuity conditions for such a three-layer structure

(vacuum – structured layer – substrate) are represented by the

system of linear equations

T ðvÞ

RðvÞ

" #
¼ PðvÞ
� ��1

PðgÞQðgÞ
T ðgÞ

RðgÞ

" #
;

T ðgÞ

RðgÞ

" #
¼ PðgÞ
� ��1

PðsÞ
T ðsÞ

RðsÞ

" #
:

ð18Þ

One can rewrite that system as follows,

T ðgÞ

RðvÞ

" #
¼ Mvg T ðvÞ

RðgÞ

" #
;

T ðsÞ

RðgÞ

" #
¼ Mgs T ðgÞ

RðsÞ

" #
:

ð19Þ

Here matrix M has the form of a block matrix,

M ¼
Q�V�1

11 �Q�V�1
11 V12Q�

V21V�1
11 V22Q� � V21V�1

11 V12Q�

� �
; ð20Þ

where Vij is a matrix element of 2 � 2 block matrix V(vg, gs) =

(P(v, g))�1P(g, s). Note that this equation does not include Qþ

whose elements are growing exponentially with respect to

the thickness of the structured layer. Hence this matrix is

numerically stable. Amplitudes T ðvÞ represent the incident

beam, therefore

T ðvÞ ¼ ð. . . 0; 1; 0 . . .ÞT : ð21Þ

Additionally, for a sufficiently thick substrate we can assume

RðsÞ ¼ ð. . . 0; 0; 0 . . .ÞT : ð22Þ

Taking into account these considerations, we derive equations

for amplitudes in the structured layer,
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Figure 2
Sketch of the three-layer model. Arrows schematically depict the
direction of propagation of the plane waves. Amplitudes of the plane
waves are assembled into T and R vectors. eTT and eRR are amplitudes
defined at the upper interface of the layer. T and R are defined at the
bottom interface of the layer.



RðgÞ ¼ I�M
ðgsÞ
21 M

ðvgÞ
12

� 	�1

M
ðgsÞ
21 M

ðvgÞ
11 T ðvÞ ð23Þ

and

T ðgÞ ¼ I�M
ðvgÞ
12 M

ðgsÞ
21

� 	�1

M
ðvgÞ
11 T ðvÞ: ð24Þ

These amplitudes are calculated at the interface between the

structured layer and the substrate (see Fig. 2). One can

calculate amplitudes at the vacuum-structured layer interface

using eTTðgÞeRRðgÞ
� �

¼ PðgÞ
� ��1

PðvÞ
T ðvÞ

RðvÞ

� �
: ð25Þ

Finally, we need to rewrite equation (8),

EhðzÞ ¼
X

n

eTTn exp �iknzz
� �

þ Rn exp iknz½zþ d�
� �h i

Ehn:

ð26Þ

Here, both exponents decrease with respect to the depth,

providing numerical stability.

2.5. X-ray fluorescence intensity

The fluorescence intensity Y can be calculated using the

Sherman equation (Sherman, 1955), adapted for GIXRF

(Hönicke et al., 2010),

Y / Gð�Þ

Z Z Z 

EðrÞ

2pðrÞ expð���zÞ dr; ð27Þ

where pðrÞ describes the density distribution of fluorescent

atoms in the structure, and G(�) is the geometrical factor

(Beckhoff, 2008; Li et al., 2012; Lubeck et al., 2013). The

integral is taken over the area of the elementary cell. The

exponential term expð���zÞ in equation (27) takes into

account the self-absorption of emitted fluorescent photons.

Here, � is the absorption coefficient and � is the effective

density of the absorbing media. The integral in equation (27)

can be separated as follows [further, for brevity we do not

explicitly write the multiplicative term G(�)],

Y /
X
g;h

ZZ
pðrkÞ exp i kgk � k	hk

� �
� r

� �
dx dy

�
X
m;n

Z
Tm exp �ikmzz

� �
þ Rm exp ikmzz

� �� �
� T 	n exp ik 	nzz

� �
þ R 	n exp �ik 	nzd

� �� �
� EgmE 	hn expð���zÞ dz: ð28Þ

Such an integral separation imposes a restriction on the

numeric density function: it must not be dependent on the z

coordinate, p(r)
 p(r�k); i.e. equation (28) can only be used in

cases when fluorescent atoms are distributed homogeneously

along the z direction. Distribution in the xy-plane can be

arbitrary. In the case of an inhomogeneous vertical distribu-

tion, one can discretize the structure along the z direction

as a stack of sublayers and calculate equation (28) for each

sublayer.

Equation (27) was rewritten in the form of equation (28),

so it can be conveniently represented in a linear algebraic

language. The fluorescence intensity can be expressed as the

sum of matrix elements Y /
P

g;h Fgh of the matrix,

F ¼ U � EWEH
� �

: ð29Þ

Here � represents an element-wise (Hadamard) multiplication

and H represents a Hermitian transpose. Elements of matrix

U have the form

�hg 


ZDx=2

�Dx=2

dx

ZDy=2

�Dy=2

dy pðrkÞ exp i kgk � k	hk
� �

� r
� �

; ð30Þ

and elements of matrix W have the form

�mn 
 TmT 	n Uð�kzm þ k 	znÞ þ TmR 	n Uð�kzm � k	znÞ

þ RmT 	n Uðkzm þ k 	znÞ þ RmR 	n Uðkzm � k 	znÞ; ð31Þ

where

UðqÞ 


Z0

�d

expðiqzÞ expð���zÞ dz: ð32Þ

The U matrix takes into account the distribution of fluorescent

atoms and the electric field distribution in the lateral direction

and the U matrix takes into account photon absorption and

the electric field distribution in the vertical direction. Equation

(29) allows the integral in equation (27) to be calculated

analytically, which is much more computationally efficient

compared with the numerical integration.

3. Numerical simulations

3.1. 2D structure: Si3N4 lamellar grating

Here, we consider a 2D lamellar Si3N4 grating prepared

using electron beam lithography. The original study with

experimental data and numerical simulation of GIXRF

intensity by means of FEM has been published by Soltwisch et

al. (2018). The grating has a nominal period of Dx = 100 nm,

the thickness of the structured layer is d = 90 nm and the line

width is 40 nm.

The GIXRF measurements were carried out at the plane-

grating monochromator (PGM) beamline (Senf et al., 1998)

for undulator radiation at the PTB laboratory (Beckhoff et al.,

2009) of the BESSY II electron storage ring.

An incident photon energy of 520 eV was used. The PGM

monochromator provides an energy resolution of 	E/E <

5 � 10�4 in this energy range. The GIXRF intensities were

obtained for the N-K� fluorescence emission under various

incidence angles � and azimuthal sample orientation angles �
[see Fig. 1(b)]; � = 0� corresponds to the conical orientation

(Goray et al., 2018) of the sample grating. The recorded

spectra from the silicon drift detector were deconvoluted

using detector response functions in order to isolate the

fluorescence signal from N-K� from other spectral contribu-

tions. Further corrections, to take into account the detection
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efficiency and the geometrical factor (effective solid angle),

were applied [see Soltwisch et al. (2018) for further details].

Best-fit simulations obtained by a sequential least-squares

optimization algorithm and experimental GIXRF data are

shown in Fig. 3 for various azimuthal orientation angles �. For

the simulation we use a simple box model in which the grating

lines are treated as an array of boxes on top of the substrate

[see Fig. 1(b)]. Thus, the medium is divided into three areas:

the vacuum, the structured layer in which the boxes are

located, and the substrate. Within the box model, the sidewalls

of the grating lines are considered to be parallel while the

actual grating has a sidewall tilt angle. Based on the recon-

struction of Soltwisch et al. (2018), this angle is not greater

than 
 = 4�. In terms of the model it means that the Fourier

transform in equation (3) is changing along the z axis. To

compensate for that in the simulations, within the one-layer

model averaged Fourier components have been used, i.e.

h�hi ¼ �h expð�h2�2=2Þ, with � defined as half the projection

of the sidewall on the x axis: � 
 d arctan ð
Þ=2. The best-fit

line width (defined as the half-height width) is Dl = 39 nm and

the best-fit sidewall tilt angle is 
 = 5�.

Another feature of the actual sample that must be consid-

ered in the simulations is the effect of oxidation of surface

and line edges. It affects the actual structure such that the

concentration of fluorescent N atoms at the top part and at

the line edges is strongly reduced. In the one-layer model,

oxidation of the surface can be effectively incorporated by

changing the integration limits in equation (32), such that the

integration in equation (32) is taken only over a range where

fluorescent atoms are present.

The best agreement with the experimental data was

obtained with an effective surface layer thickness of dt =

3.3 nm at the top of the lines. The best fit suggests that N is not

diluted at the line edges, since the reconstructed parameter of

the effective edge thickness of the edges is ds = 0 nm. We note

that this value ds is correlated with � used in averaging of the

Fourier components, and thus may not be representative.

Also, note that these values only describes surface effects in

terms of the absence of fluorescent N atoms, ignoring the

gradual change in stoichiometry throughout the surface and

the edges. It also neglects the change of optical properties of

the structure due to oxidation. Best-fit parameter of the

grating height, excluding the effective surface layer, is d =

88.7 nm. The average density of the line is �Si3N4
= 2.8 g cm�3

and the density of the substrate is �Si = 2.22 g cm�3.

The best-fit model and experimental data are qualitatively

in good agreement. Qualitative agreement is also apparent on

the GIXRF intensity (�, �) maps shown in Fig. 4. A full set of

48 experimental GIXRF curves taken along different azimu-

thal angles � (from 0� to 2�) was interpolated on a (�, �) grid
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Figure 3
N-K� GIXRF intensity, measured for various azimuthal orientation
angles: (a) � = 0� – conical, (b) � = 0.2�, (c) � = 1� and (d) � = 3�. Red
lines: numerical simulation; gray markers: experimental values.

Figure 4
Comparison between the experimental GIXRF N-K� map (a) of the Si3N4 lamelar grating measured with the incidence photon energy E = 520 eV and
the simulated GIXRF map (b) based on a best fit model. (c) Resonant lines in GIXRF map for Si3N4 grating structure, caused by interference between
the reflected beam and the mth order of diffraction.



[see Fig. 4(a)]. The theoretical GIXRF map was calculated on

the same (�, �) grid using best-fit parameters from the data

presented in Fig. 4.

One can note a distinctive feature on the GIXRF map –

resonant lines, which are visible both on the experimental data

in Fig. 4(a) and in the numerical simulations [see Fig. 4(b)]. As

a visual aid to notice these lines one can refer to the sketch

in Fig. 4(c). In Fig. 4(c) the position of the resonant lines is

marked with black contour lines.

We assume that these lines are due to the interference

between the reflected beam (zeroth order of diffraction) and

a diffracted beam (mth order of diffraction). Therefore, the

resonant lines must satisfy the Laue condition, which for this

geometry can be formulated as k 2
x þ k 2

z = ðkx þ hÞ
2. This

formula geometrically corresponds to the Ewald sphere. For

convenience we rewrite this equation in terms of the incidence

and azimuthal angle,

sin� ¼
sin2 �� �2

2� cos �
; ð33Þ

where � = �m/Dx . The contour lines in Fig. 4(c) were calcu-

lated using this equation. Note that the resonant lines depend

only on the lateral period of the structure Dx and the wave-

length � [see equation (33)] – no other geometrical parameters

are involved. Due to their explicit dependence on only the

period of the structure, such lines might be used in the analysis

of experimental data as a reference, to determine the lateral

period of the structure, without needing a full structure

reconstruction through model simulations. This equation can

also be used to determine the angular range of interest for

the measurement as the most interesting areas to probe are

around these lines.

3.2. 3D structure: Cr nanocolumns

In this section we consider a periodic 3D nanocolumnar

structure of Cr, manufactured using electron beam litho-

graphy (Altissimo, 2010) on top of a SiO2 substrate. The

structure of the sample is a regular square grid of box-shaped

columns [see Fig. 1(c)] on a substrate, with 300 nm � 300 nm

lateral box dimensions and a Dx = Dy = 1 mm grid. The

nominal height of the nanocolumns is d = 25 nm.

GIXRF measurements were carried out at the four crystal

monochromator (FCM) beamline (Krumrey & Ulm, 2001) in

the PTB laboratory (Senf et al., 1998) of the BESSY II storage

ring and reported by Dialameh et al. (2018). The incident

photon energy was set to E = 7 keV with an energy resolution

of 	E/E < 5 � 10�4. Numerical simulations are carried out

similarly to those in Section 3.1. The GIXRF experimental

data and the best-fit obtained from dynamical diffraction

theory simulations are shown in Fig. 5 for a selection of

azimuthal angles.

Best-fit model parameters are: lateral period of the struc-

ture Dx = Dy = 1 mm, matching the same nominal values;

lateral sizes of the nanocolumns are 300 nm � 300 nm,

nanocolumn height d = 24 nm. The best-fit model suggests that

there is no surface oxidation, dt = 0 nm; however, the effective

thickness of the sidewalls is ds = 1.3 nm. The density of the

nanocolumn material is equal to the nominal Cr density

�Cr ’ 7.2g cm�3, while the substrate density is �SiO2
=

2.4 g cm�3. Considering the large lateral period Dx = Dy =

1 mm (significantly larger than that of the Si3N4 lamellar

grating structure), the sidewalls tilt is negligible, therefore

� = 0 nm, i.e. the best-fit model for the nanocolumn structure

implies perfectly parallel sidewalls h�hi 
 �h. The experi-

mental GIXRF curves in Fig. 5 are in good agreement with

numerical simulations.

It is important to note that in the case of grazing-incidence

geometry the GIXRF curves calculated for the 3D structure

could also be approximated with the use of an effective 2D

model, albeit with reduced density. This is because in the

grazing-incidence geometry the momentum transfer |ky| �

|kx|. In other words, measurements in grazing-incidence

geometry are sensitive to the lower frequencies of the Fourier

transform of the structure along the x direction and to the

higher frequencies along the y direction, while the spacing

between nodes in reciprocal space along the kx and ky direc-

tions are identical due to the symmetry Dx = Dy of the periodic

structure.

Thus, GIXRF curves of Cr nanocolumns can be effectively

represented in a first approach as a lamellar Cr grating with
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Figure 5
Cr-K� GIXRF intensity curves, measured for various azimuthal
orientation angles (� = 0� corresponds to the conical orientation). Red
lines: numerical simulation; gray markers: experimental data.



reduced density equal to the averaged density of the actual 3D

structure. However, a direct comparison between 3D and 2D

simulations (Fig. 6) reveals some differences. For higher inci-

dent angles above the critical angle of total external reflection,

the 2D model (dashed blue line in Fig. 6) yields a monotonous

angular dependence, while the experimental GIXRF curve

clearly exhibits oscillatory behaviour in that angular range,

with a maximum at � ’ 1.5�. In Fig. 6, curves are shown only

for � = 0�, but this oscillation in the range of higher incidence

angles � is present in all experimental curves measured at

different azimuthal orientations of the sample (see Fig. 5). We

attribute this oscillation to interference due to the periodicity

of the structure along the y direction, which becomes more

important at higher incident angles since the value of |ky|

decreases with increasing incidence angle � and the

measurement becomes more sensitive to the lower frequencies

of the Fourier transform along the y direction. Such inter-

ference mode is not taken into account in the 2D simulations.

Additionally, the 3D simulations show resonant peaks at � ’
1.15� and � ’ 1.54� which are not resolved in experimental

data. To observe these peaks, measurements with step sizes of

	� = 0.01� should be resolved, which is experimentally feasible,

as the resolution limit of modern synchrotron sample stage

equipment is on the level of 0.001�.

4. Discussion

In Table 1 we compare the structure

parameters of the 2D lamellar Si3N4

grating, as reconstructed using the

MBDDT simulations described in

Section 2.5, with the nominal para-

meters used in fabrication of the

grating. The results of of the MBDDT

reconstruction are in good agreement

with the nominal values.

To further validate the computational

scheme described in Section 2.5, FEM

simulations have also been performed.

The FEM simulations were performed using the JCMwave

software (Pomplun et al., 2007) for a box model based on the

best-fit parameters in Table 1. JCMwave is a rigorous Maxwell

solver, which enables field simulations in structures of arbi-

trary shape. For the calculation of the finite-element solution,

the computational domain is meshed into patches where a

number of polynomial ansatz functions are defined. The finite-

element side constraint of 4 nm and a polynomial degree of 4

have been used in the simulations and the GIXRF fluores-

cence intensities were calculated from electric fields as

described by Soltwisch et al. (2018). A direct comparison of

the MBDDT and the FEM simulations is shown in Fig. 7. The

GIXRF maps are symmetrical with respect to an axis at � = 0�.

In Fig. 7(a) the map on the left is thus showing the MBDDT

result, whereas that on the right shows the FEM result. Both

simulation results are visually identical. In addition, the rela-

tive discrepancy is shown in Fig. 7(b). Here, the relative

discrepancy is defined as

"ij ¼
Y
ðfÞ

ij � Y
ðmÞ

ij




 



max Y

ðfÞ
ij ;Y

ðmÞ
ij

n o ; ð34Þ

where Y
ðf;mÞ

ij are the GIXRF intensities calculated in each

(�i, �j) point using the FEM and MBDDT methods, respec-

tively.

The absolute maximum of the relative discrepancy is 2.4%

and the discrepancies are generally higher for the low inci-

dence angles. It should be noted that the precision of the FEM
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Figure 6
Comparison of effective 2D and genuine 3D simulations of GIXRF Cr-
K� curve for 3D Cr nanocolumns structure in conical geometry (� = 0�).

Table 1
Comparison of the 2D structure parameters of the Si3N4 lamellar grating
as reconstructed by MBDDT with nominal parameters.

Nominal Simulation

Period Dx (nm) 100 100
Line height d (nm) 87 88.7
Line width (nm) 40 39
Effective surface thickness dt (nm) – 3.3
Effective edge thickness ds (nm) – 0
Sidewalls tilt (�) – 4
Line density �Si3N4

(g cm�3) 3.2 2.8
Substrate density �Si (g cm�3) 2.33 2.22

Figure 7
(a) Comparison of GIXRF maps as simulated by MBDDT (left-hand side) and FEM (right-hand
side) approaches. (b) Relative discrepancy.



calculation in this angular range may be limited due to the

exponential decay of the evanescent waves. In general, the

relative discrepancy is on a level of 1% for 80% of the points,

proving the validity of the MBDDT approach for such GIXRF

simulations.

An unambiguous comparison of the computational effi-

ciency of FEM and MBDDT cannot be performed directly,

since it depends on many factors such as photon energy,

period of structure, numerical accuracy, and dimensionality of

the problem. For the particular simulation shown in Fig. 7, the

calculation time for one point of the GIXRF map on one CPU

is on the level of 10 s for FEM and 0.01 s for MBDDT. Both

MBDDT and FEM computations were performed on an

NUMA computer with 160 CPUs [Intel(R) Xeon(R) CPU E7-

4870 v2 @ 2.30 GHz]. Thus, a calculation of the GIXRF map of

200 � 100 size on this setup takes approximately 20 min and

2 s for FEM and MBDDT, respectively.

In Table 2 we compare the MBDDT-derived structure

parameters of the Cr nanocolumns with their nominal para-

meters. A good agreement is obtained, especially since for the

current case only a simple box model is used for the numerical

simulations to describe the distribution of fluorescent atoms

in the structure.

With the MBDDT approach, it is also possible to take into

account a structure with tilted sidewalls and surface oxidation.

The model of the structure would needed to be discretized

along the z direction, e.g. according to Pisarenco et al. (2016).

The sample can be approximated as a stack of homogeneous

and/or structured layers, where each layer can have arbitrary

structure parameters with the exception of the period, which

must be maintained throughout the whole stack.

The main benefit in applications of the 3D XSW technique

to the characterization of nanostructures is its sensitivity to the

spatial distribution of the fluorescent atoms within the struc-

ture. Although the examples considered in this work exhibited

a homogeneous lateral distribution of N and Cr within the

grating line and nanocolumn, we can still demonstrate this

sensitivity by performing simple calculations.

We use the same model for the Si3N4 lamellar grating as

already shown earlier, but now we assume to have dopant

atoms localized in a confined volume within the structure

as shown in Figs. 8(a)–8(c) instead of being homogeneously

distributed, as assumed in Section 3.1. The specific localization

of the dopant atoms is depicted by green boxes and the

resulting simulated GIXRF maps for the calculated fluores-

cence signal of the dopant atoms are shown. It can be

observed that the corresponding GIXRF maps are highly

sensitive to this variation. For an asymmetric distribution of

fluorescent atoms, Fig. 8(c), an asymmetry is also observed in

the GIXRF maps. One may exploit such asymmetry, e.g. to

distinguish chemical compositions of the left and right sidewall

of the grating line. This may be useful in, for example, the

characterization of gratings fabricated with multi-patterning

(Weber et al., 2012) techniques.

5. Conclusions

A new computational scheme based on the dynamical

diffraction theory has been developed and applied for the

analysis of GIXRF experiments on 2D and 3D periodic

nanostructures. It is capable of simulating GIXRF data from

structures with specific element distributions both in-plane as

well as in-depth. The computational scheme has been vali-

dated with a Maxwell solver based on the finite-element

method and benchmarked on GIXRF experimental data

obtained from Si3N4 2D lamellar gratings and Cr 3D nano-

columns. The reconstructed geometrical parameters of the

lamellar grating derived from the elemental distribution are

in good agreement with nominal values, as well as with para-

meters obtained from a previous study performed using a

finite-element method. Furthermore, the parameters of the
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Table 2
Comparison of the 3D structure parameters of the Cr nanocolumns as
reconstructed by MBDDT with nominal parameters.

Nominal Simulation

Period Dx, y (mm) 1 1
Column height d (nm) 25 24
Column width (nm) 300 300
Effective surface thickness dt (nm) – 0
Effective edge thickness ds (nm) – 1.3
Column density �Cr (g cm�3) 7.19 7.2
Substrate density �SiO2

(g cm�3) 2.65 2.4

Figure 8
Simulation of GIXRF maps for inhomogeneous distribution of
fluorescent atoms within the lamellar grating structure. From (a) to (c):
sketch of the structure; the green box depicts the localization of the
dopant atoms. From (a0) to (c0): corresponding GIXRF maps.



elemental distribution in the Cr 3D nanocolumns were

reconstructed for the first time. A reconstruction of the

geometrical parameters of this structure by means of FEM is

practically impossible due to the required higher excitation

photon energy, the larger period of the structures (and thus

larger computational cell) and the 3D dimensionality of the

sample. The obtained results of this reconstruction are in good

agreement with the nominal parameters. Finally, we conclude

that the MBDDT computational scheme can be used in

conjunction with the GIXRF experimental technique as a

powerful tool in element-selective nanometrology for 2D and

3D periodic structures.
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