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In transmission X-ray microscopy (TXM) systems, the rotation of a scanned

sample might be restricted to a limited angular range to avoid collision with

other system parts or high attenuation at certain tilting angles. Image

reconstruction from such limited angle data suffers from artifacts because

of missing data. In this work, deep learning is applied to limited angle

reconstruction in TXMs for the first time. With the challenge to obtain sufficient

real data for training, training a deep neural network from synthetic data is

investigated. In particular, U-Net, the state-of-the-art neural network in

biomedical imaging, is trained from synthetic ellipsoid data and multi-category

data to reduce artifacts in filtered back-projection (FBP) reconstruction images.

The proposed method is evaluated on synthetic data and real scanned chlorella

data in 100� limited angle tomography. For synthetic test data, U-Net

significantly reduces the root-mean-square error (RMSE) from

2.55 � 10�3 mm�1 in the FBP reconstruction to 1.21 � 10�3 mm�1 in the

U-Net reconstruction and also improves the structural similarity (SSIM) index

from 0.625 to 0.920. With penalized weighted least-square denoising of

measured projections, the RMSE and SSIM are further improved to

1.16 � 10�3 mm�1 and 0.932, respectively. For real test data, the proposed

method remarkably improves the 3D visualization of the subcellular structures

in the chlorella cell, which indicates its important value for nanoscale imaging in

biology, nanoscience and materials science.

1. Introduction

Transmission X-ray microscopy (TXM) has become a very

powerful technology for nanoscale imaging in various fields

(Wang et al., 2000, 2016; Chao et al., 2005; Sakdinawat &

Attwood, 2010), including materials science (Andrews et al.,

2011; Nelson et al., 2012), chemistry (de Smit et al., 2008; Wang

et al., 2015a) and biology (Shapiro et al., 2005; Wang et al.,

2015b). With projection images acquired in a series of rota-

tional angles, tomographic images can be reconstructed

according to computed tomography (CT) technologies for 3D

visualization of scanned samples. In such applications, TXM is

also called X-ray nano-CT (Shearing et al., 2011; Brisard et al.,

2012; Liu et al., 2018). A TXM system typically consists of a

central stop, a condenser, a sample holder, an objective zone

plate and a CCD detector, with X-rays generated from

synchrotron radiation or a high-end X-ray source. TXMs

typically utilize a pin as the sample holder (Holler et al., 2017),

e.g. tip versions for pillar samples, glass capillaries for powder

samples, copper capillaries for high-pressure cryogenic

samples and grids for flat samples. For tips and capillaries,
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rotating a sample in a sufficient angular range is not a

problem. However, for grids, collision between the grid and

the zone plate, which is very near to the rotation axis in TXM

systems, might happen at large scan angles. In addition, for flat

samples, the lengths of X-rays through the sample increase

rapidly at high tilting angles (Barnard et al., 1992; Koster et al.,

1997), which introduces a high level of scattering and reduces

image contrast. Therefore, in these situations, the problem of

limited angle tomography arises.

Limited angle tomography is a severely ill-posed inverse

problem (Davison, 1983; Louis, 1986; Natterer, 1986; Quinto,

2006). Using microlocal analysis, edges that are tangent to

available X-rays can be well reconstructed while those whose

singularities are not perpendicular to any X-ray lines cannot

be reconstructed stably (Quinto, 1993, 2006). So far, many

algorithms have been developed to deal with this task. Among

these algorithms, extrapolating missing data is the most

straightforward way for limited angle tomography. The itera-

tive Gerchberg–Papoulis extrapolation algorithm (Gerchberg,

1974; Papoulis, 1975) based on band-limitation properties

of imaged objects has been demonstrated beneficial for

improving image quality of limited angle tomography (Defrise

& de Mol, 1983; Qu et al., 2008; Qu & Jiang, 2009; Huang et

al., 2018b). In addition, data-consistency conditions, e.g. the

Helgason–Ludwig consistency conditions (Helgason, 1965;

Ludwig, 1966), provide redundancy and constraint informa-

tion of projection data, which effectively improves the quality

of extrapolation (Louis & Törnig, 1980; Louis, 1981; Prince

& Willsky, 1990; Kudo & Saito, 1991; Huang et al., 2017).

Nevertheless, such extrapolation methods have only achieved

limited performance on real data, which typically contain

complex structures and are very difficult to extrapolate.

Iterative reconstruction using sparse regularization tech-

nologies, particularly total variation (TV), has been widely

applied to image reconstruction from insufficient data. TV

methods employ the sparsity information of image gradients

as a regularization term. Therefore, noise and artifacts, which

tend to increase the TV value, can be reduced via such

regularization. For limited angle tomography, algorithms of

adaptive steepest descent projection onto convex sets (ASD-

POCS) (Sidky et al., 2006; Sidky & Pan, 2008), improved total

variation (iTV) (Ritschl et al., 2011), anisotropic total varia-

tion (aTV) (Chen et al., 2013), reweighted total variation

(wTV) (Huang et al., 2016a, 2016b) and scale-space aniso-

tropic total variation (ssaTV) (Huang et al., 2018a) have been

proposed. While TV methods achieve good reconstruction

results when the missing angular range is small, they fail to

reduce severe artifacts when a large angular range is missing.

Moreover, they also require expensive computation and tend

to lose high-resolution details.

Recently, machine-learning techniques have achieved

overwhelming success in a large range of fields including X-ray

imaging. In the application of limited angle tomography, pixel-

by-pixel artifact prediction using traditional machine learning

is one direction (Huang et al., 2019a). However, new artifacts

might be introduced. Instead, deep-learning methods have

achieved impressive results. Würfl et al. (2016, 2018) proposed

to learn certain weights based on known filtered back-

projection (FBP) operators (Maier et al., 2019) to compensate

missing data in limited angle tomography. Gu & Ye (2017)

proposed to learn artifacts from streaky images in a multi-

scale wavelet domain using the U-Net architecture (Ronne-

berger et al., 2015; Falk et al., 2019). Bubba et al. (2019) utilized

an iterative shearlet transform algorithm to reconstruct visible

singularities of an imaged object and a U-Net based neural

network with dense blocks to predict invisible singularities. In

our previous work, we have demonstrated that deep learning

is not robust to noise and adversarial examples (Huang et al.,

2018c). To improve image quality, a data consistent recon-

struction method (Huang et al., 2019b) is proposed, where

deep-learning reconstruction is used as prior to provide

information of missing data while conventional iterative

reconstruction is applied to make deep-learning reconstruc-

tion consistent to measured projection data.

In this work, deep learning is applied to limited angle

reconstruction in the field of TXMs for the first time, to the

best of our knowledge. Furthermore, training data is vital for

deep-learning methods. Without access to real training data, in

this work we will investigate the performance of deep learning

trained from synthetic data.

2. Materials and method

The proposed limited angle reconstruction method for TXMs

consists of two steps: FBP preliminary reconstruction and

deep-learning reconstruction as post-processing.

2.1. FBP preliminary reconstruction

For TXM systems with synchrotron radiation, parallel-beam

X-rays are used. Each X-ray measures a line integral of the

linear attenuation coefficients of a scanned sample, repre-

sented as

pðu; v; �Þ ¼

ZZ Z1

�1

f ðx; y; zÞ

� �ðx cos � þ y sin � � u; z� vÞ dx dy dz; ð1Þ

where � is the rotation angle of the sample, the rotation axis is

parallel with the z axis, u and v are the horizontal and vertical

position indices at the detector, respectively, p(u, v, �) is the

log-transformed projection, f(x, y, z) is the attenuation

distribution function of the sample, and �(�) is the Dirac delta

function.

In practice, noise always exists in measured projections

because of various physical effects, e.g. Poisson noise. Since

deep-learning methods are sensitive to noise (Huang et al.,

2018c), noise reduction in input images is preferred. For this

purpose, a penalized weighted least-square (PWLS) approach

is utilized in projection domain. The objective function for

PWLS is as follows (Wang et al., 2006),

�ð pÞ ¼ ð p̂p� pÞ
>��1

ð p̂p� pÞ þ � � Rð pÞ; ð2Þ
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where p is the vector of the ideal log-transformed projection,

p̂p is the vector of the measured log-transformed projection

containing noise, pi is the ith element of p, � is a diagonal

matrix with the ith element equal to an estimate of the

variance of p̂pi, R(p) is a regularization term and � is a

relaxation parameter. The regularization term R(p) is chosen

as

Rð pÞ ¼
1

2

X
i

X
j2N i

wi;jð pi � pjÞ
2; ð3Þ

where N i is the four-connectivity neighborhood of the ith

pixel and the weight wi, j is defined as

wi;j ¼ exp½�ð pi � pjÞ
2=�2�; ð4Þ

with � a predefined parameter to control the weight.

The denoised projection is denoted by p0(u, v, �). For image

reconstruction, the FBP algorithm with the Ram–Lak kernel

h(u) is applied,

f FBP;PWLSðx; y; zÞjz¼v ¼

Z�max

�min

Z1

�1

p0ðu; v; �Þ

� hðx cos � þ y sin � � uÞ du d�; ð5Þ

where �min and �max are the start rotation angle and the end

rotation angle, respectively, and fFBP, PWLS is the FBP recon-

struction from PWLS processed projection data. We further

denote the FBP reconstruction from measured projection data

without PWLS by fFBP, i.e. replacing p0(u, v, �) by p̂pðu; v; �Þ in

the above equation.

2.2. Deep-learning reconstruction

2.2.1. Neural network. The above FBP reconstruction

suffers from artifacts, typically in the form of streaks, because

of missing data in limited angle tomography. To reduce arti-

facts, an image-to-image post-processing deep-learning

method using U-Net is applied.

The U-Net architecture for limited angle tomography is

displayed in Fig. 1. The input and output of the U-Net are both

2D images of the same size. Each blue arrow stands for zero-

padded 3 � 3 convolution followed by a rectified linear unit

(ReLu), a batch normalization (BN) operation, and a squeeze-

and-extraction (SE) block (Hu et al., 2018). Each red arrow

represents a max pooling operation to down-sample feature

maps by a factor of two. Each green arrow is a bilinear up-

sampling operation followed by a 2 � 2 convolution to resize

feature maps back. The gray arrows copy features from the left

side and concatenate them with the corresponding up-sampled

features. The last 1 � 1 convolution operation maps the multi-

channel features to a desired output image. Because of the

down/up-sampling and copy operations, the U-Net archi-

tecture has a large reception field and is able to learn features

of multi-scales.

In this work, the input image is a 2D horizontal slice from

the FBP reconstruction without or with PWLS pre-processing,

i.e. fFBP or fFBP, PWLS , respectively. The output image is the

corresponding artifact image. Hence, a final reconstruction

of the U-Net, denoted by fU-Net or fU-Net, PWLS for the input

image without and with PWLS, respectively, is obtained by

subtracting the input image by its corresponding predicted

artifact image. For stable training, the input and output images

are normalized to the range [�1, 1] using the maximum

intensity value of the input images.

Compared with the original U-Net architecture in the work

by Ronneberger et al. (2015), the following modifications are

made in the above U-Net architecture to improve its perfor-

mance for limited angle tomography.

(i) Zero-padded convolution. In the original U-Net archi-

tecture, unpadded convolution is used and the image size

decreases after each convolution. Hence, information near

image boundaries is missing in the output image. In this work,

the zero-padded convolution is used to preserve image size.

Because of this, the cropping operation is no longer necessary

for each copy operation.

(ii) Batch normalization. The BN operation normalizes

each convolutional layer’s inputs in a mini-batch to a normal

distribution with trained mean shift and variance-scaling

values. The BN technique allows neural networks to use

higher learning rates and be less sensitive to initialization

(Ioffe & Szegedy, 2015). Therefore, it is a standard operation

for convolutional neural networks nowadays.

(iii) Squeeze-and-extraction. The SE block (Hu et al., 2018)

squeezes global spatial information into a channel descriptor

by first using global average pooling. Afterwards, channel-wise

dependencies are captured by a nonlinear excitation

mechanism, which emphasizes multi-channel activations

instead of single-channel activation. The SE technique adap-

tively recalibrates channel-wise feature responses to boost the

representation power of a neural network.

(iv) Resize and 2 � 2 convolution. The original U-Net

architecture uses a deconvolution operation for up-sampling,

which introduces checkerboard artifacts (Odena et al., 2016).

To avoid this, we first choose to resize each feature map using

bilinear up-sampling with a scaling

factor of two. Afterwards, a 2 � 2

convolution operation is applied.

(v) Output and loss function. The

original U-Net is proposed for

biomedical image segmentation,

where the number of segmentation

classes decides the channel number of

the output image and each channel is

a binary vector containing elements of
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Figure 1
The U-Net architecture for limited angle tomography.



0 or 1. For segmentation, a softmax function is typically used

to determine the highest probability class. Associated with the

softmax activation in the output layer, the cross entropy loss

function is typically used for training. As mentioned

previously, the output image is a one-channel 2D artifact

image in this work. Therefore, the result of the 1 � 1 convo-

lution is directly used as the output without any softmax

function. Correspondingly, an ‘2 loss function is used for

training.

2.2.2. Data preparation. In order to reconstruct a sample

from limited angle data using deep learning, training data is

vital. However, on the one hand it is very challenging to obtain

a sufficient amount of real data; on the other hand, for most

scans only limited angle data are acquired and hence recon-

struction from complete data as ground truth is not available.

Because of the scarcity of real data, we choose to train the

neural network from synthetic data. For this purpose, two

kinds of synthetic data are generated.

(i) Ellipsoid phantoms. 3D ellipsoid phantoms are designed

with two large ellipsoids to form an outer boundary, two

middle-sized ellipsoids to simulate the cup-shaped chloroplast,

20 small ellipsoids to mimic lipid bodies, and 50 high-intensity

small-sized ellipsoids to simulate gold nanoparticles which are

contained in the sample for geometry and motion calibration

(Wang et al., 2019). The locations, sizes and intensities of the

ellipsoids are randomly generated. Since many samples are

immobilized in a certain condition, e.g. in an ice tube in this

work, a background with a constant intensity of 0.002 mm�1

is added.

(ii) Multi-category data. For a certain parallel-beam limited

angle tomography system, no matter what kinds of objects are

imaged, the projections and the FBP reconstructions should

follow the mathematics in equations (1) and (5). In addition,

based on the theories of transfer learning (Pan & Yang, 2010)

and one/zero-shot learning (Li et al., 2006; Palatucci et al.,

2009), a neural network trained for one task can also gener-

alize to another similar task. Therefore, in this work, images of

multi-categories are collected to train the neural network

for complex structures, for example, optical microscopy algae

images and medical CT images. Note that although TXMs data

for chlorella cells, the test sample in this work, are not

accessible, data of algae cells in other imaging modalities,

especially in optical microscopies, are abundant. Images in

other modalities also share plenty of useful structure infor-

mation as TXMs do.

2.3. Experimental setup

2.3.1. Synthetic data. For deep-learning training, 10 ellip-

soid phantoms with a size of 512 � 512 � 512 are generated.

From each 3D phantom, 20 slices are uniformly selected. From

the multi-category data, 400 image slices are collected. Color

images are converted to gray intensity images. The above

images are further rotated by 90, 180 and 270�. Therefore,

2400 image slices in total are synthesized for training.

Parallel-beam sinograms are simulated from rotation angles

�50� to 50� with an angular step of 1�, as displayed in Fig. 2.

The detector size is 512 with a pixel size of 21.9 nm. To

improve the robustness of the neural network to noise,

Poisson noise is simulated considering a photon number of

104, 5.0 � 104 or 105 for each X-ray before attenuation. Here,

multiple dose levels are used to improve the robustness of the

neural network to different levels of noise. For training, 1200

preliminary image slices with a size of 256 � 256 are recon-

structed by FBP using the Ram–Lak kernel directly from noisy

projection data for the 600 original slices and their 90� rota-

tions, while the other 1200 slices are reconstructed from

projection data processed by two iterations of PWLS. To

obtain the diagonal matrix � in equation (2), the variance of

each detector pixel p̂pi is estimated by the following formula

(Wang et al., 2006),

�2
i ¼ ai � exp ð p̂pi=�Þ; ð6Þ

where ai is set to 0.5 for each pixel i and � is set to 1. The value

of � in equation (4) is set to 2.

The U-Net is trained on the above synthetic data using the

Adam optimizer for 500 epochs. The learning rate is 10�3 for

the first 100 epochs and gradually decreases to 10�5 for the

final epochs. The ‘2-regularization with a parameter of 10�4 is

applied to avoid large network weights.

For a preliminary quantitative evaluation, the trained

U-Net model is evaluated on one new synthetic ellipsoid

phantom first. Its limited angle projection data are generated

with Poisson noise using a photon number of 104. The

projections are denoised by two iterations of PWLS.

2.3.2. Chlorella data. As a demonstration example, a

sample of chlorella cells was scanned in a soft X-ray micro-

scope at beamline BL07W (Liu et al., 2018) in the National

Synchrotron Radiation Laboratory in Hefei, China. Chlorella

is a genus of single-celled green algae with a size of 2 to 10 mm.

It mainly consists of a single- to triple-layered cell wall, a thin

plasma membrane, a nucleus, a cup-shaped chloroplast, a

pyrenoid and several lipid bodies, as illustrated in Fig. 3

(Baudelet et al., 2017).

To hold the chlorella sample, a traditional 100 mesh trans-

mission electron microscopy (TEM) grid was used. Because of

the TEM grid, a valid scan of 100� only (�50� to 50� in Fig. 2

with an angular step of 1�) was acquired to avoid collision

between the grid and the zone plate. Rapid freezing of the

chlorella sample with liquid nitrogen was performed before

scanning to immobilize the cells in an ice tube and suppress

the damage of radiation to cellular structures. The X-ray
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Figure 2
The scanned angular range of the TXM system is from �50� to 50�.



energy used in the experiment was 520 eV for the so-called

‘water window’. Each projection image is rebinned to a size of

512 � 512 with a pixel size of 21.9 nm � 21.9 nm. As the shift

of rotation axis (Yang et al., 2015) and jitter motion (Yu et al.,

2018) are two main causes of image blurriness, they were

solved via measurement of geometric moments after acquisi-

tion, as described in the work by Wang et al. (2019). The

projections are denoised by two iterations of PWLS after-

wards.

3. Results and discussion

3.1. Ellipsoid phantom results

The reconstruction results without and with PWLS for the

250th slice of the test ellipsoid phantom using a photon

number of 104 are displayed in Fig. 4.

The root-mean-square error (RMSE)

inside the field-of-view (FOV) of each

image slice with respect to the corre-

sponding reference slice is displayed in

the subcaption. In Figs. 4(b)–4(e), the

outer ring is caused by the lateral

truncation and it is preserved to mark

the FOV.

The FBP reconstruction from 100�

limited angle data without PWLS

pre-processing, fFBP, is displayed in

Fig. 4(b). Compared with the reference

image fReference , only the structures

with an orientation inside the scanned

angular range (Fig. 2) are recon-

structed while all other structures are

severely distorted. In addition, the

Poisson noise pattern is clearly

observed because of the low dose. In

contrast, Poisson noise is prominently

reduced by PWLS in fFBP, PWLS , as

displayed in Fig. 4(c). The U-Net

reconstruction with the input of fFBP

is displayed in Fig. 4(d), where most

ellipsoid boundaries are restored well.

The RMSE inside the FOV is reduced from 3.61 � 10�3 mm�1

in fFBP to 1.65 � 10�3 mm�1 in fU-Net . This demonstrates the

efficacy of deep learning in artifact reduction for limited angle

tomography. However, some Poisson noise remains in

Fig. 4(d). In particular, the boundary indicated by the red

arrow is disconnected in fU-Net . The U-Net reconstruction with

the input of fFBP, PWLS is displayed in Fig. 4(e), achieving the

smallest RMSE value of 1.58 � 10�3 mm�1. Importantly, the

disconnected boundary fragment indicated by the red arrow is

reconstructed in fU-Net, PWLS . This demonstrates the benefit of

PWLS pre-processing.

The average RMSE and structural similarity (SSIM) index

of all slices in the FBP and U-Net reconstructions without and

with PWLS for the test ellipsoid phantom are displayed in

Table 1. The U-Net reduces the average RMSE value from

2.55 � 10�3 mm�1 in fFBP to 1.21 � 10�3 mm�1 in fU-Net .

With PWLS, the average RMSE is further reduced to

1.16 � 10�3 mm�1 in fU-Net, PWLS . Consistently, fU-Net, PWLS

achieves a larger SSIM index than fU-Net . This quantitative

evaluation also demonstrates the efficacy of the U-Net in

limited angle tomography and the benefit of PWLS pre-

processing.
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Figure 3
The main structures of a chlorella cell (Baudelet et al., 2017).

Figure 4
The reconstruction results of the 215th slice in the test ellipsoid phantom without and with PWLS
using a photon number of 104, window [0, 0.02] mm�1. The boundary indicated by the red arrow is
disconnected in fU-Net , while it is reconstructed in fU-Net, PWLS . The RMSE of each image with respect
to the corresponding reference with the unit 10�3 mm�1 is as follows: (a) fReference ; (b) fFBP, 3.61;
(c) fFBP, PWLS , 3.45; (d) fU-Net , 1.65; and (e) fU-Net, PWLS , 1.58.

Table 1
The average RMSE and SSIM values for each reconstruction method
using a photon number of 104 without or with PWLS.

Metric fFBP fFBP, PWLS fU-Net fU-Net, PWLS

RMSE (10�3 mm�1) 2.55 2.44 1.21 1.16
SSIM 0.625 0.648 0.920 0.932



3.2. Chlorella results

To demonstrate the benefit of PWLS for the chlorella data,

horizontal slices are reconstructed by FBP from the chlorella

projection data without or with PWLS processing. A 3D

volume is obtained by stacking the horizontal slices. Sagittal

slices are obtained by reslicing the volume into 256 slices in

the sagittal view. The sagittal slices from projections without

and with PWLS are denoted by fsag, FBP and fsag, FBP, PWLS ,

respectively. The results of the 103rd slice are displayed in

Fig. 5. Fig. 5(a) shows that the subcellular structures of cell

wall, chloroplast, lipid bodies, nucleus and pyrenoid are

reconstructed. However, because of noise, the nucleus

membrane is barely seen, which is indicated by the red solid

arrow. In contrast, with PWLS, the nucleus membrane is

observed better, as indicated by the red solid arrow in

Fig. 5(b). Moreover, the textures in the cup-shaped chlor-

oplast are also observed better in Fig. 5(b) than those in

Fig. 5(a). For example, the pyrenoid membrane inside the

chloroplast is well observed, as indicated by the blue hollow

arrow in Fig. 5(b). These observations demonstrate the benefit

of PWLS.

The reconstruction results of two horizontal example slices

are displayed in Fig. 6. Figs. 6(a) and 6(b) are FBP recon-

struction images of the 213th slice without and with PWLS,

respectively, where many subcellular structures of the chlor-

ella, e.g. the cell wall, chloroplast and lipid bodies, are severely

distorted. Compared with Fig. 6(a), Fig. 6(b) contains less

noise because of PWLS pre-processing. Their corresponding

deep-learning results, fU-Net and fU-Net, PWLS , are displayed in

Figs. 6(c) and 6(d), respectively. The cell walls are restored and

the chloroplasts exhibit a good ‘C’ shape in both images.

In addition, the lipid bodies and the gold nanoparticles are

well observed. These observations demonstrate the efficacy

of deep learning for limited angle tomography on real data.

Moreover, the lipid bodies indicated by the arrows in Fig. 6(d)

are separated better than those in Fig. 6(c), which highlights

the benefit of PWLS pre-processing for deep-learning recon-

struction.

For the reconstruction results of the 331st slice displayed in

the bottom row, the U-Net is also able to reconstruct the cell

wall, the chloroplast and lipid bodies. With PWLS, fU-Net, PWLS

in Fig. 6(h) contains less noise than fU-Net in Fig. 6(g),

consistently demonstrating the benefit of PWLS.

For image-quality quantification, the intensity profiles of a

line in the FBP and U-Net reconstructions without and with
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Figure 6
The reconstruction results of two horizontal slices for the chlorella data, window: [0.003, 0.015] mm�1. The top row is for the 213th slice while the bottom
row is for the 331st slice. The red line in (a) indicates the position of intensity profiles in Fig. 7. (a) fFBP, (b) fFBP, PWLS , (c) fU-Net , (d) fU-Net, PWLS , (e) fFBP,
( f ) fFBP, PWLS , (g) fU-Net and (h) fU-Net, PWLS .

Figure 5
The 103rd slice from the sagittal view reconstructed from projections
without and with PWLS pre-processing. The nucleus membrane in (a) and
(b) is indicated by the red solid arrow. The pyrenoid membrane is
indicated by the blue hollow arrow. Window: [0, 0.015] mm�1. (a) fsag, FBP

and (b) fsag, FBP, PWLS .



PWLS are displayed in Fig. 7. The position of the line is

indicated in Fig. 6(a). In Fig. 7(a), the line profiles of fFBP and

fFBP, PWLS are displayed. For both profiles, in the pixels of 0–70

and 180–256, the intensity value increases from the center

outward, which is a characteristic of cupping artifacts and

indicates the existence of data truncation. In the profile of

fFBP, a lot of high-frequency oscillations are observed, while

many of them are mitigated in fFBP, PWLS by PWLS. In

Fig. 7(b), high frequency oscillations are observed in the

profile of fU-Net as well, while the profile of fU-Net, PWLS has

relatively smooth transitions. This demonstrates the benefit of

PWLS in avoiding high-frequency noise in the U-Net recon-

struction.

In the sagittal view, although structures are observed well

for central slices such as the 103rd slice, structures in many

other slices are distorted because of missing data. For

example, the 150th sagittal slice of the FBP reconstruction

fFBP, PWLS is displayed in Fig. 8(a), where the cell wall is

severely distorted. With the proposed U-Net reconstruction

with PWLS pre-processing, the cell wall is restored in an

approximate round shape, as shown in Fig. 8(b).

The volumes reconstructed by FBP and U-Net with PWLS

are rendered by ParaView, an open-source 3D visualization

tool, and displayed in Figs. 9(a) and 9(b), respectively. Fig. 9(a)

shows that the top and bottom parts of the chlorella cell are

missing. In addition, the shapes of lipid bodies are distorted.

Instead, the top and bottom parts are restored by the U-Net

and the lipid body shapes are also restored to round shapes.

Moreover, in the U-Net reconstruction, the lipid bodies indi-

cated by the arrows are observed well while they are barely

seen in the FBP reconstruction. This 3D rendering result

highlights the benefit of U-Net in the 3D visualization of

subcellular structures.
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Figure 7
The intensity profiles of a line in the FBP and U-Net reconstructions
without and with PWLS. The position of the line is indicated in Fig. 6(a).
(a) Line profiles of FBP reconstructions and (b) line profiles of U-Net
reconstructions.

Figure 8
The 150th slices from the sagittal view reconstructed by FBP and U-Net
with PWLS pre-processing. Window: [0, 0.015] mm�1. (a) fsag, PWLS and
(b) fsag, U-Net, PWLS .

Figure 9
The 3D rendering of the volumes reconstructed by FBP and U-Net with
PWLS using the tool of ParaView, which is viewed along the z direction.
The lipids indicated by the arrows are observed well in fU-Net, PWLS while
they are barely seen in fFBP, PWLS . (a) fFBP, PWLS and (b) fU-Net, PWLS .



3.3. Discussion

As a state-of-the-art method, the U-Net achieves significant

improvement in image quality from the FBP reconstructions,

achieving the best average RMSE value in Table 1. However,

in some cases, the structures it predicts are not accurate. For

example, the cell wall is not in a perfect round shape in

Figs. 6(d) and 8(b). This is potentially caused by various

factors such as noise, insufficient training data and over-fitting,

which are ineluctable for deep learning. Because of the co-

existence of the limited-angle problem and data-truncation

problem in this work, where truncation is caused by the large-

scale ice for immobilization of samples, applying iterative

reconstruction such as simultaneous algebraic reconstruction

technique with TV regularization for data consistent recon-

struction (Huang et al., 2019b) to improve such incorrect

structures is not feasible.

In limited angle tomography, only structures whose orien-

tations are tangent to available X-rays can be reconstructed

(Quinto, 1993, 2006, 2007; Huang et al., 2016a). Therefore, in

the FBP reconstructions, most edges whose orientations are

inside the scanned angular range are reconstructed. Because

of this, for the chlorella reconstruction, several slices in the

sagittal view contain good resolution structures. On the other

hand, with the geometry setting in this work, the sagittal slices

are equivalent to focus planes in tomosynthesis (Grant, 1972)

where most X-rays focus. Therefore, structures viewed in

sagittal planes preserve better resolution than any horizontal

planes. However, structures are preserved well only in a

limited number of central slices in the sagittal view, while most

structures are still distorted because of missing data [Fig. 8(a)].

In order to view structures in any intersectional planes, artifact

reduction is necessary.

Due to missing data, many essential subcellular structures

are distorted or even missing in the FBP reconstruction, e.g.

the lipid bodies in this work. The distribution and states of

subcellular structures provide crucial information of intracel-

lular activities (Ortega et al., 2009; Wang et al., 2015a). With

the power of deep learning in image processing, the proposed

reconstruction method is competent for 3D visualization of

subcellular structures, as displayed in Fig. 9. This observation

indicates its important value for nanoscale imaging in biology,

nanoscience and materials science.

4. Conclusions and outlook

In this work, deep learning has been applied to limited angle

reconstruction in TXMs for the first time. PWLS pre-proces-

sing is beneficial to improving the image quality of deep-

learning reconstruction. Despite the limitation to accessing

sufficient real training data, this work demonstrates that

training a deep neural network model from synthetic data with

proper noise modeling is a promising approach. The proposed

deep-learning reconstruction method remarkably improves

the 3D visualization of subcellular structures, indicating its

important value for nanoscale imaging in biology, nanoscience

and materials science.

Although promising and intriguing results are achieved in

this work, the limited angle reconstruction problem is still not

entirely resolved, since some structures are reconstructed

inaccurately. In the future, the following aspects of work are

worth investigating. (i) Evaluate the proposed deep-learning

reconstruction method on more complex samples. (ii) More

realistic noise modeling for synthetic data should potentially

improve deep-learning performance. (iii) Explore new

approaches to achieve data consistent reconstruction (Huang

et al., 2019b) in the co-existence of the limited-angle problem

and data-truncation problem. (iv) If possible, building up a

database from complete real scans for training deep neural

networks is necessary.
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