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Strain tensor measurements are important for understanding elastic and plastic

deformation, but full bulk strain tensor measurement techniques are still

lacking, in particular for dynamic loading. Here, such a methodology is reported,

combining imaging-based strain field mapping and simultaneous X-ray

diffraction for four typical loading modes: one-dimensional strain/stress

compression/tension. Strain field mapping resolves two in-plane principal

strains, and X-ray diffraction analysis yields volumetric strain, and thus the out-

of-plane principal strain. This methodology is validated against direct molecular

dynamics simulations on nanocrystalline tantalum. This methodology can be

implemented with simultaneous X-ray diffraction and digital image correlation

in synchrotron radiation or free-electron laser experiments.

1. Introduction

The strain tensor is vital for characterizing mechanical

properties of materials, understanding elastic and plastic

deformation mechanisms, and developing physics-based

constitutive models (Milathianaki et al., 2013; Allais et al.,

1994; Poulsen et al., 2005; Zhu et al., 2017). However, it is still a

challenge to measure the full bulk strain tensor, especially for

fast or ultrafast dynamic experiments. The development of

advanced X-ray sources such as synchrotron radiation sources

and X-ray free-electron lasers (XFELs) offers the opportunity

to capture in situ dynamic events (Luo et al., 2012; Milathia-

naki et al., 2013; Wehrenberg et al., 2017; Seiboth et al., 2018;

Coleman et al., 2019; Brown et al., 2019; Huang et al., 2016a,b;

Fan et al., 2016; Turneaure et al., 2017; Briggs et al., 2019),

including strain and X-ray diffraction measurements.

High-speed X-ray phase contrast imaging (Lu et al., 2017;

Huang et al., 2016b) is utilized to obtain two-dimensional (2D)

strain fields via digital image correlation (DIC) (Lu et al., 2014,

2016). However, the 2D strain field is only mapped on the

plane perpendicular to the incident X-ray beam (in-plane

strain components), and strains along the incident direction

cannot be resolved. On the other hand, high-speed X-ray

diffraction usually provides lattice strain measurements (Ma et

al., 2017; Zhang et al., 2017; Collins et al., 2015).

Given the 2D nature of in-plane strain field mapping, the

missing bulk strain components have to be obtained via other

means such as X-ray diffraction. X-ray Laue microdiffraction

or Laue DIC (Petit et al., 2015), suitable for up to hundreds of

grains, was applied to measure the local strain tensor, but

these quasi-static techniques can hardly be used for highly

transient events. A recent study (Zhang et al., 2019) demon-

strated that equivalent volumetric strain can be obtained
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under 1D strain loading conditions or planar shock compres-

sion via analysis of 2D diffraction patterns; however, all the

principal strain components cannot be resolved. It is highly

desirable to develop techniques to obtain the full bulk strain

tensor in dynamic experiments.

For bulk strain tensor measurements (in particular under

short time scale dynamic loading), we propose a methodology

combining 2D strain mapping and X-ray analysis of 2D

diffraction patterns: the former resolves two in-plane principal

strains via imaging, and the latter volumetric strain (thus the

out-of-plane principal strain). We validate this methodology

against direct molecular dynamics (MD) simulations on

nanocrystalline tantalum under four typical loading modes.

This methodology can be implemented with simultaneous

X-ray diffraction and DIC in synchrotron radiation or free-

electron laser experiments.

This article is organized as follows. Section 2 addresses the

methodology of simulated experimental geometry, MD simu-

lations, strain field mapping and the Singh analysis of 2D

diffraction patterns; Section 3 presents results and discussion,

validating the strain measurements against direct MD simu-

lations, and Section 4 presents conclusion.

2. Methodology

2.1. Simulated experimental geometry

The simulation geometry for simultaneous diffraction and

imaging measurements is presented in Fig. 1 as in experiments

(Lu et al., 2016). The loading direction is along the x-axis,

while the incident X-ray beam is along the y-axis. We use the

transmission geometry for diffraction simulations. Here a 2D

detector is set perpendicular to the incident X-ray direction

(the normal detector position); for an arbitrary detector

position, a geometrical correction can be applied.

In experiments, the strain field is mapped onto the plane

perpendicular to the incident X-ray beam (the y-axis),

normally done via X-ray DIC with phase contrast imaging (Lu

et al., 2014). Here we obtain strain fields on the xz-plane from

atomic positions in MD trajectories (see below), to mimic

X-ray DIC measurement.

2.2. Molecular dynamics simulations

For MD simulations, we use the large-scale Atomic/Mole-

cular Massively Parallel Simulator (Plimpton, 1995) and a

widely used embedded-atom method (EAM) potential

(Ravelo et al., 2013) for tantalum. This EAM potential is

accurate for describing the properties of tantalum as shown by

numerous shock (Wang et al., 2014; Tang et al., 2018; Hahn et

al., 2017) and nonshock simulations (Remington et al., 2014;

Huang et al., 2017).

We construct a nanocrystalline tantalum configuration with

dimensions of about 200 nm � 40 nm � 40 nm, corresponding

to 17.5 million atoms. This configuration contains about 2500

grains, and the average grain size is about 5 nm. Four loading

modes commonly encountered in experiments are simulated:

compression and tension under 1D strain conditions as in

planar shock compression, and compression and tension under

1D stress conditions as in materials testing systems, referred

to as 1D-strain compression, 1D-strain tension, 1D-stress

compression, and 1D-stress tension, respectively. Prior to

loading, the configuration is relaxed at 0 K, and then annealed

with the constant-pressure–temperature ensemble under 3D

periodic boundary conditions at 300 K and zero pressure

(Wang et al., 2016).

For 1D-strain compression/tension loading, the relaxed

nanocrystalline configuration is compressed/stretched along

the x-axis, and the microcanonical ensemble is used to mimic

adiabatic loading as in shock compression. The dimension

along the x-axis is reduced/increased at a fixed decrement/

increment, corresponding to a strain rate of 109 s�1 (Spearot

et al., 2007; Tschopp & McDowell, 2008). For 1D-stress

compression/tension loading, the configuration dimension

along the x-axis is changed under a constant strain rate of

109 s�1, while the stress-free boundary condition is applied

along the y- and z-axes (Spearot et al., 2007). The temperature

is set at 300 K.

All the loading simulations are conducted under 3D peri-

odic boundary conditions. The time step for integration of the

equation of motion is 1 fs. Physical quantities such as particle

velocity, density, stress, and temperature can be obtained from

trajectories via binning analysis (Luo et al., 2009).

Stress tensor can be decomposed into hydrostatic and

deviatoric stress components as

�xx 0 0

0 �yy 0

0 0 �zz

0
@

1
A ¼ �pIþ

2
3 t 0 0

0 � 1
3 t 0

0 0 � 1
3 t

0
@

1
A;

where I is the identity matrix, �xx� �yy = �zz for homogeneous

isotropic solids, �p = ð1=3Þð�xx þ �yy þ �zzÞ represents the

mean normal stress or so-called equivalent hydrostatic stress,

and t = �xx � ð1=2Þð�yy þ �zzÞ denotes the differential stress.

The bulk strain tensor, "ij (i, j = x, y, z), can be obtained

from the dimension (Li) and shape changes of a whole simu-
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Figure 1
Schematic illustrating simultaneous X-ray imaging (for strain mapping)
and diffraction in the transmission mode. DIC: digital image correlation.
2#: diffraction angle; �: azimuthal angle.



lation cell (Method I). The normal engineering strains are

determined from the dimension changes as

"ii ¼
�Li

Li

with i ¼ x; y; z: ð1Þ

Shear strain components are the change of the angles between

edges of the whole simulation cell, and equal zero for the four

common loading modes investigated in this work.

2.3. Strain field mapping and analysis

For strain field mapping, we take two atomic configurations

from MD simulations, the reference (0 ps; undeformed) and

current configurations (e.g. 80 ps; deformed). For each atom

m, we calculate the atomic strain tensor (Stukowski, 2010) as

"m
ij = ð1=2Þðum

i;j þ um
j;iÞ (i, j = x, y, z). um is the atomic displace-

ment of the mth atom and "m
ij essentially represents the 3D

strain field around this atom.

The average atomic strain tensor for N atoms or bulk strain

tensor follows as

"ij ¼
1

2N

XN

m¼ 1

um
i;j þ um

j;i

� �
: ð2Þ

This method for calculating bulk engineering strain is referred

to as Method II. Then we calculate the volumetric strain ("p)

as follows,

"p ¼ 1þ "xxð Þ 1þ "yy

� �
1þ "zz

� �
� 1: ð3Þ

In experiments, only the 2D engineering strain tensor

(Method III) can be obtained via the projection along an

imaging direction. In addition, the strain tensor is often

expressed in terms of the Green–Lagrange strain tensor [Lu et

al., 2014; Stukowski, 2010]. We thus also calculate the Green–

Lagrange strain for each atom m,

E m
ij ¼

1

2
um

i;j þ um
j;i þ um

k;iu
m
k;j

� �
; ð4Þ

with i, j, k = x, y, z. E m
ij is then projected along the y-axis to

obtain the 2D Green–Lagrange strain field. Note that E m
ij and

"m
ij are equivalent for describing strain field, and can be

converted from one to the other (Lu et al., 2014; Stukowski,

2010).

2.4. X-ray diffraction simulations and analysis

Atomic configurations from MD simulations are used as

input to diffraction calculations with GAPD, a GPU-acceler-

ated Atom-based Polychromatic Diffraction simulation code

(E et al., 2018). The scattered X-ray intensity is calculated in

3D reciprocal space, and then projected onto a 2D detector to

obtain diffraction patterns as in experiments. Diffraction angle

(2#) and azimuthal angle (�) are defined in Fig. 1, and the

loading direction (the x-axis) forms an angle of � with the

normal of a diffracting plane under consideration. � is referred

to as the loading–diffraction geometry angle (Zhang et al.,

2019), and can be varied as desired. There exists the following

relation among �, 2#, and � under simulated geometry,

cos � ¼ cos# cos�: ð5Þ

The X-ray wavelength in our calculations is 0.512 Å

(24.22 keV), the peak intensity wavelength of the undulator

source with a period of 18 mm and a gap of 12 mm at 32ID-B

of the Advanced Photon Source. Simulated 2# ranges from

10� to 30�, and the corresponding range of � is 5�–90�.

From 2D X-ray diffraction patterns, we can deduce the bulk

density under the equivalent hydrostatic pressure (�p) and

residual strength (Singh, 1993; Zhang et al., 2019). The

methodology has been demonstrated to be appropriate for

1D-strain compression including shock compression (Zhang

et al., 2019). The measured lattice spacing, dm(hkl), is related

to � via

dmðhklÞ ¼ dpðhklÞ 1þ 1� 3 cos2 �
� �

QðhklÞ
� �

: ð6Þ

Here, dp(hkl) denotes d-spacing due to �p, and Q(hkl) is

a factor which depends on t and single-crystal elastic

compliances. Since dm = �=ð2 sin#), we obtain a scatter plot of

dm versus ð1� 3 cos2 �Þ, which can then be fitted with equation

(6). More analysis details have been presented elsewhere

(Zhang et al., 2019).

Given dp(hkl) determined from 2D diffraction patterns, we

have "p = [dp(hkl) /d0(hkl)]3
� 1. Since "xx and "zz are eval-

uated from strain field mapping, the unknown tensor

component "yy can be solved with equation (3), and the full

strain tensor, determined by virtue of a combination of 2D

strain field mapping (imaging) and diffraction patterns

(Method IV). Method IV is experimentally feasible for full

strain tensor measurements.

3. Results and discussion

3.1. MD simulations

We explore the four most common loading modes in high-

pressure experiments and mechanical testing: 1D-strain

compression, 1D-strain tension, 1D-stress compression, and

1D-stress tension. The initial configurations are the same for

these loading modes. The stress–strain curves directly

obtained from MD simulations are shown in Fig. 2, including

normal stress (�xx), equivalent hydrostatic stress (�p), and

differential stress (t). As an example, the full strain tensor "ij

and volumetric strain "p at "xx = 8.00%, calculated directly

from the simulation cell dimensions/shapes (Method I), are

presented in Table 1 for the four loading modes.

For 1D-strain compression [Fig. 2(a)], �xx increases to about

71.0 GPa, and �p increases to about 68.0 GPa as bulk loading

strain "xx increases to 20.00%, while t increases to 5.2 GPa at

"xx = 9.00% and then decreases to 4.2 GPa due to yield. �p is

slightly less than �xx. For 1D-strain tension [Fig. 2(b)], as strain

"xx reaches 9.00%, voids nucleate in the sample and tensile

failure occurs. �xx and �p reach their peak values (15.2 GPa

and 12.5 GPa, respectively) at about "xx = 9.50%, while t peaks

at "xx = 8.50% (4.4 GPa).

Different from the 1D-strain compression, �xx in 1D-stress

compression [Fig. 2(c)] reaches a much lower peak value of
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5.1 GPa at "xx = 6.00%, and t is the same as �xx due to the lack

of lateral confinement (stress-free along the y- and z-axes),

and �p = ð1=3Þ�xx. For 1D-stress tension [Fig. 2(d)], �xx and t

reach a peak stress of 5.0 GPa at "xx = 6.00%, and �p =

ð1=3Þ�xx.

3.2. Strain field mapping

3D strain field maps are obtained from two atomic config-

urations (Method II). Since the Green–Lagrange strain field is

measured with X-ray phase contrast imaging in experiments,

we also calculate 2D Green–Lagrange strain field maps via

2D binning along the x- and z-axes of the 3D strain maps. We

select the central regions of about 300 Å � 300 Å for visua-

lization (Fig. 3; bulk strain "xx = 8.00%).

Strain is more localized at grain boundaries than in grain

interiors, and under 1D-stress loading than under 1D-strain

loading (Fig. 3). Strain inhomogeneity and strain at grain

boundaries are higher under tension than under compression

[Figs. 3(b) and 3(d)].

From 3D and 2D strain maps, we can calculate bulk strain

tensor components "ij, and volumetric strain ("p). Methods II

and III yield accurate results compared with Method I

(Table 1). However, "yy and "p cannot be obtained with

Method III, which on the other hand can be obtained from

analysis of 2D X-ray diffraction patterns.

3.3. X-ray diffraction

1D X-ray diffraction profiles are most commonly used to

obtain d-spacing and lattice strain of corresponding diffracting

planes. The {110} lattice strains are calculated from the 1D

diffraction curves for the four loading modes (Fig. 4), and

listed in Table 2.

However, lattice strain is not necessarily equal to bulk

strain; their relation depends on sample microstructure,

diffraction geometry, and stress conditions. For example, for

the same bulk strain "xx = 8.00%, the shift of 2# is much bigger

under 1D-strain loading than that under 1D-stress loading
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Table 1
Bulk strain tensor ("ij) and volumetric strain ("p) for the four loading
modes with "xx = 8.00%.

The off-diagonal values of "ij are zero and thus not shown. Method I: based on
dimension and shape changes of a simulation cell; Method II: based on 3D
strain field mapping; Method III: based on 2D strain mapping; Method IV:
based on 2D strain field mapping combined with analysis of 2D X-ray
diffraction patterns.

Strain (%)

Method I Method II Method III Method IV

1D strain compression
"xx �8.00 �8.08 �8.08 �8.08
"yy 0.00 0.16 – 0.16
"zz 0.00 0.16 0.16 0.16
"p �8.00 �7.79 – �7.79

1D strain tension
"xx 8.00 7.90 7.90 7.90
"yy 0.00 �0.10 – 0.10
"zz 0.00 �0.10 �0.10 �0.10
"p 8.00 7.68 – 7.90

1D stress compression
"xx �8.00 �8.06 �8.06 �8.06
"yy 3.80 3.62 – 4.19
"zz 3.82 3.65 3.65 3.65
"p �0.86 �1.25 – �0.71

1D stress tension
"xx 8.00 7.80 7.80 7.80
"yy �3.28 �3.40 – �2.82
"zz �3.35 �3.46 �3.46 �3.46
"p 0.96 0.53 – 1.14

Figure 2
Bulk stress–strain curves for four representative loading modes: (a) 1D-
strain compression, (b) 1D-strain tension, (c) 1D-stress compression and
(d) 1D-stress tension. For better visualization, the absolute values of
tensile stresses are used for plotting.

Figure 3
Green–Lagrange strain fields of Exx for four deformation modes with bulk
strain component "xx = 8.00%: (a) 1D-strain compression, (b) 1D-strain
tension, (c) 1D-stress compression, and (d) 1D-stress tension. Color
coding is based on Exx.



(Table 2). If we assume hydrostatic deformation, the bulk

volumetric strains ["p = (d/d0)3
� 1] would be �8.70%, 9.94%,

�1.79% and 3.77%, for 1D-strain compression and tension,

and 1D-stress compression and tension, respectively. The

corresponding bulk volumetric strains directly obtained from

MD simulations are considerably different, being �8.00%,

8.00%, �0.86% and 0.96%. Thus, such simplified analyses of

1D diffraction curves are inappropriate.

2D diffraction patterns allow one to extract more infor-

mation with high accuracy on the basis of the Singh theory

(Singh, 1993), including differential stress (or residual

strength) and equivalent hydrostatic strain under nonhydro-

static conditions (Zhang et al., 2019). Fig. 5(a) shows three

major diffraction rings, {110}, {200}, and {112}, for 1D-strain

compression with "xx = 8.00%. The strongest {110} ring is used

for the analysis with the Singh theory, and the results are

shown in Fig. 5(c). We obtain dp = 2.276 Å, and thus the

equivalent hydrostatic volumetric strain is �7.79%. The resi-

dual strength is obtained to be t = 5.34 GPa, with the aggregate

shear modulus G calculated directly

from MD simulations. The corre-

sponding values directly from MD

simulations are "p = �8.00% and t =

5.19 GPa (Table 3), which agree with

the analysis of 2D diffraction patterns.

For other loading modes, the agreement

between direct MD simulations and the

analysis of 2D diffraction patterns

(Table 3) is also reasonable. Thus, the

Singh analysis can be used for obtaining

bulk volumetric strain for different

loading modes.

In certain experiments, it is unfeasible

to obtain full diffraction rings due to

physical constraints. We explore below

whether/how partial diffraction rings

can be used for accurate measurements.

As an example, we select 1/4 of the {110}

diffraction rings (� spans over 0–45� and

315�–360�) for analysis [Fig. 5(b)]. The

Singh analysis [Fig. 5(d)] yields a volu-

metric strain of about �7.14% and

residual strength of about 6.27 GPa,

as opposed to �7.79% and 5.34 GPa

obtained from the full diffraction rings.
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Figure 4
{110} diffraction profiles for (a) 1D-strain compression and tension, and (b) 1D-stress compression
and tension.

Table 2
Diffraction angles (2#), interplanar spacings (d) and lattice strains ("l) for
the {110} diffraction peak calculated from 1D diffraction profiles for bulk
strain "xx = 8.00%.

Subscript 0 refers to undeformed.

Loading modes 2#0 2# d0 (Å) d (Å) "l

1D-strain compression 12.57� 12.96� 2.338 2.268 �3.00%
1D-strain tension 12.57� 12.18� 2.338 2.413 3.21%
1D-stress compression 12.57� 12.65� 2.338 2.324 �0.60%
1D-stress tension 12.57� 12.42� 2.338 2.367 1.24%

Figure 5
Diffraction analysis with full and partial diffraction rings. For the latter, �
spans over 0–45� and 315�–360�. (a) Full diffraction rings of tantalum
under uniaixal strain compression ("xx = 0.08), and (b) corresponding
partial diffraction rings. White curves: deformed (D); black curves:
undeformed (U). (c) dm versus ð1� 3 cos2 �Þ plot for the full {110}
diffraction ring. Red dots: ‘data;’ black line: linear fitting. (d) Comparison
of the dm versus ð1� 3 cos2 �Þ plots for fitting with full (black curve) and
partial (green) {110} diffraction rings.

Table 3
Fitting to full {110} diffraction rings for "xx = 8.00%.

Subscripts 1 and 2 refer to MD results and the Singh analysis of diffraction patterns, respectively.

Loading modes dp (Å) Q t1 (GPa) t2 (GPa) "p1
"p2

1D-strain compression 2.276 0.0157 5.19 5.34 �8.00% �7.79%
1D-strain tension 2.399 �0.0146 �4.38 �4.48 8.00% 7.90%
1D-stress compression 2.333 0.0151 4.98 4.99 �0.86% �0.71%
1D-stress tension 2.348 �0.0153 �4.90 �4.71 0.96% 1.14%



The significant differences are due to the fact that the �-range

corresponding to the selected �-range is 5�–45� [Fig. 6(a)] and

not representative. Similarly, for 45� � � < 135�, � ranges from

45� to 90�; as a result, the dm versus 1� 3 cos2 � scatter plot

only spans a partial range, so the linear

fitting is not well constrained [Fig. 6(b)].

On the other hand, a properly chosen

�-range, e.g. 0�–90�, can cover a much

wider/whole �-range (5�–90�). Conse-

quently, the fitting is much better and

in agreement with that using the full

diffraction ring [Fig. 6(c)].

With a properly chosen �-range, we

analyze partial {110} diffraction rings

(0� � � � 90�, Fig. 7) for four loading

modes with "xx = 8.00%. Their corre-

sponding fittings with equation (6) show

different features (shapes and shifts in

2#). The fitting results of t and "p

(Table 4) show that the direct simula-

tions agree with the Singh analysis for

these four loading modes. Note that, for

1D-stress loading, equivalent hydro-

static strains are much smaller

compared with the applied strain "xx =

8.00% due to the Poisson’s effect.

The Singh analysis of partial/full 2D

diffraction patterns yields bulk volu-

metric strain (equivalent hydrostatic

strain, "p). In addition, two strain

components "xx and "zz can be obtained from strain field

mapping, e.g. via X-ray DIC. Then, "yy can be calculated with

equation (3), and the full strain tensor obtained for these

loading modes.

In experiments, strain fields can be obtained via DIC with

X-ray phase contrast imaging or optical imaging, and along

with simultaneous X-ray diffraction, full strain tensors can be

obtained for the most common loading modes. Both imaging

and diffraction can be carried out at the single-bunch level at

synchrotrons or XFELs (Luo et al., 2012; Lu et al., 2016;

Seiboth et al., 2018). Thus, Method IV can be implemented for

in situ, real-time, dynamic synchrotron or XFEL experiments.

4. Conclusions

We have developed a methodology of bulk strain tensor

measurements for four typical loading modes, 1D strain/stress

compression/tension, via a combination of imaging-based

strain field mapping and simultaneous X-ray diffraction. Strain

field mapping measures two in-plane principal strains ("xx and

"zz); X-ray diffraction analysis yields volumetric strain, and

thus the out-of-plane principal strain ("yy). This methodology

is validated against direct molecular dynamics simulations

on nanocrystalline tantalum, and can be implemented with

simultaneous X-ray diffraction and digital image correlation in

synchrotron radiation or free-electron laser experiments.
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Figure 6
(a) Distribution of � on the detector plane for the simulated geometry. (b) Fitting for the {110}
diffraction ring with 45� � �� 135�. (c) Fitting for the {110} diffraction ring with 0� � �� 90�. Black
and green lines: full and partial diffraction rings, respectively; red dots: ‘data.’

Table 4
Fitting to partial {110} diffraction rings for "xx = 8.00%.

Subscripts 1 and 2 refer to MD results and the Singh analysis of diffraction patterns, respectively.

Loading modes dp (Å) Q t1 (GPa) t2 (GPa) "p1
"p2

1D-strain compression 2.279 0.0164 5.19 5.58 �8.00% �7.41%
1D-strain tension 2.396 �0.0142 �4.38 �4.35 8.00% 7.49%
1D-stress compression 2.334 0.0157 4.98 5.17 �0.86% �0.55%
1D-stress tension 2.346 �0.0164 �4.90 �5.05 0.96% 0.99%

Figure 7
{110} diffraction rings of nanocrystalline tantalum under (a) 1D-strain
compression, (b) 1D-strain tension, (c) 1D-stress compression, and (d)
1D-stress tension loading. Black and white curves: fittings to simulated
diffraction rings for the undeformed and deformed ("xx = 8.00%) cases,
respectively.
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