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A genuine representation of the cross-spectral density function as a super-

position of mutually uncorrelated, spatially localized modes is applied to model

the propagation of spatially partially coherent light beams in X-ray optical

systems. Numerical illustrations based on mode propagation with VirtualLab

software are presented for imaging systems with ideal and non-ideal grazing-

incidence mirrors.

1. Introduction

Since synchrotron radiation (SR) is a random process, statis-

tical optics is required for its proper description. Models for

spatial coherence of SR based on second-order coherence

theory have indeed been developed (Geloni et al., 2008;

Vartanyants & Singer, 2016; Glass, 2017), which allow the

calculation of the cross-spectral density (CSD) function for a

variety of present and future X-ray sources with different

degrees of coherence (Vartanyants & Singer, 2010). With such

source models available, it is of interest to model X-ray optical

systems (beamlines) including imaging systems with imperfect

(aberrated) focusing mirrors.

In general, CSD is a four-dimensional (4D) function and its

direct propagation in optical systems therefore requires 4D

integrals (Fourier transforms). The use of such direct techni-

ques requires, in practice, that the entire problem can be

treated as separable in two orthogonal transverse spatial

directions. In this case the dimensionality reduces from four

to two, but the assumption excludes full analysis of system

aberrations. A similar reduction of dimensionality is achieved,

without requiring separability, if the CSD is represented as

an incoherent superposition of mutually orthogonal coherent

modes, which are the eigenmodes of a Fredholm differential

equation with the CSD as a kernel (Wolf, 1982). Such a

Mercer-type coherent-mode expansion is fully general, and

it has proven particularly convenient for the description of

X-ray free-electron laser (FEL) radiation: the high degree of

coherence then implies that only a few coherent modes are

needed to describe the CSD accurately (Roling et al., 2011;

Singer et al., 2012; Vartanyants et al., 2011). In the case of low-

coherence X-ray fields, however, a larger number of modes

are required. While the Mercer modes can be determined

numerically (Glass & Sanchez del Rio, 2017), the high-order

modes tend to be highly oscillatory and are therefore not very

attractive in numerical computations.
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In this paper we introduce and demonstrate a model for

X-ray imaging systems based on the genuine representation of

the CSD. Like the (Mercer) coherent-mode decomposition,

this representation is fully general: the CSD is expressed as an

incoherent superposition of (generally non-orthogonal) modal

fields (Gori & Santarsiero, 2007; Gori et al., 2009; Martı́nez-

Herrero & Mejı́as, 2009; Martı́nez-Herrero et al., 2009; Shirai,

2009; Khubbutdinov et al., 2019). Considering the interpreta-

tion of Gori & Santarsiero, such modal fields can be viewed as

impulse responses of an arbitrary imaging system with inco-

herent illumination. Hence, in particular, the field in the image

plane of a condenser system with an incoherent primary X-ray

source (Chang et al., 2003) has precisely the form of a genuine

representation. However, since the representation is fully

general, it applies to sources and fields of any state of coher-

ence, including third-generation and future high-emittance

sources (Geloni et al., 2008).

In the special case of fields with a Schell-model angular

correlation function (Schell, 1967), the modal fields are iden-

tical, spatially shifted ‘elementary’ modes (Gori & Palma,

1978; Gori, 1980; Vahimaa & Turunen, 2006; Tervo et al., 2010;

Turunen, 2011) that can be spatially well confined. In the

model of Coı̈sson (Coı̈sson, 1995), where the source-plane

electron position and angular distribution are approximated as

Gaussian functions, the elementary modes are also Gaussian

functions with weights obeying the Gori–Palma model (Gori

& Palma, 1978). Such Gaussian-beam superpositions have

indeed been recently exploited, to some extent, to calculate

image-plane intensity distributions in low-coherence X-ray

imaging systems (Canestrari et al., 2014; Shi et al., 2014;

Rakitin et al., 2018). Here, in addition to intensity distribu-

tions, we also consider the spatial coherence of the image-

plane fields.

The genuine approach, based on identical elementary

modes, has been used to describe beam shaping (Singh et al.,

2013) and imaging (Singh et al., 2015) systems in the visible

spectral region. In this region conventional optical systems

are essentially space-invariant over a considerable spatial

domain, typically far in excess of the spatial extent of the

elementary modes. We will see that the situation is quite

different in X-ray systems with Kirkpatrick–Baez (KB)

mirrors, where the space-invariant region of the system

is of the same order of magnitude as the spatial extent

of the modes.

We begin with a description of the genuine field repre-

sentation (Section 2), which we apply to model an X-ray

imaging setup consisting of two elliptical grazing-incidence

KB mirrors with surface-shape errors. We define the SR

source using the anisotropic Gaussian Schell model (DeSantis

et al., 1980; Li & Wolf, 1986), though our approach readily

permits the use of more sophisticated source models. The

implementation of the field propagation technique that

propagates the modes through the optical system is described

in Section 5. Numerical results for image-plane modes as well

as the total partially coherent images and image-plane corre-

lation functions are given in Section 6.

2. The genuine field representation

Throughout this paper we will describe the spatial coherence

of SR with the aid of a scalar CSD evaluated at the central

frequency of the spectrum. This approach is standard in the

literature (Geloni et al., 2008) but its validity is not a priori

obvious since SR sources are non-stationary (pulsed) and

electromagnetic. The conditions for this description to be

applicable are formally discussed in Appendix A. Within such

conditions, and keeping in mind the reservations involved, we

denote by Wðq1; q2Þ the spatial part of the scalar CSD at

points q1 = ðx1; y1Þ and q2 = ðx2; y2Þ in any transverse plane

perpendicular to the nominal propagation direction (z axis) of

the SR beam.

In general, any physically realizable CSD has a coherent-

mode representation (Wolf, 1982). This decomposition follows

from ‘Mercers Theorem’ and requires that W is square

integrable,
RR
jWðq1; q2Þj

2 d2�1 d2�2 < 1, is hermitian,

Wðq1; q2Þ = W�ðq;q1Þ, and non-negative definite,RR
Wð�1; �1Þ f

�ð�1Þ f ð�2Þ d
2�1 d2�2 � 0, for any square integr-

able function f . The first condition follows from the field

having a finite extent/finite energy; the second directly follows

from the ensemble average over the field realizations; and the

third from showing that the cross-spectral density matrix

is non-negative definite. The coherent-mode representation

reads as

Wðq1; q2Þ ¼
X1
m¼0

am  
�
mðq1Þ mðq2Þ; ð1Þ

where am and  mðqÞ are the eigenvalues and eigenfunctions of

the Fredholm integral equation,R1
�1

Wðq1; q2Þ mðq1Þ d
2�1 ¼ am  mðq2Þ: ð2Þ

The eigenvalues am are real and non-negative and the eigen-

functions  mðqÞ, known as the coherent modes of the CSD, are

orthogonal in the sense thatR1
�1

 �mðqÞ nðqÞ d
2� ¼ �mn; ð3Þ

where �mn is the Kronecker delta symbol.

Alternatively, the CSD can always be represented in a

genuine form (Gori & Santarsiero, 2007). This requires that

the kernel is non-negative definite and as described by the

theory on the kernel Hilbert spaces. Given that this is already

a required condition for equation (1), the genuine form can

therefore also be applied to the CSD here. The genuine

representation has the form

Wðq1; q2Þ ¼
R1
�1

pðvÞH�ðq1; vÞHðq2; vÞ d2v; ð4Þ

where pðvÞ is a non-negative function of a (generally contin-

uous) parameter v and Hðq; vÞ is the kernel of an arbitrary

linear transformation. The representations (1) and (4) are

both fully general and connected (Martı́nez-Herrero et al.,

2009). To see this, let us define functions
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Lðq; vÞ ¼
ffiffiffiffiffiffiffiffi
pðvÞ

p
Hðq; vÞ; ð5Þ

so that equation (4) takes the form

Wðq1; q2Þ ¼
R1
�1

L�ðq1; vÞLðq2; vÞ d2v: ð6Þ

Let us further consider any complete set f�mðvÞg of functions

that are orthogonal in the same sense as in equation (3).

Writing

Lðq; vÞ ¼
X1
m¼0

ffiffiffiffiffi
am

p
 mðqÞ �

�
mðvÞ ð7Þ

and inserting into equation (6) leads immediately to equation

(1), proving the equivalence of these two representations.

Unlike the coherent-mode representation, the genuine

representation is not unique because of the freedom to choose

the set �mðvÞ.

As a result of the considerations presented above, it is

possible (at least in principle) to determine explicit genuine

representations of any (known) CSD. This can be accom-

plished, on one hand, by first solving the Fredholm

equation (2) and then determining Lðq; vÞ using, for example,

equation (7) with the choice �mðvÞ ¼  mðvÞ. In the case of

X-ray fields, the CSD can be modeled starting from primary

electron distributions (Glass, 2017). Fortunately, however,

vastly simplified approaches are often adequate (Gori et

al., 1998a).

The angular correlation function (ACF), which describes

correlations between any two spatial frequencies j1 and j2, is

defined as

Tðj1; j2Þ ¼
1

ð2�Þ4

ZZ1
�1

Wðq1; q2Þ

� exp
�
i j1 � q1 � j2 � q2ð Þ

�
d2�1 d2�2: ð8Þ

On inserting (6) into (8) we find that the ACF has a genuine

representation

Tðj1; j2Þ ¼
R1
�1

M�ðj1; vÞMðj2; vÞ d2v; ð9Þ

where

Mðj; vÞ ¼
1

ð2�Þ2

Z1
�1

Lðq; vÞ exp �ij � qð Þ d2� ð10Þ

is the two-dimensional spatial Fourier transform of the kernel

Lðq; vÞ.

A particularly attractive form of the genuine representation

is obtained if the ACF is of the Schell-model form (Schell,

1967), i.e. if it can be represented as

Tðj1; j2Þ ¼ E�ðj1ÞEðj2ÞPð�jÞ; ð11Þ

where �j = j2 � j1, and E and P are arbitrary, generally

complex-valued functions. The angular spectral density

(angular intensity) of the field is now given by

RðjÞ ¼ Tðj; jÞ ¼ EðjÞ
�� ��2; ð12Þ

and the angular degree of spatial coherence has the form

�ðj1; j2Þ ¼
Tðj1; j2Þ

Rðj1ÞRðj2Þ
� �1=2

¼ Pð�jÞ exp
�
i�ðj1; j2Þ

�
; ð13Þ

where �ðj1; j2Þ = arg Eðj2Þ
� �

� arg Eðj1Þ
� �

.

Inserting (11) into the inverse of (8) and introducing a

Fourier representation

Pð�jÞ ¼
1

ð2�Þ2

Z1
�1

pðvÞ exp �i�j � vð Þ d2v; ð14Þ

we find that

Wðq1; q2Þ ¼
1

ð2�Þ2

Z1
�1

pðvÞ e�ðq1 � vÞ eðq2 � vÞ d2v; ð15Þ

where

eðqÞ ¼
R1
�1

EðjÞ exp ij � qð Þ d2	: ð16Þ

This is of the genuine form of equation (4) with

Hðq; vÞ ¼
1

2�
eðq� vÞ: ð17Þ

We can now consider the CSD as a superposition of spatially

shifted ‘elementary’ fields, all of which have an identical

functional form and are weighted by the function pðvÞ.

According to equation (16) the elementary field eðqÞ is

determined uniquely by the function EðjÞ or, up to a phase

factor, by the angular intensity RðjÞ defined in equation (13).

In view of the Fourier inverse of equation (14), the weight

function pðvÞ is specified by Pð�jÞ.
It is, of course, clear that realistic optical fields are not likely

to obey the Schell-model assumption of equation (11)

precisely, but in many cases this can be approximately true.

Then the functions Hðq; vÞ would not all be exactly of the

same form as in equation (17), but would nevertheless have

nearly the same spatial extent. Moreover, the interpretation

of the parameter v as a ‘center position’ of Hðq; vÞ or,

equivalently, of the kernel Lðq; vÞ, would still be useful. These

arguments can be qualitatively substantiated by considering

the intuitive interpretation of the genuine field representation

presented by Gori & Santarsiero (2007). They pointed out

that fields of the form of equation (4) can be generated (for

example, but not exclusively) by imaging an incoherent

primary source with an optical system having a point-spread

(impulse-response) function Kðq; vÞ, where q refers to the

spatial position at the output plane of the system and v refers

to the position of a point source at the input plane. The

functional form of the output ‘modal field’ intensity jHðq; vÞj2

then depends on v. If the system is space-invariant, the only

modification of the output-spot is a shift of its center position,

which depends uniquely on v. However, even in space-variant
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systems the output spot would be centered close to this

position and be confined nearby. We will see later on, by

numerical simulations, that this type of reasoning is valid in

X-ray imaging systems.

For sources that are not diffraction limited it is often a good

approximation to model SR sources by assuming that the

associated CSD is separable in the Cartesian coordinates

(Khubbutdinov et al., 2019),

Wðq1; q2Þ ¼ Wxðx1; x2ÞWyðy1; y2Þ: ð18Þ

However, the distributions of Wxðx1; x1Þ and Wyðy1; y2Þ can

be very different because of the anisotropic nature of the SR

generation process, and the separability is generally broken

when the field passes through the SR beamline, as we will see

in our numerical simulations. Assuming equation (18) to hold,

we can always represent both Wxðx1; x2Þ and Wyðy1; y2Þ by

their coherent-model expansions. Considering the x-depen-

dent factor and dropping the subscript x for brevity we then

have

Wðx1; x2Þ ¼
X1
m¼ 0

am  
�
mðx1Þ mðx2Þ; ð19Þ

and a similar expansion holds for the y-dependent factor.

The most commonly used model field in coherence theory is

the so-called Gaussian Schell model (GSM) beam with

Wðx1; x2Þ ¼ S0 exp �
x2

1 þ x2
2

w2
0

� �
exp �

x1 � x2ð Þ
2

2
2
0

� 	
; ð20Þ

where w0 and 
0 represent the beam width and coherence

width, respectively. The angular correlation function is then

also of the Schell-model form, i.e.

Tðkx1; kx2Þ ¼ R0 exp �
1

4
w2

0 �
2 k2

x1 þ k2
x2


 �� 	
� exp �

1

8
w2

0 1� �2

 �

kx1 � kx2ð Þ
2

� 	
; ð21Þ

where R0 = ðw2
0�=4�Þ2S0 and the parameter

� ¼ 1þ w0=
0ð Þ
2

� ��1=2
ð22Þ

is bounded between zero (incoherent limit 
0=w0 ! 0) and

unity (fully coherent limit 
0=w0 !1). Hence the genuine

representation of GSM fields has the form of an elementary-

field expansion. Recognizing the forms of EðkxÞ and Pð�kxÞ by

comparing equations (11) and (21) we find from equation (16)

that the (normalized) elementary field is

eðxÞ ¼
2

�

� �1=4
1ffiffiffiffiffi
we

p exp �
x2

w2
e

� �
; ð23Þ

with we = w0�. From the inverse of equation (14) we also see

that the weight function is

pðvxÞ ¼ p0 exp �
2v2

x

w2
p

 !
ð24Þ

with wp = w0 1� �2ð Þ
1=2

and p0 = 4�2S0 = 1� �2ð Þ
1=2

.

For GSM fields the (normalized) coherent modes are the

Hermite–Gaussian modes (HG) of the standard spherical-

mirror laser resonator, i.e.

 mðxÞ ¼
2

�

� �1=4
1

2m m! wcð Þ
1=2

Hm

ffiffiffi
2
p

x

wc

� �
exp �

x2

w2
c

� �
ð25Þ

with a transverse scaling parameter wc = w0 �ð Þ
1=2 and expan-

sion coefficients that obey the law

am ¼ S0

ffiffiffiffiffiffi
2�
p

w0

1þ 1=�

1� �

1þ �

� �m

: ð26Þ

We stress that the Gaussian elementary mode in equation (25)

should not be confused with the lowest-order (m = 0) Gaus-

sian coherent mode in equation (25) since their transverse

scales are different for any given GSM field, apart from the

fully coherent (single mode) case. For any partially coherent

source-plane field, the elementary field is more confined than

the fundamental coherent mode. If we assume (as we do in the

following) that the the divergence is rotationally symmetric,

the source field in the partially coherent case is wider in the

partially coherent direction as it is in the coherent (diffraction-

limited) direction.

Fig. 1 shows a cross section of the CSD/intensity profile

at the source plane if one either uses the mode expansion

equation (1) by means of HG modes equation (25) or a

superposition of shifted elementary modes equation (14) with

Gaussian elementary modes equation (23).

For the elementary mode representation no explicit equa-

tion was found to express the error made when truncating the

number of elementary modes. To ensure that the elementary

modes properly represent the field, a large enough portion of

the weight function PðvxÞ should be sampled by choosing N �

3wp =�vx. The elementary modes should also at least partially

overlap, which is ensured if �vx � 0:8we.

The advantage of HG mode representation is that fewer

modes are typically required to accurately represent the field.

For example, in the shown figure the HG representation has a

<0.1% error while elementary modes result in a <0.5% error,

where error is defined as the total intensity difference between

perfect and shown representation in the shown cross section.

On the flip side, higher-order HG modes oscillate strongly
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Figure 1
Cross section of the CSD/intensity profile at the source plane represented
by either the intensity of the HG modes (a) or shifted elementary
modes (b).



and thus require more grid-points to accurately represent

numerically. The shifted elementary modes are all of the same

shape which is also advantageous for an aplanatic optical

system, in which the response to each mode is the same so that

only one mode needs to be propagated. If the system becomes

space variant then a sufficient number of elementary modes

are needed to properly sample the system response. The other

major difference is that the width of the elementary modes

decreases as coherence decreases. This is in particular

advantageous when propagating a low-coherence source

through an aperture, allowing one to ignore those modes

that have no significant energy contribution inside the aper-

ture area.

Suppose we wish to model a beamline similar to the Sub-

micron Resolution X-ray (SRX) beamline at NSLS II (De

Andrade et al., 2011) along with a source that has a FWHM

beam width of !0 = 22.0 mm � 548 mm and a divergence angle

of �0 = 12.4 mrad � 24.8 mrad in the horizontal and vertical

(H, V) direction, respectively. This source is assumed to obey

the simple HG model and has a particular poor coherence

along the vertical direction with � ’ 0.2 � 0.004 (H, V). The

supposed setup improves the coherence along the vertical

direction by focusing the source along the horizontal direction

onto an aperture some 49 m away from the undulator source.

For this particular scenario the representation of the source

itself would require about 14� 665 HG modes or about

17� 965 shifted elementary modes. If one supposes that a

square aperture of 50 mm � 50 mm is located at the center of

the horizontal focus, then only 17� 55 elementary modes

need to be considered as all other modes will miss the aperture

opening. For this consideration only those modes that have

their center within 3we from the closest edge of the aperture at

the aperture plane were counted. The lower numerical cost

per mode along with a great decrease in number of modes

would be a large advantage for such a setup and is a main

reason why elementary modes are considered in this paper.

The SRX beamline with inclusion of this aperture along was

originally considered in this paper but would require an

operator that extracts the quadratic phase from the field after

the aperture to facilitate the switch between field propagation

operators as described in Section 5. As this operator was yet

to be implemented at time of writing this paper, the source

model and setup have been simplified as described in the next

sections.

2.1. Source model

The SR source used for the simulated setup has a (mean)

wavelength  = 173 pm (17.18 keV) and a separable aniso-

tropic Gaussian intensity profile with w0 = 22.0 mm in the

horizontal (H) direction and w0 = 4.44 mm in the vertical (V)

direction. The radiant intensity distribution is assumed to have

a symmetric Gaussian shape, characterized by 1=e2 divergence

angles �0 = 12.4 mrad in both H and V directions. With these

choices the Gaussian Schell model is available, and the

knowledge of the source dimensions and the divergence

angles is sufficient for determination of the spatial coherence

properties of the field (Mandel & Wolf, 1995, ch. 5.6.3). In

our notation, the relation between the waist size and beam

divergence is

�0 ¼


�w0 �
: ð27Þ

Hence, with the chosen numerical values, we have � = 1 in the

V direction (full spatial coherence) and � ’ 0.2 in the H

direction. We employ the elementary-field representation of

the anisotropic GSM field, with a single Gaussian mode in the

V direction, with we = w0: In the H direction we use equations

(23) and (24) with we ’ 4.4 mm and wp ’ 21.5 mm. A cross

section of the elementary modes used to represent this source

in the source plane is shown in Fig. 1(b).

3. The simulated setup

In the numerical simulation to be presented below we will

consider an SR imaging system illustrated in Fig. 2, in which

two elliptical grazing-incidence mirrors are used to form the

image of a partially coherent source. The dimensions of the

mirrors are 200 mm � 12 mm, their center-to-center separa-

tion is 200 mm, and they have focal lengths of 400 mm and

200 mm to enable imaging of a source located at a distance of

50 m in front of the first mirror into a distance 200 mm after

the second mirror. The grazing angle (between the central

tangent plane of a mirror and the local optical axis) is taken

as  = 3 mrad.

The mirrors are coated with gold so that their reflectivity

depends on the angle of incidence as shown in Fig. 3. The

modeling of the mirrors is limited to reflective effects as

simulating surface scattering would be computationally costly

at this point. The mirrors surfaces are considered non-ideal

and the figure errors for both mirrors are taken to be as the

error-map shown in Fig. 4.

4. Optical-system response

Let us now assume that a field with a CSD of the form of

equation (4) is located at the input plane of an optical system,

denoting the spatial coordinates at this plane with primes.

The system is, in general, considered as space-variant. For the

purposes of illustration we assume for a while (as is usual

in Fourier optics) that the system has an essentially aplanatic

region around any point v at the input ðx0; y0Þ plane meaning,

by definition, that the aberrations of the system remain
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Figure 2
SR imaging system model with two elliptical grazing-incidence mirrors.



essentially unaltered during such a region. Fig. 5 illustrates

some of the genuine modal fields Hðq0; vÞ, represented by the

gray patches A, B, C and D. Modes A and B, centered at v1 = 0

and v2, fall within the axial aplanatic region of the system.

Fields C and D do not, but they are still confined within the

same off-axis aplanatic region. Hence the system response is

(substantially) the same for modes A and B, but different from

the response for modes C and D. We will find below that the

system considered has a local aplanatic region with dimen-

sions of the same order of magnitude as the spatial extent of

the genuine modal fields.

The response of a linear system is specified by its impulse

response function Kðq; q0Þ, so that the CSD at the output plane

is generally given by

Wðq1; q2Þ ¼
R R1
�1

Wðq01; q02ÞK
�ðq1; q01ÞKðq2; q02Þ d

2�1 d2�2;

ð28Þ

where Wðq01; q02Þ is the CSD in the input plane. If we represent

the latter in the form

Wðq01; q02Þ ¼
R1
�1

pðvÞH�ðq01; vÞHðq02; vÞ d2v: ð29Þ

and substitute into equation (28) we obtain equation (4) with

Hðq; vÞ ¼

Z1
�1

Hðq0; vÞKðq; q0Þ d2�0: ð30Þ

Hence also the field at the output plane is of the genuine form.

By definition of an aplanatic region (Goodman, 2003) within

each such region, region K depends only on the difference

q� q0.
In the numerical modeling method to be discussed in detail

in Section 5 we will not make explicit use of the impulse

response function but rather determine the genuine-field

response Hðq; vÞ directly.

5. Field propagation

Although we established that a scalar field description is

appropriate for the source (Appendix A), it was still concei-

vable that the response of the mirror system could be polar-

ization dependent due to its three-dimensional nature and the

grazing incidence on the mirrors. Since our numerical simu-

lation software is fully vectorial in nature, we were able to

establish whether this is the case.

The goal is to propagate radiation from the source to the

image plane of the setup in an accurate but numerical efficient

manner. This is achieved by applying a sequence of free space

propagation ePP and component response operators B to each

elementary field. These operators are applied to the (vector)

field components E?ðq; !Þ = ½Exðq; !Þ;Eyðq; !Þ	 in sequence.

If required, the field components ðEz;Hx;Hy;HzÞ can be

computed from E? on demand (Wyrowski & Kuhn, 2011).
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Figure 4
Side view of the error map (does not include mirror curvature). The
mirror is 200 mm long and 12 mm wide.

Figure 5
Illustration of the genuine-field representation at the input plane of an
optical system.

Figure 3
Reflectance curve used for the gold mirrors. The horizontal axis displays
the grazing angle of the incoming light while the vertical axis displays the
reflectance coefficient for TE-polarized light (the TM curve is practically
the same).



Fig. 6 illustrates the field tracing diagram for the setup and

shows if the operator is applied in the x domain [spatial, � =

ðx; yÞ] or in the k domain [space-frequency, 	= ðkx; kyÞ]. In this

diagram operator A denotes the analytical solution of a

Gaussian (elementary) field propagated in free space (Section

5.1). By leveraging the Fourier transform F to switch between

the computation domains, the free space propagation ePP
becomes a simple product operation (Section 5.2). The mirror

response operator B denotes the response of the grazing

mirrors and is touched upon in Section 5.3.

5.1. Analytical source-field propagation

Since radiation from the SR source at the plane z = 0 is

highly paraxial, we may represent each shifted elementary

field at the source in the form

eðx� vx; zÞ ¼ e0

we

weðzÞ
exp i kz��ðzÞ½ 	

� 
ð31Þ

� exp �
x� vxð Þ

2

w2
eðzÞ

� 	
exp

ik

2RðzÞ
x� vxð Þ

2

� 	
;

where e0 = ð2=�Þ1=4
w�1=2

e ,

weðzÞ ¼ we 1þ z2=z2
R


 �1=2
; ð32Þ

�ðzÞ ¼ arctan z=zRð Þ; ð33Þ

RðzÞ ¼ zþ z2
R=z ð34Þ

are the usual propagation parameters of a Gaussian beam

(Mandel & Wolf, 1995), zR = kw2
e=2 is it’s Rayleigh range,

i.e. the distance required to increase the beam width by 1=
ffiffiffi
2
p

,

and k = 2�=. Considering the present parameter choices, the

Rayleigh range in both directions is zR ’ 0.35 m. Hence the

switch to geometric field tracing operator P occurs in the far

field of the SR source.

5.2. Free space propagation

From an effort point of view it is beneficial to perform free

space propagation in the k-domain as this simplifies the high

numerical effort space domain diffraction integrals to a low

effort product operation. This does require a mapping

operation to switch between the domains, but this can be done

with relative minimal effort by leveraging the Fourier trans-

form in a smart manner.

Rigorous propagation in free space in the k-domain can be

efficiently done by a simple product operation,

Eout
? ðjÞ ¼ P Ein

?ðjÞ

¼ exp ikzð	Þ�z
� �

� Ein
?ðjÞ; ð35Þ

when propagating between two parallel planes. Here kzðjÞ =

ðk2 � k2
x � k2

yÞ
1=2. When the planes are non-parallel an addi-

tional coordinate transformation is applied (Zhang et al.,

2016).

To switch between the computation domains one can

decompose the field in a spectrum of plane waves (SPW) by

means of a Fourier transform (Goodman, 2003). If the wave-

front phase is weak (e.g. very paraxial) this can be done

accurately with relative low numerical effort. If the wavefront

phase is strong this approach would require a dense sampling

grid to sample the phase term accurately and could lead to

unacceptable amounts of computational effort.

If this wavefront distortion is caused by a quadratic phase

term, as is often the case with free space propagation, then

the analytical Fourier transform can be used to minimize

computation cost (Wang et al., 2017). This method separates

the quadratic phase term so that it does not need to be

sampled while the remaining residual field can be accurately

represented and mapped to the k domain with (much) fewer

sampling points.

On the locations where the wavefront phase forms a

‘smooth’ function the mapping between the domains can be

very efficiently done by use of the geometric Fourier trans-

form (Wyrowski & Hellmann, 2017). Unlike the previous two

methods this does require that the field is not located in a

caustic zone.

The selection of the appropriate mapping operator is done

automatically within the propagation algorithm.

5.3. Mirror response operator

The mirror response operators involve applying the

Kirchhoff’s boundary conditions and solving the appropriate

electromagnetic boundary conditions at the mirror interface.

The mirror operator B can be computed with minimal cost in

the x domain and thus the appropriate inverse Fourier trans-

form is applied after propagation to represent the field in the

x domain as well.

In general the interaction of a field with a surface can be

obtained by use of rigorous Maxwell solvers. If the surface is

smooth and its structures not too small the interaction of the

field with the surface can be much more efficiently modeled by

means of the Local Plane Interface Approximation (LPIA).

Under this method the surface is locally treated as a plane

interface. If the field is also represented as a patchwork of

local plane waves, which can be done as the phase is assumed

to be smooth, then the element’s response is described by a

plane-wave plane interface interaction (Pfeil et al., 2000). A

visualization of the local plane wave approximation is shown

in Fig. 7.
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Figure 6
Vertical and horizontal cross sections of the setup (top) along with the
field tracing diagram (bottom). The field tracing diagram shows in which
region the field propagation and element response operators are applied.



6. Numerical results

In this section we provide simulation results for KB mirrors

performed using VirtualLab software (LightTrans GmbH,

2015) with and without figure errors. We begin by assuming

that the source is fully coherent also in the H direction, with a

far-field divergence angle of 12.4 mrad. Then the effect of

partial coherence is discussed by means of the genuine

superposition of all elementary-field contributions in the

image plane.

The discussion in Appendix A shows that the scalar model is

adequate for SR field description in free space, but it does not

prove this to be the case in propagation through the KB mirror

system. However, our numerical model, which traces all

components of the electromagnetic field through the system,

does so. By assuming a horizontally linearly polarized source,

we found that the y and z components (combined) of the

electric field in the image plane contain less than 0.01% of the

total energy. Hence, when plotting the results, we consider

only the x component of the electric field and conclude that

the intensity profiles thus obtained have the same shape

(within plotting accuracy) regardless of the state or degree of

polarization of the source.

6.1. Coherent source

After 50 m of propagation the coherent Gaussian field has

a (FWHM) cross section of about 732 mm � 735 mm (H, V).

Compared with the effective cross section 716 mm � 624 mm

of the mirrors (see Appendix B), this means that the mirrors

clip the field in both directions, but more strongly along the

vertical direction. From this one would expect to see some-

thing between Gaussian and sinc profiles in the horizontal

direction, and something closer to a sinc profile along the

vertical direction as is indeed the case as shown in Fig. 8. The

Rayleigh spot size is 50.0 
 0.5 nm � 116 
 0.5 nm (H, V)

which is slightly larger than the 48.3 nm � 111 nm expected

spot size. The difference from ideal is attributed to the non-

uniform illumination in the effective window caused by the

Gaussian intensity profile and grazing angle dependence of

the reflectance coefficient. All figures in the results section

have been normalized with the same normalization constant

as used in the coherent-ideal mirrors case shown in Figs. 8(a)

and 8(b).

6.2. Partially coherent source

The intensity of the genuine-field superposition due to all

elementary-field contributions eðq; v; z3Þ in the focal plane of

the mirror system is given by

Iðq; z3Þ ¼

Z1
�1

pðvÞ eðq; v; z3Þ
�� ��2 d2v

’ �x
XN

n¼1

pðvnÞ eðq; vn; z3Þ
�� ��2; ð36Þ

with the weight function defined by equation (24). In the

discrete representation vn = ðvxn; 0Þ, and the sampling points

vxn = vx1 þ n�x are chosen equidistantly to cover the extent of

the function pðvxnÞ. To keep the error <0.5% we used N = 17

elementary modes with vx1 = �1:4wp and �x = 2:8wp=ðN � 1Þ

so as to obtain good convergence of the results for both ideal

mirrors and mirrors with figure errors. Doubling the number

of modes showed no significant change in the results.

Fig. 9 shows the absolute values of the x-components of the

image-plane genuine field modes eðq; vn; z3Þ for n = 7, 9, 11, in

the case of ideal mirrors. We plot the absolute values of fields

(instead of intensity distributions) to better illustrate the

sidelobe structure. The odd-numbered modes were chosen to

better see the otherwise small difference between adjacent

modes in the electric field amplitude plots. In all figures the

total field was normalized such that they contain the same

energy as the fully coherent source shown in Fig. 8. Inspection

of the fields with different values of n shows that the functional

form of the elementary modes slightly differentiate from one

another, indicating that the size of the local aplanatic region of
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Figure 7
Local plane wave approximation. Each three adjacent points denote the
corners of a local plane wave. From this representation the full vectorial
field can be reconstructed as long as adjacent (local) plane waves do not
overlap (i.e. no diffraction effects).

Figure 8
The focal spot (a) and its cross section (b) when using a coherent
Gaussian source with an opening angle of 12.4 mrad for ideal mirrors and
for mirrors with figure errors (c, d). The intensity plots were normalized
so as to contain the same energy as the coherent source for the ideal
mirrors case. By comparison the aberrated mirrors results in a maximum
amplitude of 0.992 if for the ideal mirrors amplitude is normalized to
reach unity.



the system (cf. Fig. 5) is comparable with the spatial extent of

the image-plane spot, even though the system is highly para-

xial. The small variations in the shape of adjacent modes

indicate that sufficient elementary modes were used to sample

the space-variant response of the system.

Fig. 10 illustrates the total intensity distribution given by

equation (36) in the case of ideal mirrors. As expected, the

intensity cross section in the vertical direction remains nearly

the same as in the fully coherent case. However, as the source

is now partially coherent in the horizontal direction, the

incoherent superposition of different genuine image-plane

modes in equation (36) virtually smooths out the effect of

apodization in this direction: the sidelobes of the x cross

section of the total intensity profile almost disappear.

Due to the small abberations the results for mirrors with

figure errors deviate only slightly from the ideal mirrors

results. As such these figures are omitted and five times the

error map are shown instead in Figs. 11 and 12 to demonstrate

how significant errors would affect the focal spot. Fig. 11 shows

the amplitude plots of some modes out of the total N = 17. On

comparison with Fig. 9, we see that mode-to-mode variations

are greater for non-ideal mirrors. In Fig. 12 the intensity at the

focus is shown, where due to the abberations on the mirror the

focal spot has moved slightly off-center.

The distributions of absolute values of the x-directional

cross-spectral density function Wðx1; x2Þ and the associated

complex degree of spatial coherence

�ðx1; x2Þ ¼
Wðx1; x2Þ

Wðx1; x1ÞWðx2; x2Þ
� �1=2

ð37Þ

are shown in Fig. 13 for systems with ideal and non-ideal

mirrors [it should be noted that the computation of �ðx1; x2Þ is

poorly conditioned in regions where the intensity SðxÞ =
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Figure 9
Electric field amplitudes jeðx; y; vn; z3Þj due to elementary fields n = 7 (a),
n = 9 (b) and n = 11 (c) for a system with ideal mirrors at the focal plane of
the mirrors. Panel (d) shows the x cross sections of all image-plane modes
produced by elementary fields n ¼ 1; . . . ; 17.

Figure 12
Intensity distribution of the focal spot with a partially coherent source in
the case of a system with five times the figure errors.

Figure 11
Same as Fig. 9, but for a system with five times the figure errors. The
intensity cross sections of all elementary modes is shown in the final plot.

Figure 10
Intensity distribution of the focal spot with a partially coherent source in
the case of ideal mirrors.



Wðx; xÞ of the field is low]. The effective width of j�ðx1; x2Þj

in the antidiagonal direction �x = x2 � x1 represents the

local coherence width of the field at average position �xx =

ð1=2Þðx1 þ x2Þ and the field is of the Schell-model form if the

coherence width is independent on �xx. Clearly, this is not the

case in the image plane, though the field at the source plane is

of the Schell-model form. The coherence width increases with

�xx for systems with both ideal and non-ideal mirrors. However,

it remains essentially constant in the region of high intensity

(along the diagonal line) especially for the system with ideal

mirrors.

7. Conclusion and outlook

A new method for beamline simulation based on wavefront

propagation is described. These very powerful techniques

can be used to simulate X-ray optics under fully or partially

coherent illumination. This method is accurate, fast and can be

used for predicting the X-ray focusing performance of X-ray

focusing mirrors.

The next step is to create and include a quadratic phase

extraction operator that facilitates the switch between field

propagation operators after hitting an aperture. This allows

simulating more complex X-ray beamlines like various X-ray

microscope or soft X-ray beamlines and compare said simu-

lations with real measurements. Another refinement would be

to replace the Gaussian elementary mode with the true single-

electron radiation mode (Khubbutdinov et al., 2019), which

would readily lead to an accurate partially coherent source

model. We expect further applications of these interesting

simulation tools.

APPENDIX A
Justification of the field description

Let us consider a non-stationary (pulsed) random electro-

magnetic field with space–time domain electric field realiza-

tions Eðq; tÞ. The second-order coherence properties of the

field in the space–time domain are then fully described by

the two-time mutual coherence matrix Cðq1; q2; t1; t2Þ =

hE�ðq1; t1ÞE
Tðq2; t2Þi, where q1 and q2 are positions vectors in

a transverse plane z = constant, the angular brackets h. . .i
indicate an ensemble average over all realizations, � denotes

the complex conjugate, and T denotes the transpose. Corre-

spondingly, second-order coherence in the space–frequency

domain is characterized by the cross-spectral density (CSD)

matrix Wðq1; q2;!1; !2Þ = h ~EE�ðq1;!1Þ
~EETðq2;!2Þi, where

~EEðq;!Þ ¼
R1
�1

Eðq; tÞ exp �i!tð Þ dt ð38Þ

are the space–frequency domain realizations of the electric

field. In general the correlation matrices are 3� 3 matrices,

but for paraxial fields (such as X-ray beams) they reduce to

2� 2 coherence-polarization matrices (Gori, 1998; Gori et al.,

1998b; Wolf, 2003) because the longitudinal field components

are insignificant.

If the polarization statistics of the field are spatially uniform

across the beam and we use the envelope representation of the

temporal field, we may write Eðq; tÞ = AðtÞ eðq; tÞ exp �i!0tð Þ,

where AðtÞ is a random (fast-varying) polarization vector, !0

can be taken as the mean optical frequency of the spectrum,

and eðq; tÞ is the scalar field envelope. If the beam is quasi-

monochromatic, as pulsed X-ray beams typically are, the

envelope varies slowly in time compared with field oscillations

at the mean frequency !0. Under these conditions we can

consider AðtÞ and eðtÞ as statistically independent quantities

and write Cðq1; q2; t1; t2Þ as a product of a 2� 2 matrix

Jðt1; t2Þ = hA�ðt1ÞA
T
ðt2Þi and a scalar MCF

�ðq1; q2; t1; t2Þ ¼ he
�
ðq1; t1Þ eðq2; t2Þi exp i!0 t1 � t2ð Þ

� �
: ð39Þ

In the case of SR it is reasonable to assume that the polar-

ization properties of the field do not change appreciably over

the temporal duration of the pulse, allowing us to approximate

Jðt1; t2Þ = Jðt; tÞ = J, where J is a constant polarization matrix

research papers

1316 Antonie Verhoeven et al. � Partially coherent X-ray imaging systems J. Synchrotron Rad. (2020). 27, 1307–1319

Figure 13
Distribution of the CSD (left) and the complex degree of spatial
coherence (right) along the x cross section of the source right before the
mirrors (top row), image-plane field for the ideal mirrors (middle row)
and mirrors with figure errors (bottom row).



of the beam. Propagation in polarization-insensitive optical

systems does not modify J, and therefore it is sufficient to

consider only the propagation of the scalar MCF defined in

equation (39), or the corresponding scalar CSD

Wðq1; q2;!1; !2Þ ¼ h~ee
�
ðq1;!1 � !0Þ ~eeðq2;!2 � !0Þi ð40Þ

¼
R R1
�1

�ðq1; q2; t1; t2Þ

� exp i !1t1 � !2t2ð Þ
� �

dt1 dt2;

where ~eeðq;!Þ is defined in analogy with equation (38).

Let us next introduce average and frequency temporal

coordinates �tt = ð1=2Þðt1 þ t2Þ and �t = t2 � t1, and assume that

the scalar MCF can be factored in the form

�ðq1; q2; �tt;�tÞ ¼ �Sðq1; q2; �tt Þ f ð �tt Þ gð�tÞ: ð41Þ

Here the function �Sðq1; q2; �tt Þ = �ðq1; q2; �tt; 0Þ represents the

spatial coherence between light fluctuations at points q1 and

q2, and in general it can depend on time. A non-stationary field

is called quasi-stationary if, for any pair of spatial points and at

any �tt, the absolute value of the quantity

�ðq1; q2; �tt;�tÞ ¼
�ðq1; q2; �tt;�tÞ

Iðq1; �tt ��t=2Þ Iðq2; �tt þ�t=2Þ
� �1=2

ð42Þ

is a narrow function of �t compared with the temporal

intensity distribution Iðq; tÞ = �ðq; q; t; 0Þ at point q. For

fields of the form of equation (42) we may approximate

�ðq1; q2; �tt;�tÞ = �Sðq1; q2; �tt Þ gð�tÞ, where

�Sðq1; q2; �ttÞ ¼
�Sðq1; q2; �tt Þ

Iðq1; �tt Þ Iðq2; �tt Þ
� �1=2

ð43Þ

is the time-dependent (complex) degree of spatial coherence

of the field. On the other hand, introducing average and

difference frequency coordinates �!! = ð1=2Þð!1 þ !2Þ and �! =

!2 � !1, we have from equation (40)

Wðq1; q2; �!!;�!Þ ¼ WSðq1; q2; �!Þ ~ggð �!!Þ; ð44Þ

where

WSðq1; q2; �!Þ ¼
R1
�1

�Sðq1; q2; �tt Þ f ð �tt Þ exp �i�!�ttð Þ d�tt ð45Þ

and

~ggð �!!Þ ¼
R1
�1

gð�tÞ exp �i �!!�tð Þ d�t: ð46Þ

Clearly, because of the Fourier transform relationships, ~ggð�!Þ
is a wide function compared with WSðq; q; �!Þ. The effective

width of the absolute value of the latter function is a measure

of the spectral coherence width, which is small compared with

the bandwidth of the power spectrum, Sðq; !Þ = Wðq; q;!; 0Þ,

at position q. Hence we may write

WSðq1; q2; �!Þ ¼ WSðq1; q2Þ
~ff ð�!Þ; ð47Þ

where

~ff ð�!Þ ¼
R1
�1

f ð �tt Þ exp �i�!�ttð Þ d�tt ð48Þ

and

WSðq1; q2Þ � WSðq1; q2; 0Þ ¼ Wðq1; q2;!0; 0Þ

¼ ~ff ð0Þ�Sðq1; q2Þ ð49Þ

is the spatial part of the CSD evaluated at the center

frequency !0. This is the quantity we employ in this paper to

study the spatial coherence of SR; for brevity we drop the

subscript S in the main text.

It appears intuitively inconceivable that the spatial coher-

ence properties of the field could change appreciably over a

time scale larger than the coherence time, which for quasi-

stationary fields is so short that no substantial changes are

likely to occur within this time scale either. Hence we may

write �Sðq1; q2; �tt Þ = �Sðq1; q2; 0Þ � �Sðq1; q2Þ. Correspond-

ingly, it is not likely that spatial coherence is the space–

frequency domain will change appreciably outside the

frequencies within spectral coherence bandwidth of the field,

which approaches zero in the fully stationary limit.

In view of the considerations presented above, the scalar

representation of spatial coherence with the aid of a CSD

evaluated at ! = !0 requires a large number of assumptions,

some of which are difficult to quantify. It is, for example, not

difficult to construct (at least mathematically) pulsed beams

with femtosecond-scale temporal variations of the coherence-

polarization matrix (we do not dwell deeper into such

constructions here). However, it appears that there are no

physical mechanisms in SR generation that would lead to such

ultrashort modulation. The assumption that SR is quasi-

stationary is well justified. For example, coherence times of

the order of 3–6 fs were measured for X-ray free-electron

laser pulses with duration of �30 fs (Roling et al., 2011). The

assumption that the MCF can be written in a factored form as

indicated in equation (42) is an approximation that cannot be

made in general, though it appears safe to do so for SR. The

spatial scale of the CSD of non-stationary fields is normally

a function of the two frequencies involved, and a function of

frequency also for stationary fields. Including such frequency

dependence would, via Fourier inversion of equation (40),

immediately lead to space–time coupling effects and thereby

a violation of the factorization condition (42). Recent model

studies (Koivurova et al., 2018) indicate, however, that these

effects are significant only in the few-cycle regime and become

less apparent when the degree of spatial coherence of the

pulsed beam is reduced.

APPENDIX B
Resolution limit of KB mirrors

The standard Rayleigh limit of an on-axis lens with a rectan-

gular aperture of size D�D and focal length F is �x = F=D.

The KB mirror system can be modeled as having an effective

rectangular aperture of size D and focal length F in both

horizontal and vertical directions (though these are different),

but the calculation of the effective D requires some consid-

eration of the grazing-incidence geometry. It turns out that

the Rayleigh resolution of the KB mirror system is somewhat
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higher than the result one would expect by application of the

Rayleigh limit to the apparent size of the mirrors.

To compute the Rayleigh limit for grazing-incidence

geometry we consider the geometry of Fig. 14 which shows

a KB mirror with grazing angle � (greatly exaggerated for

clarity) and back focal distance F. We place the origin at the

center of the mirror and assume that the focus is located at

position ðX;YÞ with X = F cos � and Y = F sin �. The red lines

are the two marginal rays reflected from the front and rear

edges of the mirror and pass through the focus. The effective

window size of the mirror is the separation D of these rays at a

distance F behind the focus, measured perpendicularly to the

local optical axis.

To compute D we need to determine the coordinates

ðX1;Y1Þ and ðX2;Y2Þ of the points where the marginal rays

cross the line perpendicular to the optical axis. Fig. 15 contains

some additional notation to make the reasoning easier to

follow. Two similar sets of triangles can be identified, one set

with solid and another set with dashed lines. They both share

the same slope indicated by the orange line. The slope of both

sets of triangles (orange line) consists of two sections with

lengths R1 and R 01. If the length of P1 is known, the solid

similar triangles can be used to express R 01 as

R 01 ¼ R1

F

P1

: ð50Þ

From this relationship the location ðX1;Y1Þ can be expressed

by using the known sizes of the smaller and larger dashed

triangle,

X1 ¼ ðX þ L=2Þ 1þ F=P1ð Þ � L=2; ð51Þ

Y1 ¼ ðY ��h1Þ 1þ F=P1ð Þ þ�h1; ð52Þ

where 1þ F=P1 is the ratio by which the larger triangle is

larger then the smaller triangle with height Y ��h inside it.

To compute P1, Fig. 15 is re-drawn as shown in Fig. 16. From

here we see that

P1 ¼ Q1 þ F; ð53Þ

where

Q1 ¼ �h2
1 þ L2=4


 �1=2
cos �1; ð54Þ

�1 ¼ � þ arctan 2�h1 =Lð Þ: ð55Þ

Now all information is know to compute ðX1;Y1Þ.

Among similar lines the location of the upper edge ðX2;Y2Þ

can be computed using the notation indicated in Fig. 17. From

here we find that

X2 ¼ ðX � L=2Þ 1þ F=P2ð Þ þ L=2; ð56Þ

Y2 ¼ ðY ��h2Þ 1þ F=P2ð Þ þ�h2; ð57Þ

with

P2 ¼ F �Q2; ð58Þ
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Figure 15
Same as Fig. 14, but with some visual aid for computing ðX1;Y1Þ.

Figure 14
Cross-sectional sketch of a grazing-incidence mirror of size L, with the
focus located at ðX;YÞ.

Figure 16
Same as Fig. 15, but with more visual aid for computing ðX1;Y1Þ.

Figure 17
Same as Fig. 15, but with some visual aid for computing ðX2;Y2Þ.



Q2 ¼ �h2
2 þ L2=4


 �1=2
cos�2; ð59Þ

�2 ¼ � � arctan 2�h2=Lð Þ; ð60Þ

so that the effective window size is given by

D ¼ ðX2 � X1Þ
2
þ ðY2 � Y1Þ

2
� �1=2

: ð61Þ

To compute the effective window size for the system consid-

ered here we insert � = 3 mrad,  = 0.173 nm, L = 200 mm, and

F = 200 mm (horizontal focus) or F = 400 mm (vertical focus)

into the expressions derived above. The heights of the edges

are �h1 = 30 mm, �h2 = 52 mm (horizontal mirror) and �h1 =

17 mm, �h2 = 22 mm (vertical mirror). These values give an

effective window size of D = 716 mm in the horizontal direc-

tion and D = 624 mm in the vertical direction. These values

give a Rayleigh resolution limit of 48.3 nm � 111 nm (H, V),

which is smaller than one would obtain by a simple approx-

imation (57.7 nm � 115 nm).
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