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The continual evolution of photon sources and high-performance detectors

drives cutting-edge experiments that can produce very high throughput data

streams and generate large data volumes that are challenging to manage and

store. In these cases, efficient data transfer and processing architectures

that allow online image correction, data reduction or compression become

fundamental. This work investigates different technical options and methods

for data placement from the detector head to the processing computing

infrastructure, taking into account the particularities of modern modular high-

performance detectors. In order to compare realistic figures, the future ESRF

beamline dedicated to macromolecular X-ray crystallography, EBSL8, is taken

as an example, which will use a PSI JUNGFRAU 4M detector generating up

to 16 GB of data per second, operating continuously during several minutes.

Although such an experiment seems possible at the target speed with the

100 Gb s�1 network cards that are currently available, the simulations generated

highlight some potential bottlenecks when using a traditional software stack. An

evaluation of solutions is presented that implements remote direct memory

access (RDMA) over converged ethernet techniques. A synchronization

mechanism is proposed between a RDMA network interface card (RNIC)

and a graphics processing unit (GPU) accelerator in charge of the online data

processing. The placement of the detector images onto the GPU is made to

overlap with the computation carried out, potentially hiding the transfer

latencies. As a proof of concept, a detector simulator and a backend GPU

receiver with a rejection and compression algorithm suitable for a synchrotron

serial crystallography (SSX) experiment are developed. It is concluded that the

available transfer throughput from the RNIC to the GPU accelerator is at

present the major bottleneck in online processing for SSX experiments.

1. Introduction

Many X-ray experiments at synchrotron radiation and free-

electron laser facilities already produce data streams at

throughput rates that are beyond the capacity of classic

computer architectures. The imbalance between the potential

of analysis systems and the level of data flux issued from

detectors is further increased by various synchrotron upgrades

or enhancements in data-collection methods such as fine

slicing and continuous acquisition (Willmott, 2019). New

generation X-ray detectors have also become available,

featuring larger sensor areas, higher dynamic ranges, higher

pixel densities and faster acquisition rates. This leads to a big

data challenge and enforces the use of innovative software and

hardware (Leonarski et al., 2020).
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1.1. High-throughput online-processing bottlenecks

The standard workflow (acquisition, transfer, storage of all

data prior to batch processing) using new detectors working

at full capacity and high-throughput networks will put a

tremendous strain on computing and storage infrastructures.

Currently, the bottlenecks are inside the computer systems

themselves, on the data path from network card to processing

cores and then to storage units.

Remote direct memory access (RDMA) is a solution that

bypasses some of the major hardware and software bottle-

necks in high-performance computing (HPC) systems. It

offloads data movement from the central processing unit

(CPU) and ensures direct placing of data to their final desti-

nations, without extra copies.

This technology has attracted the interest of the detector

community, especially since the RDMA over converged

ethernet (RoCEv2) became available (Ibta, 2014).

In this article, we have chosen to use the new ESRF serial

crystallography EBSL8 experiment as an example case for the

challenges and methods investigated. This experiment will be

installed in the ID29 beamline and is due to be operational by

the end of 2021 (Coquelle et al., 2015).

1.2. Synchrotron serial crystallography challenges

Synchrotron serial crystallography (SSX) is among the

most demanding cases of photon science in terms of data

throughput. In a typical SSX experiment, a liquid crystalline

polymer (LCP) jet propels microcrystal samples in a pulsed

X-ray beam, as shown in Fig. 1. In the case of EBSL8, a

rotating chopper produces X-ray pulses synchronous to the

data-acquisition system. This enables the collection of alter-

nate dark and signaling images at a maximum rate of

2000 images s�1. When acquiring 4M pixel 16-bit images, such

a high repetition rate will result in a 128 Gb s�1 data stream.

This will produce nearly 1 TB of raw data in 1 min. Contin-

uous operation requires an efficient online data-reduction

scheme.

1.3. The JUNGFRAU detector

The JUNGFRAU detector (Mozzanica et al., 2018) was

developed at the Paul Scherrer Institut (PSI, Switzerland). It

was initially designed for free-electron laser experiments but

its characteristics are well adapted to other applications with

pulsed beams, such as SSX experiments. A specific char-

acteristic of the JUNGFRAU detector is automatic selection

of the gain level for each individual pixel, depending on the

signal detected. The photon count is derived from the energy

deposited in each pixel, which has to be computed from the

raw digital value by subtracting a pedestal offset of a previous

dark image and dividing by a gain factor. Three different

pedestal values and gain-factor values are needed for each

pixel. Thus, this adds up to 24 million correction coefficients

for a 4M detector. Hence, the processing of a single JUNG-

FRAU 4M raw-data frame to produce a final image requires

4 million 16-bit integer subtractions and 4 million 32-bit

floating-point divisions.

1.4. Graphic processing unit accelerators

The computationally intensive conversion of raw data

produced by a detector like the JUNGFRAU detector and

their subsequent online processing imposes the use of

massively parallel computing engines. Graphic processing

units (GPUs) are now routinely used in high-performance and

scientific computing applications because of their superior

performance and ease of use. These are the best candidates to

treat the data streams produced in SSX experiments.

During the time slot available between two images, the

GPU can perform the raw-data correction, followed by the

image rejection or compression. However, to sustain this type

of data treatment for a long duration, it is essential to transfer

the detector data into the GPU memory

continuously and to trigger the events

required to synchronize computation

and data flow. This is the purpose of

the RDMA techniques investigated in

this work.

1.5. Proof of concept

Commercially available detectors

commonly use either proprietary or

10 Gb ethernet links. As a proof of

concept, we have emulated a detector

with a Linux workstation using a

100 Gb s�1 ethernet RDMA network

interface card (RNIC) from Mellanox

Technologies. This test bench aims at

exploring and leveraging RDMA/zero-

copy techniques and online GPU data-

processing capabilities.

Firstly, we verified that the RNIC was

able to keep up with the expected
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Figure 1
An example of a serial crystallography setup. The main components are the LCP crystal jet, the
JUNGFRAU 4M detector and the rotating chopper (Source: Daniele De Sanctis, ESRF and Aldo
Mozzanica, PSI).



throughput when transferring data to CPU memory. Then

we proposed an efficient synchronization mechanism between

the RNIC and the GPU. It appears that this transfer, from the

RNIC to the GPU accelerator, is capped by the computer

internal-bus throughput that might be lower than the

100 Gb s�1 of the network link.

During the time slot available between subsequent frames,

we were able to perform the conversion of the JUNGFRAU

detector raw data and the image rejection using a very basic

Bragg’s peaks counting algorithm. As an alternative to image

rejection, we implemented a compression algorithm into the

compressed sparse row (CSR) sparse matrix format.

Finally, the processed data were stored in a CPU memory

buffer. In the scope of this article, we do not address the

challenge of high-bandwidth backup to non-volatile file

systems.

2. High-throughput RDMA data transfer

In a typical high-performance detector, readout electronics

monitor the photon sensors and transfer acquisition data at

high speed into an internal local memory. Such an embedded

system uses field programmable gate arrays (FPGAs) with a

limited power budget. These FPGAs are not well adapted

to implement high-level network protocols, which require

complex software stacks such as the transmission control

protocol (TCP), featuring sophisticated error handling and

automatic data re-transmission. Therefore, the detector elec-

tronics generally implement single-sided data transfer to the

computing unit, such as the user datagram protocol (UDP).

2.1. Limitations of conventional data transfer

The most recent generations of NICs support 200 Gb s�1

(Mellanox, 2019). However, when using the traditional soft-

ware library (socket API), packet losses might be experienced

and they are not dropped during the transmission phase but

within the operating system. This is a well known flaw (Price,

2019), related to the inner complexity of the network stack.

Many time-consuming tasks are executed under the hood:

data copies from/to the user and kernel memory space,

complex interrupt handling and context-switches, etc.

Fine-tuning of the operating system, e.g. increasing multiple

buffer size, carefully allocating interrupt handling and

disabling the Linux kernel from pre-emptively scheduling

tasks onto the core dedicated to the receiving task, enables

higher rates to be achieved (Marek, 2015), but the result does

not scale well above 10 Gb s�1. Such a setup has been

implemented in the field of X-ray science for the SLS detector

software (Homs, 2019) and successfully tested with a PSI Eiger

500K detector featuring two 10 Gb s�1 ethernet links. It

successfully aggregated 5 Gb s�1 on each link.

The data plane development kit (DPDK) (Intel, 2015) is an

interesting framework which consistently implements these

principles: the whole application code runs in user space and

stays busy polling the NIC to achieve low latency.

2.2. Overview of DMA and RDMA

In modern computers, DMA controllers are located in

peripheral devices and handle data transfer to and from the

main memory without CPU intervention, leaving it free for

other tasks. Some application software configures the DMA

controller with a list of source and destination memory

descriptors. Their processing proceeds in two steps. First the

translation of the virtual addresses given by the application

into physical addresses used by the DMA engine, and then

the memory buffer must be pinned. Indeed those physical

memory pages can be scattered and one must prevent the

memory management unit from moving them during a

DMA transfer.

RDMA is the generalization of DMA between remotely

connected computers equipped with dedicated NIC or FPGA

boards. The distinct advantage of this data-transfer solution is

to bypass the CPU and operating system and to move ingress

data directly into their final destination. An overview of

RDMA can be found in the work of Romanow & Bailey

(2003), and performance and best-practice studies can be

found in the work of MacArthur & Russell (2012). Many

authors have investigated RDMA performance in the HPC

field (Tsai & Zhang, 2017; Wang et al., 2018) at research

facilities. Mohr performed a comprehensive evaluation of the

upgrade of the fast-acquisition system at CERN and showed

the key advantages (Mohr, 2016).

Several RDMA implementations are available but only a

few of them are compatible with the requirement for high

performance over long-distance communication. The internet

wide area RDMA protocol (iWARP) (Chelsio, 2019) is built

on top of the TCP stack to ensure lossless transmissions on

ethernet. We did not evaluate this solution as it relies on the

TCP stack, which is incompatible with detector electronics.

Interestingly, there are preliminary studies (Grant et al., 2015;

Lenkiewicz et al., 2018) of a UDP/iWARP implementation

which deserve further investigation.

2.2.1. RDMA over converged ethernet. Infiniband (IB)

from Mellanox Technologies (now NVIDIA) was the first

implementation of RDMA. It uses dedicated hardware:

RNIC, switches and cables. RoCE is an alternate solution

that makes IB compatible with already existing ethernet

infrastructures.

There are two implementations of RoCE: RoCEv1 is non-

routable by ethernet switches, while RoCEv2, which encap-

sulates the RDMA payload in a UDP/IP datagram, is routable

at the price of a slight overhead.

The vendor roadmap favors a wider adoption of RoCE,

promising RDMA performances and seamless integration into

existing infrastructure (Eitan, 2018). SoftRDMA (Miao et al.,

2017) is a software implementation of RoCE on a standard

NIC that may be valuable for low-cost solutions or research

and development purposes.

2.2.2. Feasibility of RoCE implementation in real detectors.
It is feasible to exploit RoCE features in the context of

detector data transfer: an intellectual property core (IP)

implementing a subset of the RoCEv2 core in FPGA was
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designed (Mansour et al., 2018) and

implements a parallel calculation of

the RoCE invariant check redundancy

code. To our knowledge, it was the first

RoCEv2 IP publicly available until the

recently announced Xilinx embedded

RDMA-enabled NIC (ERNIC) (Xilinx,

2019).

A system on a chip or a dedicated

integrated circuit may also be consid-

ered to implement the RoCEv2

protocol as in the work of Go et al.

(2017) or such as the BlueField chip

(Mellanox, 2018a).

3. Evaluation of high-throughput data-transfer
protocols

This work is part of a wider RASHPA project, a data-acqui-

sition framework optimized for 2D X-ray detectors that is

suffciently generic and scalable to be used in a wide diversity

of new high-performance detector developments (Mentec et

al., 2014).

With this target in mind, we conducted a benchmark

campaign covering several protocols matching the following

requirements: (i) one-way communication without acknowl-

edgement of transfer completion, (ii) compatible with the

existing ESRF network infrastructure (ethernet links and

switches), (iii) suitable for readout-electronic FPGAs and

(iv) featuring capability to control the data destination

addresses in the receiver memory from the detector.

On the receiver side, we have carried out the necessary

tuning of the operating system to guarantee proper operation

at full throughput: checking IRQ (interrupt request) and CPU

affinity (Mellanox, 2018b), setting real-time scheduler attri-

butes of the control process, and increasing the network

buffer size.

3.1. Methodology

Benchmarks of conventional non-RDMA and RDMA-

based data-transfer software applications were carried out

by transferring packets tagged with an incrementing packet-

sequence number to detect packet drops at the destination. To

estimate the highest achievable bandwidth, we decreased the

throughput until we obtained a transfer without losses for a

given transfer size. The three technology families evaluated

were:

(i) Socket solution. This is the conventional method relying

on the socket library. It has been widely used since the start of

the internet and has continuously evolved and adapted over

time but no longer suits new hardware. However, some opti-

mizations are still possible by tweaking the operating system.

(ii) Hybrid solution. This improves conventional applica-

tions leveraging the messaging accelerator library (Mellanox/

libvma, Mellanox Technologies), a software library which

intercepts system calls to the socket API and transparently

replaces them using RDMA operations.

(iii) Full RDMA solution, capable of reaching the target

rate. We have evaluated three versions: WRITE, SEND and

RAW. All are based on the libibverbs eponym API. Both

WRITE and SEND packets conform to the RoCEv2 format

but differ in the way they manage the destination memory

address. In a WRITE operation, the destination address is

chosen at the time of sending and embedded in the packet

with the data. The receiver RNIC is then fully autonomous.

On the other hand, SEND lets the data receiver resolve the

memory address it writes data to, upon reception of said data.

Some CPU effort is required; with the RAW API the RNIC

hardware shall offload any incoming ethernet packet,

according to configurable ‘steering rules’. This mode under-

exploits some of the RNIC high-level capabilities.

3.2. Benchmark of transfer protocols

Our results confirmed that the socket API and the hybrid

methods suffer from packet drops. The measured throughputs

are also far below the theoretical expectations for these

methods. This is detrimental to our study and enforces the use

of RDMA.

3.2.1. A socket and hybrid solution comparison. Table 1

presents a comparison of UDP using classic socket API

without (column 1: UDP socket) or with Linux kernel opti-

mization (column 2: UDP + kernel tuning), and the acceler-

ated code with the VMA library (Mellanox/libvma) (column 3:

UDP-VMA).

The results are more reliable when sending data always

to the same destination address than when sending data to

100000 different memory addresses. This is because of the

limited size of the RNIC cache memory.

3.2.2. RDMA solutions comparison. Table 2 presents a

comparison of RDMA-based solutions (column 1, RoCE-v2

SEND; column 2, RoCE-v2 WRITE; and column 3, RAW);

these methods have been presented in Section 3.1. For RDMA

transfer, we did not notice any packet drop and we measured

similar performance close to the theoretical maximum.

For compliance with the RASHPA project, the WRITE

method was chosen and used for the rest of the project. In this

operation mode, the detector device must compute on the fly
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Table 1
Lowest observed bandwidths (in Gb s�1) causing packet drops with the usual (non-RDMA)
protocol and the hybrid solutions when transmitting 107 packets using Mellanox Technologies
ConnectX-5 EN RNIC, either to one or many destination addresses (addr_num = 1 or 100 000).

Packets are not lost in the link during transfer but during Linux kernel UDP/IP stack processing.

UDP socket UDP + kernel tuning† UDP + VMA

addr_num: 1 1 1 100 000 1 100 000

Packet size (bytes)
2048 7.2 6.0 10.9 11 26.7 26.1
4096 9.1 6.4 22.8 23.1 51.2 45
8246‡ 9.8 5.2 36.7 27.4 77.0 39.7

† Increased system buffer. ‡ JUNGFRAU packet size.



two lists of memory addresses for the source, and for the

destination as well.

3.2.3. System load during RDMA transfer. In our tests, even

with a RDMA transfer, one CPU core was permanently

running at 100% because the main application is continuously

polling the RNIC transfer completion queue in order to be

notified of the end of transfer. An interrupt handler can take

care of this task, notably decreasing the CPU usage at the

price of a slight increase in latency. However, we also observed

packet drops at the highest throughput values when using such

an interrupt handler.

4. RDMA-assisted online GPU image processing

Processing in real-time large datasets, such as those produced

in SSX experiments, is a major challenge. This computation-

ally intensive task would put a lot of strain on the CPU

without hardware accelerators such as GPUs.

GPU accelerators efficiently handle massively parallel

operations but are not fully autonomous. A CPU application is

involved in orchestrating data transfers from the host CPU

to the GPU device and back. Our control application also pre-

launches the GPU kernels (code running on GPU) so that

their execution begins as soon as the data are available. The

actual execution is delayed until the occurrence of a RDMA

transfer completion event. This mechanism is presented in the

next section.

For the sake of efficiency, we have implemented a data-

processing loop with a sequence of three operations described

below:

(i) Data transfer to GPU memory through the peripheral

component interconnect express (PCIe). While the delivery

order of UDP packets is not guaranteed, no reshuffle step

is required thanks to the WRITE API which specifies the

destination memory address in each packet.

(ii) Conversion of the detector raw data (JUNGFRAU in

our example) into floating-point values; this involves image

rejection or compression.

(iii) Transfer of the computational results from the GPU to

a large CPU memory buffer when the image is not rejected.

These sequences are CUDA streams that can be executed in

parallel. This transforms the previous loop into a three-stage

pipeline in which transfers overlap with computations.

4.1. GPU accelerator and RDMA synchronization
mechanism

Three heterogeneous systems are involved in our design: a

RNIC, a CPU and a GPU. However, to date, a RNIC cannot

directly trigger a GPU event so we have designed our own

cascaded synchronization procedure described below:

(i) By design, the receiver CPU is not informed of the on-

going RDMA traffic. However, it is possible to notify the CPU

of an event: when a detector has sent a full image it uses a

variant of the WRITE API that embeds a 32-bit event value in

its payload.

(ii) Upon notification, the CPU application in turn

triggers the GPU stream execution. A memory lock

mechanism relying on CUDA stream memory operation

(cuStreamWaitValue32) initiates, with a minimal latency,

the actions previously put on hold in their streams. This

mechanism removes the launch overhead detrimental to real-

time data processing, as shown in Fig. 2.
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Table 2
Observed bandwidths (in Gb s�1) from RNIC to CPU memory using
RDMA.

The RoCE implementations use the RNIC capabilities efficiently. The SEND
API is similar to a stream transfer. The WRITE API specifies, in addition, the
destination memory address. The RAW API does not require a specific packet
format.

Packet size
(bytes) RoCE-v2 SEND RoCE-v2 WRITE RDMA RAW

2048 94.5 95.2 33.3
4096 97.6 97.5 60.5
8246 N/A† N/A† 99.1

† RoCE maximum payload (MTU) is 4096.

Figure 2
NVIDIA visual profiler snapshot of launch times. Implementing standard launches from the host upon completion (left) causes driver overhead in the
range of tens of microseconds per operation. Using CUDA stream memory operation (right) decreases latency to a few microseconds.



As shown in Fig. 3, the GPU application implements several

double buffers so that the ongoing transfer is carried out in

one buffer while computation is alternatively carried out in

the second buffer. At the end of an RDMA transfer, a

completion event triggers three simultaneous overlapping

actions:

(i) The start of a CPU to GPU transfer data chunk #n + 2.

(ii) Consecutive kernel computations of data chunk #n + 1.

(iii) Transfer from the GPU to a large memory buffer on the

CPU of the result of data chunk #n (if the image is not

rejected).

When a non-pertinent image is rejected, the third step does

not happen. Therefore, the result of the veto kernel algorithm

shall conditionally trigger the transfer. As the condition is not

evaluated prior to the launch, we use another stream memory

operation lock triggered by the veto function. A credit-based

algorithm controls the number of queued transfers, since the

queue size is limited.

4.2. Development and evaluation test bench

The test bench compatible with high-throughput detectors

has been upgraded with a GPU accelerator, as shown in Fig. 4.

4.3. NVIDIA GPUDirect evaluation

One key point for efficient GPU application is the optimi-

zation of the data-transfer bandwidth from CPU to GPU

memory. Transfer speed from CPU virtual memory to GPU

device memory is severely limited because movable memory

must be pinned before DMA transfer, which takes time.

However, allocating explicitly pinned host memory boosts

speed, as shown in Fig. 5.

The GPU device memory may also be directly accessed by

the RNIC (peer-to-peer DMA), removing the transfer step

from CPU to GPU memory and decreasing latency. Quadro

and Tesla NVIDIA GPUs feature this so-called GPUDirect

technology, which was developed conjointly by NVIDIA and

Mellanox Technologies (Shainer et al., 2011).

It appears that GPUDirect throughput might be limited on

some hardware by PCIe root complex poorly handling peer-

to-peer transfer (Rossetti, 2014). This explains why NVIDIA

is purposely integrating PCIe-switch chips into their high-

performance DGX computers as a workaround for this issue.

The maximum possible speed for data processing is defined

by the minimum of:

(i) RNIC to CPU speed, which is related to the length of the

packet on the network (the width of the region of interest in

the images that are sent).

(ii) CPU to GPU speed, which depends on the size and

number of images processed in the GPU; it is wise to transfer

either a large image or a bunch of small images.

For comparison purposes, Fig. 5 also exposes the perfor-

mance of the ZeroMQ protocol, even if it relies on TCP/IP and

therefore might not be easily embedded in a detector FPGA.

The latest version of the CrystFEL software suite for SSX

experiments has recently been upgraded with a ZeroMQ/

MessagePack interface (White, 2020). ZeroMQ is an opti-

mized socket library, originally developed for high-frequency

trading applications where microseconds matter, and then

largely reused by the scientific community (ZeroMQ, 2019). It

appears that ZeroMQ is not well adapted to RDMA hardware

and performances stay below 6 Gb s�1 depending on the

selected messaging pattern: request/reply as in CrystFEL.

Results are slightly better for push/pull patterns but are not

much improved by the VMA library.

4.4. Detector raw-data conversion to float

As stated in Section 1.3, the JUNGFRAU detector has

three gain levels for each pixel, stored in two of the most

significant bits of the raw data. The pixel value is stored in the

14 remaining bits as an integer. Therefore, the conversion to

the integrated charge is
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Figure 3
The GPU processing pipeline from top to bottom: DMA transfer, CPU to GPU transfer, data processing, GPU to CPU transfer. The pipeline involves
three heterogeneous systems: RNIC, CPU and GPU. The RNIC cannot directly synchronize the GPU. Each stage in the execution pipeline is
synchronized by an RDMA event or conditionally by the veto kernel result.



Pixel ðkeVÞ ¼
Raw

i; j
½ADU� � Pedei; j ½ADU�

Gaink;i; j ½ADU=keV�
;

where k is the gain level, and the raw data and pedestal are

expressed in arbitrary detector units (ADU).

This computation is inherently parallel. The gain factors are

stored in a large constant dataset, i.e. they remain in the GPU

memory, and only require one transfer from the CPU memory

at the beginning of the process. Pedestal data are acquired

interleaved with image data when the chopper is cutting the

beam. These dark images are used to update the pedestal

value for the highest gain. For the two other possible gain

regimes, their pedestal value is expected to be constant.

4.5. Data rejection or compression

In this work, our aim is not to propose any original or highly

optimized algorithms but rather to assess a low-latency GPU/

RNIC integration. Therefore, all the evaluated GPU kernels

are extremely simple to allow a fast evaluation compatible

with the 1 ms time slot counting the raw-data processing. More

crystallographic sensible algorithms still have to be developed.

One simplistic rejection algorithm counts the intense pixels

(considered as Bragg’s peaks) in each image, without noise

correction or outlier removal. A first threshold defines the

signal needed for a pixel to be counted as a Bragg’s peak,

while a second threshold defines the minimum number of such

pixels in an image to be accepted. Such counting has been

implemented using atomic addition and shared memory.
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Figure 5
Transfer throughput from CPU and RNIC to GPU memory. The transfers from pinned memory are more efficient than from virtual memory. Using
RDMA technology, full bandwidth was achieved from 1 KB. ZeroMQ transfers, which are used by the CrystFEL online reduction tool, are capped under
10 Gb s�1.

Figure 4
An overview of the maximum throughput in data paths (1, 2.1, 2.2, 3) inside a backend processing computer. Because of the lack of existing RDMA-
compatible detectors, such a detector was simulated by a workstation. The processing computer embeds a NVIDIA QUADRO P6000 GPU accelerator.
The GPUDirect technology (step 2) allows bypassing the extra copy in the central memory (steps 2.1 and 2.2).



As an alternative to rejection, we have implemented

compression to the CSR matrix format using a classical

parallel scan/reduction algorithm (Blelloch, 1989). The meta-

programming capabilities of PyCUDA (Klöckner et al., 2013)

were used to generate the CUDA code of the cumulative-sum

algorithm used in CSR matrix compression. The storage size

of the result matrix was chosen a priori given the expected

dataset sparsity.

It was not possible to use the dense-to-sparse conversion

function provided in the NVIDIA cuSPARSE library. This

highly efficient library has hidden memory allocation/deal-

location, as emphasized in the work of Yang et al. (2018),

preventing kernel execution from overlapping with data

transfer.

Table 3 summarizes the kernel execution time observed

with the NVIDIA visual profiler tool for the aforementioned

algorithms.

5. Conclusions

We have evaluated the feasibility of RDMA data transfer in

the frame of high-performance X-ray detector development

using gigabit ethernet data links after confirming the flaws of

the standard socket API at 100 Gb s�1. It appears that one-

way communication, a major challenge to stay compatible

with detector embedded electronics, is possible using RoCEv2

unreliable datagram queue pair and WRITE verb API and

commercially available RNICs in data-receiver computers.

The expected throughput is effectively achieved without

usage of the destination CPU without packet drop and is

solely limited by the RNIC packet per second message rates

for small-size payloads.

The data flow could be dispatched to multiple data-

processing accelerators in the destination computer because

the memory address at destination is set by the detector

source.

One can address online data-processing challenges, as

encountered in SSX experiments, with GPU accelerators, for

algorithms compatible with the reduced time slot available

using a data-analysis pipeline and making simultaneous data

transfers and computations.

We proposed a synchronization mechanism with the GPU

accelerator that minimizes the kernel start latency using

stream memory operations. Required events such as the

end of RDMA transfer have been implemented using

WRITE_WITH_IMM to notify the CPU application scheduling

the processing pipeline.

Data transfer straight into GPU memory was evaluated

with a GPU device featuring PCIe peer-to-peer capability

(GPUDirect). Latency was decreased but throughput was also

affected by hardware flaws.

Our work has also highlighted that the main limitation to

performing online data analysis remains the data-transfer rate

from PCIe to GPU memory (capped at 88 Gb s�1 using our

hardware), as it is now slower than the network throughput.

Release of new PCIes (generation 4) and other emerging high-

speed GPU buses, such as NVLINK2, will contribute to a

better exploitation of the full GPU processing speed.

Based on the outcome of our work, one can draw some

conclusions, as far as the serial crystallography example

featuring a JUNGFRAU detector is concerned: in the

UDP-based design, 9 Gb s�1 data transfer is the limit, with

unavoidable packet drops in continuous operation. In a first

step of improvement, with a RDMA-compatible NIC, using

the VMA library and without changing the application soft-

ware, one can reach almost 26 Gb s�1. At the price of the

rewrite of the application code with RDMA API, it is defi-

nitively possible to saturate a 100 Gb s�1 link without a

packet drop.

The use of RDMA appears to be a very good solution to

optimize the data transfer from the detector to a data receiver,

especially the RoCEv2 technology preserving existing

ethernet infrastructure. To our knowledge, only a few other

actors (de Almeida et al., 2018) are working on a RoCE

implementation compatible with the requirements of X-ray

detector devices.

5.1. Future work

RoCEv2 routable properties make it also possible to fan

out detector data to multiple-processing units for parallel

processing, or the reverse – gathering in a single GPU accel-

erator the data flows from multiple detector modules. This

functionality is a core feature of the RASHPA framework

currently under development at the ESRF.

For more efficient low-latency GPU processing, we are

considering minimizing the number of kernel launches with
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Table 3
GPU processing times on NVIDIA QUADRO P6000 of the proposed online algorithms, as shown using a NVIDIA profiler.

They are compatible with the available 1 ms time slot of the foreseen SSX experiment. For comparison with real-world use cases, we provide numbers for the yet to
be published peak_finder algorithm from the GPU pyFAI suite. This algorithm implements the peakfinder8 algorithm from CrystFEL on GPUs.

Kernel execution time (in nanoseconds for one image of the given size)

Data batch
(image + pedestal)

JUNGFRAU raw-data
pre-processing†

Pre-processing + ‘simplistic’
Bragg’s peaks count†

Pre-processing +
CSR matrix compression‡

Peak_finder

(pyFAI)§

No. of image � size
10 � 500K pixels 28 31 147 N/A
10 � 4M pixels 219 240 469 2167
10 � 2070 � 2167 (JUNGFRAU) 212 240 492 N/A

† Performed on a stack of images. ‡ Performed sequentially. § OpenCL implementation, for reference.



the use of continuously spinning GPU codes, as implemented

for an adaptive optics controller in the work of Perret et

al. (2016). We also plan to evaluate the new CUDA task

graphs model for define-once-run-repeatedly execution flow

(Ramarao, 2018) to decrease overheads associated with the

submission of each GPU operation.

5.2. Methods and reproducibility

Our benchmarks were run on a Dell T730 computer with

two Intel Xeon CPUs E5-2643 v3 @ 3.40 GHz and 128 GB

memory used as a detector simulator. The 100 Gb s�1 network

card is a Mellanox ConnectX-5 EN in a PCIe generation 3 �

16 interface, which is directly connected by an optical fiber to

the analysis computer. This network card behaves similarly to

a standard NIC for TCP-UDP/IP but decodes RoCE data-

grams and transparently offloads the Linux kernel (4.16.0-

0.bpo.2-amd64) and the CPU. The Mellanox Technologies

stack in use is OFED-4.4-1.0.0.

The data-receiver computer is a Dell T740 (4.16.0-0.bpo.2-

amd64) with two Intel(R) Xeon(R) Gold 6134 CPUs @

3.20 GHz and 192 GB memory, and a ConnectX-5 EN and

OFED-4.6-1.0.1. The GPU is a NVIDIA Quadro P6000 with

24 GB memory in a PCIe generation 3� 16 slot located on the

same root complex as the RNIC.

Test images were extracted from a lysozyme dataset

provided by Dectris (2019) to advertise the EIGER 4M

detector for protein crystallography. Invalid pixels were

removed from the images. All frames were processed to add a

random pedestal and to apply a gain factor, and the gain bits

have been set accordingly.

Three sets of data were generated for different detector

sizes: 512 � 1024 pixels, 2048 � 2048 pixels and 128 � 8246

pixels (JUNGFRAU datagram format, four lines of 1024

pixels). All the datasets contain images and pedestals.

Application and GPU code are available from the ESRF

GitLab repository, including Python scripts to produce data-

sets and measurements. A small subset of the code relies on an

ESRF internally developed library LIBDANCE for commu-

nication and control of embedded systems but access requests

from the scientific community are welcome.

Acknowledgements

Thanks to Marie Ruat and Paolo Busca from the ESRF

Detector Group, Shibom Basu from EMBL and Bernd

Schmitt’s team at PSI for sharing early data from the

JUNGFRAU detector. Daniele De Sanctis in charge of the

upgrade of the ID29 serial crystallography line provided us

with valuable input on their project. We would also like to

thank Alejandro Homs and Samuel Debionne and the ESRF-

LIMA team for their deep knowledge of detectors and inte-

gration in the Linux kernel. Wassim Mansour has made

several fruitful preliminary works on FPGA RoCEv2 imple-

mentation in detector heads. Nothing could have been carried

out without Pablo Fajardo who initiated the RASHPA project

during the CRISP EU project and pursued in the context of

the Horizon 2020 EUCALL project (work package WP5,

ultra-fast data acquisition UFDAC).

References

Almeida, H. de, Magalhaes, D., Moraes, M. & Polli, J. (2018).
Proceedings of the 16th International Conference on Accelerator
and Large Experimental Control Systems (ICALEPCS 2017),
8–13 October 2017, Barcelona, Spain. THBPA03.

Blelloch, G. E. (1989). IEEE Trans. Comput. 38, 1526–1538.
Chelsio (2019). Chelsio Communications, https://www.chelsio.com/

nic/rdma-iwarp/. Accessed 9 April 2019.
Coquelle, N., Brewster, A. S., Kapp, U., Shilova, A., Weinhausen, B.,

Burghammer, M. & Colletier, J.-P. (2015). Acta Cryst. D71,
1184–1196.

Dectris (2019). EIGER X for Synchrotron, https://www.dectris.com/
products/eiger/eiger-x-for-synchrotron. Accessed 6 June 2019.

Eitan, Z. (2018). Mellanox keynote SIGCOMM 2018, http://
conferences2.sigcomm.org/sigcomm/2018/files/slides/kbnet/
keynote_2.pdf. Accessed 8 November 2018.

Go, Y., Jamshed, M. A., Moon, Y., Hwang, C. & Park, K. (2017).
Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2017), 27–29 March
2017, Boston, MA, USA, pp. 83–96. USENIX Association.

Grant, R. E., Rashti, M. J., Balaji, P. & Afsahi, A. (2015). Parallel
Comput. 48, 15–39.

Homs, A. (2019). About SLS detector UDP receivers. Private
communication.

Ibta (2014). InfiniBand Trade Association, https://www.infinibandta.
org/ibta-specification/. Accessed 20 April 2020.

Intel (2015). DPDK Data Plane Development Kit, https://www.
dpdk.org/. Accessed 8 November 2018.
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