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Modern detectors used at synchrotron tomographic microscopy beamlines

typically have sensors with more than 4–5 mega-pixels and are capable of

acquiring 100–1000 frames per second at full frame. As a consequence, a data

rate of a few TB per day can easily be exceeded, reaching peaks of a few tens of

TB per day for time-resolved tomographic experiments. This data needs to be

post-processed, analysed, stored and possibly transferred, imposing a significant

burden onto the IT infrastructure. Compression of tomographic data, as

routinely done for diffraction experiments, is therefore highly desirable. This

study considers a set of representative datasets and investigates the effect of

lossy compression of the original X-ray projections onto the final tomographic

reconstructions. It demonstrates that a compression factor of at least three to

four times does not generally impact the reconstruction quality. Potentially,

compression with this factor could therefore be used in a transparent way to the

user community, for instance, prior to data archiving. Higher factors (six to eight

times) can be achieved for tomographic volumes with a high signal-to-noise ratio

as it is the case for phase-retrieved datasets. Although a relationship between

the dataset signal-to-noise ratio and a safe compression factor exists, this is not

simple and, even considering additional dataset characteristics such as image

entropy and high-frequency content variation, the automatic optimization of the

compression factor for each single dataset, beyond the conservative factor of

three to four, is not straightforward.

1. Introduction

Modern sCMOS detectors routinely used at synchrotron

imaging beamlines throughout the world feature sensors with

more than 5 mega-pixels. With frame rates as high as 100 Hz

and the high brilliance and flux of synchrotron sources, full

tomographic datasets can be acquired in a few minutes.

Advanced CMOS technology, providing frame rates in the

kHz regime, pushes the time resolution into the sub-second

regime.

The different datasets acquired at Paul Scherrer Institute’s

(PSI) TOMCAT beamline (Stampanoni et al., 2006) can

roughly be subdivided into two large classes. Standard datasets

consist of 1500–2000 images of about 4–5 mega-pixels each,

quantized at 16 bits per sample. A single standard dataset thus

amounts to a total of about 15–20 GB, and can be recon-

structed to a volumetric image of about 8–15 giga-voxels.

Single ‘fast’ datasets, on the other hand, are smaller, since only

a fraction of the projections is typically acquired, and show a

considerably worse signal-to-noise ratio. In time-resolved

experiments, usually, a sequence of multiple ‘fast’ datasets is

acquired in a short time span, leading quickly to large data

volumes, despite the reduced size of single tomograms.

Raw images are currently not compressed, leading to

significant network traffic during data transfer from the
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detector through the entire tomographic reconstruction pipe-

line and to storage, both locally and remotely to the users’

institutions. For instance, TOMCAT’s users and staff typically

transfer about 1 PB of data to and from PSI’s storage systems

every year.

Apart from core operation, the sheer size of tomographic

data is problematic with respect to further aspects. The

scientific community in Europe and worldwide is moving

towards an Open Data Policy: after an embargo period, the

acquired data should become available to the community.

Scientific journals and national funding agencies (Hahnel,

2015) are also increasingly requiring open access to scientific

data. In this context, large-scale facilities are starting to adopt

Open Data Policies and offer long-term archiving options

(ESRF, 2015). The chosen archiving solution might be local

on-site, dislocated at super-computing centres or similar

specialized institutions, or distributed using cloud technology.

Furthermore, efficient data analysis and quantification of

such ‘big data’ demands hardware infrastructure not always

available on-site: transfer of huge chunks of data to super-

computing centres around the planet is slowly becoming

routine. Even though cost for TB and transfer rates improve

over time, for both storage and transfer, at least in the short

term, less data would be extremely beneficial, lead to reduced

cost but also immediately significantly ease the every day work

thanks to the increased mobility of data.

For these reasons, it is highly relevant to tackle image

compression of X-ray projections for tomographic imaging,

our ‘raw’ data, and to investigate the effects of doing so onto

reconstruction results. The remainder of this section describes

related prior work. Section 2 deals with the software infra-

structure used for studying the question of how to practically

apply and evaluate compression. Sections 3 and 4 present

our compression experiments and their results. The remaining

sections discuss the outcome and give our conclusions.

1.1. Lossless compression

In terms of image compression methods, one needs to

largely distinguish between lossless and lossy methods.

Focusing on the former first, the core idea of lossless

compression is to recode the original signal in a way mini-

mizing redundancy (maximizing information entropy), thus

keeping full information while consuming minimal memory.

Well known examples include gzip (https://www.gnu.org/soft

ware/gzip/) or bzip2 (http://bzip.org/).

Lossless compression would clearly be ideal, but unfortu-

nately a compression ratio of 1:2 will likely not be exceeded

for images typically acquired at third-generation tomographic

microscopy beamlines. The lower byte of a typical 16-bit X-ray

projection acquired with ‘standard’ settings is particularly

affected by noise. Noise is, by nature, non-redundant (i.e. of

high information entropy) and thus hardly compressible. Even

if the higher byte was to compress ideally, the lower byte

would be kept, leading to the said ratio.

Actual lossless compression experiments of sample datasets

with different lossless compression algorithms support this

theoretical deduction, and real compression ratios are typi-

cally worse than the 1:2 prediction.

1.2. Lossy compression

While one can already expect to see a certain size reduction

when applying lossless compression, more memory savings

require lossy methods. This approach can actually be consid-

ered standard in most imaging settings for both professional

users and consumers.

In such an approach, the original signal is – to a limited

degree – modified such that it compresses better, while

remaining sufficiently similar to the original data. Usually, this

is done by transforming the signal into sparsified coefficients

of a wavelet, cosine or similar basis. Prominent examples

for such compression methods are the JPEG image format

(Pennebaker & Mitchell, 1993), or any modern video codec

such as H.264 (ITU, 2017) or H.265/HEVC (ITU, 2016). When

only removing some small coefficients, the image will practi-

cally look unaltered, but, from a certain point on, typical

artefacts will appear. These artefacts will often look blocky as

codecs usually process, for technical reasons, small square-

shaped image regions at a time. These blocks become visible

as soon as compression is applied excessively.

Lossy image compression has been a highly relevant topic

for many years, particularly due to its widespread use on

internet websites in general and social media in particular.

Quite regularly, new compression methods are suggested, and

studies compare the performance of different codecs. For

instance, Mozilla has extensively compared alternatives for its

internet browser Firefox (Mozilla Research, 2013). In general,

the focus usually rests on the problem of delivering optimal

visual appearance to a human viewer while not exceeding a

certain memory limit.

Also in the medical imaging field, to cope with the

tremendously increasing volume of digital images, selected

studies have investigated the effects of lossy compression on

the quality of medical pictures and their diagnostic potential

(Erickson, 2002; Seeram, 2006; Flint, 2012). Although

compression ratios of the raw (Bae & Whiting, 2001) or final

images between 1:5 and 1:15 seem adequate to guarantee

correct medical diagnosis (Koff et al., 2008; ESR, 2011), the

results vary between studies and strongly depend on the

imaging modality and used validation metrics. Despite

important efforts towards the promotion of the use of lossy

compression, this option is actually still rarely used in the

medical field, possibly also because of liability issues.

In the context of microscopic tomographic imaging as done

at synchrotron facilities, high resemblance is not enough: the

quantitative measurement needs to be as accurate as possible.

In a tomographic experiment, the original projections repre-

sent the raw measurement. Since the acquisition process is

tailored for each single experiment, the tomographic recon-

struction is not as standardized as in medical imaging but

represents a significant post-processing step that needs manual

tuning and optimization. At large-scale facilities, the original

raw projections are therefore the data that needs to be
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transferred from detector to storage as well as curated and

archived in a long-term fashion. However, scientific work is

not carried out on these raw images, but on the reconstructed

tomographic slices. Consequently, to assess the potential

effectiveness of lossy compression, the core question is: how

much lossy compression can be applied to X-ray projection

images before the compression artefacts detrimentally corrupt

the resulting tomographic reconstructions?

A recent study (Mason, 2014) found JPEG 2000 (Taubman

& Marcellin, 2002) to be a promising codec for the compres-

sion of tomographic microscopy data. A more methodic

investigation (Vogel, 2017) extended this earlier work to

consider different lossy image file formats, and different

ways to include compression at different stages of the data

processing pipeline. It was shown that a compression factor of

about four to five times is realistic. However, these results are

based on single slices only, and do not consider full volumetric

datasets. Recent work by Mancini et al. (2018), also limited to

a few representative datasets and a few slices, confirm these

factors, when JPEG XR is used.

2. Objective and methods

In this work, we take a pragmatic approach towards the

practical application of lossy compression. We focus on raw

projection data, i.e. images as acquired prior to flat-field

correction and reconstruction, and we investigate the simi-

larity of the final tomograms computed from a complete

compressed dataset to the equivalent reconstruction from

raw, uncompressed data. To ensure that lossy compression in

tomographic microscopy could become common practise in

the near future, we believe that this step should be seamlessly

integrated in the data acquisition pipeline and happen in an

automated way. We aim therefore at a safe maximal

compression factor that can be enforced by default without

significantly altering the qualitative and quantitative infor-

mation in the tomographic volumes, independently from the

type of sample investigated and scientific question. Higher

compression factors could be envisaged for selected experi-

ments, but their selection will most probably require human

control or support from specifically trained AI algorithms.

2.1. Compression

We compare two well established methods, JPEG 2000

(https://jpeg.org/jpeg2000/index.html) using OpenJPEG

(http://openjpeg.org/) and JPEG XR (https://jpeg.org/jpegxr/

index.html) using jxrlib (https://github.com/4creators/jxrlib).

Other common image formats such as WebP (https://devel

opers.google.com/speed/webp/) or HEIF (Hannuksela et al.,

2015) either do not support 16-bit intensity values or, despite

their hypothetical suitability, no appropriate implementation

seems to exist. They have thus been excluded from further

consideration.

In addition to these two standardized codecs, we also

consider a makeshift scheme of compressing images using

bzip2 after resetting (suspected) noise bits of low significance,

thus removing incompressible signal components (Chen &

Chuang, 2010). Despite its coarse nature, this method has the

advantage that it can be easily implemented, even in hard-

ware, and cheaply performed online on large datasets.

In all cases, we control the compression via a target

compression factor. Only OpenJPEG supports this directly as

argument. For the other two methods, we use interval bisec-

tion to find the respective parameter – a quality percentage for

jxrlib, and the number of least-significance bits to be reset for

bzip2 – leading to the desired target factor for a sample subset.

The raw images can be compressed independently. This

process can thus be highly parallelized, and its performance

depends largely on the number of available concurrent

compute nodes and the ability of the storage system to support

simultaneous read/write access. As we are using standard

formats, optimized hardware components may deliver even

higher performance.

The actual implementation used for this study was not

optimized for high throughput. It is therefore difficult to

discuss in an accurate manner the performance of a produc-

tion system. We are, however, confident that with appropriate

hardware such a system can be designed to provide very fast

data compression. In our experience, jxrlib tends to be almost

twice as fast as OpenJPEG and might represent the preferred

codec in terms of computational performance.

2.2. Evaluation

In general, quality assessment of tomographic reconstruc-

tions is a difficult problem. In our case, however, we are only

interested in additional errors introduced by lossy compres-

sion. Therefore, it is sufficient to treat a reconstruction from

uncompressed projections as ground truth, and to evaluate the

error of a compressed dataset by comparing it with the former

using simple numerical methods.

In this report, we compute the mean structural similarity

index measure (MSSIM) (Wang et al., 2004) with respect to

the uncompressed ground truth tomogram, yielding a value

between 1 (indicating equality) and 0 (indicating low simi-

larity). We set the constants and exponents of the SSIM

formula to the default values suggested by Wang et al. (2004)

and follow as well the same strategy concerning the weighting

function for computing pixel statistics. We define the dynamic

range as the difference between the highest and lowest grey-

level value within each full tomographic volume. We restrain

instead from any image downsampling recommended for

taking the viewing distance into account, since we are inter-

ested in changes in the structural information not as perceived

by the human eye but more by a machine.

Due to the massive size of the whole reconstructed tomo-

grams, the evaluation of each full 3D volume is done in a layer-

wise fashion: for every slice, we compute mean and variance of

the SSIM, and store the number of pixels. These individual

results are then merged to yield statistics for the entire volume

(Chan et al., 1979; Pébay, 2008).

Instead of using a general threshold, we define a significant

similarity degradation by a drop from a plateau behaviour of
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the MSSIM value as a function of compression factor and

a concomitant increase of the SSIM variance. The appro-

priateness of this approach has been validated visually.

3. Qualitative experiment

In a first step, we present visual results

to give an intuition about how

compression artefacts affect projections

and tomographic reconstructions. We

compressed the Hornby_b reference

dataset (Kanitpanyacharoen et al., 2016)

– a shale sample – using the three

different compression methods to a set

of different target compression factors.

This dataset has been acquired in a

‘standard’ setting: it consists of 1861

projection images – 20 dark-fields, 400

flat-fields and 1441 images with the

object – of 15.63 GB in total (Fig. 1).

Figs. 2, 3 and 4 show the resulting

images and line profiles for bit reset and

subsequent lossless compression, for

JPEG 2000, and for JPEG XR, respec-

tively.

Independently of the compression

method used, a factor of up to 5�

appears to be unproblematic to reach, thus outperforming

lossless compression considerably. Even above this factor

the results may still be acceptable, depending on the scientific

question and the image features the experimenter is

interested in.
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Figure 1
Raw projection image (left, scaled between 6100 and 55 000) and tomographic slice (right, scaled
between�0.0015 and 0.0045) of dataset Hornby_b (Kanitpanyacharoen et al., 2016). Standard high-
quality scan, 1861 projection images of 2048 � 2048 pixels (�15.6 GB), consisting of 20 dark images
(�167.8 MB), 200 initial flat-field images (�1.7 GB), 1441 data images (�12.1 GB), and 200
terminal flat-field images. The pixel size is 0.74 mm and the scale bar corresponds to 300 mm.

Figure 2
Zoomed (100 � 100 pixels) images of the Hornby_b dataset (Kanitpanyacharoen et al., 2016) after compression using noise bit reset and subsequent
lossless compression (bzip2). The first column shows the uncompressed ground truth. The top rows show details taken from compressed projection
images and respective line profiles (blue is the compressed signal, red the uncompressed ground truth) extracted along the centred vertical axis
(indicated by the white dashed line in the left panels). The numbers indicate the actual achieved compression compared with the target one (in brackets).
Note the posterization effect in the rightmost image, and the down-rounding of the actual achieved compression caused by the bit reset. The bottom rows
show details taken from the corresponding tomographic reconstructions with the respective line profiles. Note the grain effect in the rightmost image.
The numbers indicate the computed MSSIM values. The images share the same dynamic range as the line profiles.
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Figure 4
Zoomed (100� 100 pixels) images of the Hornby_b dataset (Kanitpanyacharoen et al., 2016) after compression using JPEG XR (jxrlib). The first column
shows the uncompressed ground truth. The top rows show details taken from compressed projection images and respective line profiles (blue is the
compressed signal, red the uncompressed ground truth) extracted along the centred vertical axis (indicated by the white dashed line in the left panels).
The numbers indicate the actual achieved compression compared with the target one (in brackets). Note the block artefacts and blur in the rightmost
image. The bottom rows show details taken from the corresponding tomographic reconstructions with the respective line profiles. Note the blur in the
rightmost image. The numbers indicate the computed MSSIM values. The images share the same dynamic range as the line profiles.

Figure 3
Zoomed (100 � 100 pixels) images of the Hornby_b dataset (Kanitpanyacharoen et al., 2016) after compression using JPEG 2000 (Open-
JPEG). The first column shows the uncompressed ground truth. The top rows show details taken from compressed projection images and respective line
profiles (blue is the compressed signal, red the uncompressed ground truth) extracted along the centred vertical axis (indicated by the white dashed line
in the left panels). The numbers indicate the actual achieved compression compared with the target one (in brackets). Note the block artefacts and blur
in the rightmost image. The bottom rows show details taken from the corresponding tomographic reconstructions with the respective line profiles. Note
the blur in the rightmost image. The numbers indicate the computed MSSIM values. The images share the same dynamic range as the line profiles.



Differences in the observed artefacts

are visible, particularly between the

transform-based methods, JPEG 2000

and JPEG XR, on the one hand, and bit

reset on the other. For the former two,

with increasing compression, projection

images begin to show blocks and, within

them, blurred ‘wash-out’. These arte-

facts in the compressed projection

images lead to a blurry reconstruction

and a loss of contrast.

For bit reset on the other hand, the

projections show posterization, i.e.

originally smooth intensity transitions

are turned into piecewise constant

plateaus with abrupt changes in-

between. Posterization in the projec-

tions leads to tomographic reconstruc-

tions corrupted by grainy noise. Also

note that bit-reset leads to systematic

down-rounding, thus biasing recon-

structed attenuation values.

4. Quantitative experiments

4.1. High-quality datasets

In order to see whether the behaviour observed for the

Hornby_b reference dataset generalizes, we have repeated

these compression experiments for five further ‘standard’

high-quality datasets with different characteristics (Marone et

al., 2020). Figs. 5–9 show sample projections and tomographic

slices for all these datasets. The chosen set of data includes a

local tomography scan (Fig. 5), datasets with small features

with low contrast embedded in a homogeneous matrix

(Figs. 5–6), more complex specimens (Fig. 7–8) and edge-

enhancement dominated data with the addition of a strongly

absorbing particle (high dynamic range, Fig. 9).

For every voxel of every dataset, we have computed the

structural similarity index, and we have fused all this infor-

mation to obtain statistics on the behaviour of the three

different compression methods with increasing compression

factors for all six datasets (Figs. 1, 5–9) as explained in

Section 2.2. Fig. 10 shows the obtained similarity curves.

The curves behave largely as described above for

Hornby_b. The similarity of the reconstructions remains high

at low variance up to a factor of about 4�, independently of

the compression method. For higher factors, the similarity

variance is strongly increasing for all used codecs. The simi-

larity values for the transform-based

methods deteriorate instead in a slower

manner, compared with those for the

reconstructions computed from projec-

tions with reset bits. In this latter case

the similarity drastically falls for a

compression factor higher than 4�.

This effect is due to the coarse para-

meterization of the bit reset compres-

sion approach: every additional bit that

is reset leads to an exponential loss of

information, and compression using this

method becomes harder to control with

increasing target factors.

4.2. Fast measurement

An important feature of the

TOMCAT beamline is its ability to

image objects volumetrically at high

speed. Such a ‘fast’ dataset has typically

fewer and smaller projection images
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Figure 5
Raw projection image (left, scaled between 3600 and 19 000) and tomographic slice (right, scaled
between�0.001 and 0.0015) of an Al alloy sample (Marone et al., 2020). Standard high-quality scan,
1733 projection images of 2560 � 1762 pixels (�15.6 GB), consisting of 32 dark images
(�288.7 MB), 100 initial flat-field images (�902.2 MB), 1501 data images (�13.5 GB), and 100
terminal flat-field images. The pixel size is 0.65 mm and the scale bar corresponds to 300 mm. (Data
courtesy of Julie Fife, Paul Scherrer Institut.)

Figure 6
Raw projection image (left, scaled between 100 and 37 000) and tomographic slice (right, scaled
between �0.001 and 0.004) of a Zr oxide sample (Marone et al., 2020). Standard high-quality scan,
1711 projection images of 2560 � 2160 pixels (�18.9 GB), consisting of 10 dark images
(�110.6 MB), 100 initial flat-field images (�1.1 GB), 1501 data images (�16.6 GB), and 100
terminal flat-field images. The pixel size is 0.162 mm and the scale bar corresponds to 50 mm.
(Sample courtesy of Sousan Abolhassani-Dadras, Paul Scherrer Institut.)



with more noise. Consequently, the effect of compression

needs to be considered separately for this class of measure-

ments. We investigated three such datasets (Figs. 11–13)

(Marone et al., 2020) in the same way as described above

(Fig. 14).

In comparison with the results obtained for high-quality

data (Fig. 10), a difference in terms of compressibility is

visible. ‘Fast’ datasets do not compress as well, and beyond a

compression factor of about 3–4� the quality of the recon-

structions drops rapidly for all compression methods.

4.3. Propagation-based phase contrast

Many of the datasets acquired at the TOMCAT beamline,

and in particular for time-resolved experiments, are not

reconstructed directly, but only after

phase retrieval, for instance using the

Paganin algorithm (Paganin et al., 2002).

In order to see the impact of compres-

sion on such an imaging problem, we

have considered a further high-quality

dataset (Fig. 15) (Marone et al., 2020).

In addition to that, we have also repe-

ated the compression experiments for

the ‘fast’ datasets used in Section 4.2

with phase retrieval.

Fig. 16 shows the similarity curves

obtained for the ‘standard’ quality

dataset after running the entire recon-

struction pipeline using compressed

data. This time, the similarity remains

high up to a compression factor of about

6–8� for all methods. After this point,

the bit reset method begins to show

increased variance and the similarity

values drop. For the transform-based

approaches, the similarity index continues to be relatively high

at moderate variance.

Fig. 17 shows the similarity curves obtained for the three

fast acquisitions. While following the main pattern seen for the

‘standard’ dataset, although the variance is generally higher,

the safe compression factor is about 6� for all methods.

The phase-retrieval algorithm seems to be only marginally

sensitive to possible compression artefacts arising in the

projections, probably because such artefacts do not typically

affect Fresnel fringes but more the smoother parts of

the image.

5. Discussion

In this work, we chose to use the mean

SSIM as quality metric to quantitatively

assess the similarity between the

reconstructions obtained from original

and compressed projections, as also

done in other works on data compres-

sion (Mancini et al., 2018). While image

quality metrics are a useful tool to

compare results and investigate trends,

in our experience they fail in providing

absolute references. It was not possible

to determine a general MSSIM

threshold below which the similarity

between datasets started to become

significant. Such a threshold was highly

dataset dependent. Similar observations

were also reported by Mancini et al.

(2018). Instead of using a general

threshold, we detect a significant simi-

larity degradation by a drop of the

MSSIM from a plateau behaviour and

an increase of the SSIM variance. The
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Figure 7
Raw projection image (left, scaled between 8100 and 44 000) and tomographic slice (right, scaled
between �0.0005 and 0.0011) of a microfossil sample (Marone et al., 2020). Standard high-quality
scan, 1711 projection images of 2560 � 2160 pixels (�18.9 GB), consisting of 10 dark images
(�110.6 MB), 100 initial flat-field images (�1.1 GB), 1501 data images (16.6 GB), and 100 terminal
flat-field images. The pixel size is 0.325 mm and the scale bar corresponds to 150 mm. (Data courtesy
of John Cunningham, University Bristol.)

Figure 8
Raw projection image (left, scaled between 10 000 and 48 000) and tomographic slice (right, scaled
between �0.0006 and 0.0018) of a microfossil sample (Marone et al., 2020). Standard high-quality
scan, 1711 projection images of 2560 � 2160 pixels (�18.9 GB), consisting of 10 dark images
(�110.6 MB), 100 initial flat-field images (�1.1 GB), 1501 data images (�16.6 GB), and 100
terminal flat-field images. The pixel size is 0.325 mm and the scale bar corresponds to 150 mm. (Data
courtesy of Philip Donoghue, University Bristol.)



appropriateness of this approach has been validated visually.

To summarize, it appears reasonable to assume that ‘stan-

dard’ datasets can be safely compressed by a factor of about

4�, i.e. to 25% of their original size. This result indicates that a

dataset of 15–20 GB could be turned into one of 4–5 GB, thus

promising considerable advantages in terms of storage and

network infrastructure.

‘Fast’ datasets allow for less compression, and not exceeding

the threshold of about 3–4� appears to be of higher impor-

tance. This is likely due to the worse signal-to-noise ratio

typically encountered in ‘fast’ settings. Despite their small size

of typically �4 GB and, therefore, reduced potential with

respect to size reduction in absolute

terms for a single dataset, tomographic

experiments in the ‘fast’ setting

modality foresee the acquisition of

volumetric datasets in a time-resolved

sustained manner with a data rate as

high as 8 GB s�1 (Mokso et al., 2017),

leading to tens of TB of raw data

per day. Despite the need of higher

attention in the threshold selection,

compression of such datasets is, there-

fore, of utmost relevance.

Paganin filtering, finally, enables to

safely compress the datasets to a higher

degree, independently of whether the

dataset was acquired in a ‘standard’

or ‘fast’ setting. This behaviour is not

surprising, considering the strong

smoothing component of the phase

retrieval filter that helps to suppress

compression artefacts.

Previous studies (Fidler et al., 2006)

on the relationship between the information of an image and

its compressibility indicate that the degree of image degra-

dation strongly depends on image content. Our results suggest

also a dependence of the projection safe compression factor on

the image quality of the reconstructions, as previously pointed

out by Mancini et al. (2018). The projections of tomographic

volumes with low signal-to-noise ratio (SNR) such as those

acquired during time-resolved experiments (Figs. 11–13)

compress significantly less well than projections of high SNR

datasets (Figs. 1, 5–9) acquired with optimally tuned beamline

and scan settings. The boost in SNR provided by phase

retrieval also contributes to the increase of compressibility of

the raw projections. To investigate the dependence of the safe

compression factor on the quality of the tomographic volume

in more detail, we have repeated the compression experiments

for a series of four datasets of the same sample but acquired

with a different number of projections and exposure time

per projection (Marone et al., 2020). Cropped absorption and

phase-contrast tomographic slices for these datasets are shown

in Fig. 18 together with the average SNR values calculated

over the full volume. An increase in SNR of a factor of 4–5� is

observed for total scan times going from 0.1 to 4 s. The typical

SNR difference between absorption and phase reconstruc-

tions is eight- to nine-fold. The compression results for the

JPEG 2000 codec are compared in Fig. 19. For both absorption

and phase-contrast dataset suites, a clear trend is observed.

With increasing scan time (and SNR), the similarity values

also increase confirming the previous qualitative observations.

The SNR improvement originating from phase retrieval leads

as well to a minimization of compression artefacts up to larger

compression ratios as previously discussed (Section 4.3). From

this analysis it is though clear that it is not possible to establish

a direct relationship between SNR and safe compression

ratio. Although for both dataset suites taken individually an

increase in SNR leads to a higher compressibility, the 4 s
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Figure 9
Raw projection image (left, scaled between 14 000 and 51 000) and tomographic slice (right, scaled
between �0.004 and 0.012) of a fossil fruit (Marone et al., 2020). Standard high-quality scan, 1711
projection images of 2560 � 2160 pixels (�18.9 GB), consisting of 10 dark images (�110.6 MB),
100 initial flat-field images (�1.1 GB), 1501 data images (�16.6 GB), and 100 terminal flat-field
images. The pixel size is 0.325 mm and the scale bar corresponds to 150 mm. (Data courtesy of Else
Marie Friis, Swedish Museum of Natural History, Stockholm.)

Figure 10
Compression results computed from a set of six different ‘high-quality’
datasets: mean structural similarity and standard deviation over
compression ratios for the three different compression methods. Note
that a compression ratio of up to about 4� is possible for all three codecs,
as the similarity remains high with low variation. After this point, the
quality deteriorates quickly for bit reset (red), but also, to a lesser degree,
for the two transform-based methods (green and blue).



absorption contrast dataset shows higher MSSIM values for

most compression ratios than the 0.1 and 0.2 s phase-contrast

datasets, despite its lower SNR. The 4 s absorption contrast

dataset actually shows similar MSSIM values as the 0.4 s phase

contrast dataset, although its SNR is almost a factor of four

smaller. These observations lead to the conclusion that,

although a relationship between compressibility and recon-

struction quality exist, this is not simple and straightforward.

The SNR can unfortunately not be used as a unique criterion

for the a priori blind selection of the optimal compression

ratio. The same conclusion is also true if other image char-

acteristics such as the image entropy (Fidler et al., 2006) or

the variation in high-frequency content (Nam et al., 2018)

are considered instead. With these metrics, a similar trend is

observed for the fuel cell datasets as the one illustrated for the

SNR. Within single datasets it is also possible, at least to some

extent, to relate the metric score of each individual recon-

structed slice with the visual image impression and for instance

distinguish using these metric scores between slices with and

without sample. None of these metrics though is successful in

capturing and describing the image characteristics in a sample

and acquisition setting independent manner. For tomographic

volumes of different specimens obtained with different

acquisition and post-processing parameters, the relationship

between all the investigated metrics and the highest possible

compression factor is poor, if not non-existent. These obser-

vations suggest that, although in the medical field a combi-

nation of image features might be considered for
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Figure 11
Raw projection image (left, scaled between 250 and 850) and tomographic slices without (centre, scaled between �0.0007 and 0.0012) and with Paganin
phase retrieval (right, scaled between 1� 10�6 and 7� 10�6) of a drying porous catalyst structure (Marone et al., 2020). Fast scan, 1251 projection images
of 2016 � 1400 pixels (�6.75 GB), consisting of 50 dark images (�270 MB), 100 initial flat-field images (�540 MB), 1001 data images (�5.4 GB), and
100 terminal flat-field images. The pixel size is 0.85 mm and the scale bar corresponds to 225 mm. (Data courtesy of Vladimir Novak, Paul Scherrer
Institut.)

Figure 12
Raw projection image (left, scaled between 400 and 1800) and tomographic slices without (centre, scaled between�0.0025 and 0.0035) and with Paganin
phase retrieval (right, scaled between �2 � 10�5 and 5 � 10�5) of an evolving magma (Marone et al., 2020). Fast scan, 751 projection images of 1008 �
1900 pixels (�2.85 GB), consisting of 50 dark images (�190 MB), 100 initial flat-field images (�380 MB), 501 data images (�1.9 GB), and 100 terminal
flat-field images. The pixel size is 2.75 mm and the scale bar corresponds to 365 mm. (Data courtesy of Mattia Pistone, University of Georgia.)



automatically estimating an optimal visually lossless

compression factor (Nam et al., 2018), the same approach fails

to address the variability found in synchrotron tomographic

data. Based on visual inspection and the limited dataset pool

used in this study, the average optimal compression factor is

around 8. As a consequence, even if the automatic selection of

the highest possible compression factor for each single dataset

beyond the safe and conservative ratio of 3–4 would be

possible, the additional gain to be obtained with commonly

available compression schemes would be ‘only’ of a factor of 2.

To significantly push the compressibility of tomographic

datasets to factors larger than 100, other avenues, such as

video compression (Yan et al., 2019), might be more adequate.

In the safe compression range, there is practically no

difference in compression performance between the results

obtained with the different methods. This is an interesting

result, considering the technological differences. Even the

makeshift scheme of resetting noise bits yields results that

are competitive with the more advanced transform-based

compression methods. While this approach is easy and fast to

implement, caution is needed, though the only input for this

method is the number of bits to reset. Considering that there is

only a total of 16 bits, and that the significance of individual

bits grows exponentially, it is not surprising to see the sudden

drop in quality when exceeding the safe threshold. Further-

more, the method likely depends very much on the typical

noise characteristics of the imaging setup.

For this reason, we consider one of the transform-based

lossy compression methods as the best option for production

use, particularly as they would fail graciously in the case of

excessive compression: the dataset would be smoother than it

could, but not entirely damaged.

6. Conclusion and future directions

We have investigated the impact of lossy compression at the

raw projection level onto tomographic reconstructions, and we

show that its routine application could lead to a considerable

reduction of the produced data volume, potentially resulting

in important savings in storage and network infrastructure. In

a safe regime, where no deterioration of the reconstructed

volume is observed, we expect a general reduction to about

25% of our current resource usage.

This conclusion has been reached using datasets exclusively

acquired at TOMCAT. Similar results on the safe compression

factor are, however, confirmed by an independent study

(Mancini et al., 2018) using data of the SYRMEP beamline at

Elettra. We expect similar results for other facilities as well,

since most beamlines share similar setups (e.g. similar detec-

tors, microscopes, geometries) and a round-robin study

(Kanitpanyacharoen et al., 2013) confirms that tomographic

results are consistent among facilities. For emerging techni-

ques (e.g. tomography based on ptychographic projections)

and non-parallel geometries (projection and full-field micro-

scopy, for instance) additional investigation is needed, but is

beyond the scope of this work.
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Figure 13
Raw projection image (left, scaled between 70 and 240) and tomographic slices without (centre, scaled between �0.0022 and 0.003) and with Paganin
phase retrieval (right, scaled between�1� 10�6 and 6� 10�6) of a fuel cell sample (Marone et al., 2020). Fast scan, 611 projection images of 2016 � 300
pixels (�733.2 MB), consisting of 10 dark images (�12 MB), 100 initial flat-field images (�120 MB), 401 data images (�481.2 MB), and 100 terminal
flat-field images. The pixel size is 2.75 mm and the scale bar corresponds to 800 mm. (Data courtesy of Jens Eller, Paul Scherrer Institut.)

Figure 14
Compression results computed from a set of three different ‘fast’ datasets:
mean structural similarity and standard deviation over compression ratio
for the three different compression methods. Note that a compression
ratio of only up to about 3–4� is appropriate for all three codecs. After
this point, the quality deteriorates quickly for all compression methods
and the standard deviation increases.



The three different methods considered in this study show a

similar behaviour up to the compression factor of 3–4�, for all

datasets investigated. This observation leads us to confidently

consider this value as the safe compression factor at least for

the datasets acquired at the TOMCAT beamline. Automatic

compression of all raw data acquired at the TOMCAT

beamline with this established safe factor prior to long-term

archiving is currently under consideration and could poten-

tially be performed in a transparent way to the user commu-

nity.

Higher compression factors might be possible but require

additional information on the exact imaging and scientific

problem investigated through user interaction (Fritsch &

Brennecke, 2011). A survey of a signif-

icantly larger pool of samples might give

additional indications in the potential of

further reducing the data size.

In this work, we focused on

commonly available compression

schemes, because these methods are

well tested, easily and widely accessible

and potentially suited for implementa-

tion on hardware. Besides an easier

and more efficient implementation at

TOMCAT, the choice of such a

compression codec would also facilitate

inter-operation and data exchange with

users’ home institutions, computing

centres and other imaging facilities.

These advantages come though at a

price. Most importantly, these codecs

are based uniquely on intra-frame

compression, and the redundancy

between neighbouring projection

images is not exploited. Such inter-frame compression is quite

common for movie codecs, but these might not be directly

applicable in our setting. Movie compression exploits the way

a human viewer perceives a dynamic scene presented at

dozens of frames per second. There is no guarantee that such

an approach is appropriate in the tomographic reconstruction

setting, even though recent studies show encouraging first

results (Yan et al., 2019). Furthermore, almost no movie codec

supports 16-bit intensity values.

Considering that the geometry of tomographic reconstruc-

tion is well defined, the motion of image features in projection

images could be accurately computed without any assump-
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Figure 15
Raw projection image (left, scaled between 400 and 1100) and tomographic slice (right, scaled
between �2 � 10�7 and 4 � 10�7) of an ice cream sample (Marone et al., 2020). Standard high-
quality scan followed by Paganin phase retrieval, 2231 projection images of 2560 � 2160 pixels
(�24.7 GB), consisting of 30 dark images (�331.8 MB), 200 initial flat-field images (�2.2 GB),
1801 data images (�19.9 GB), and 200 terminal flat-field images. The pixel size is 0.65 mm and the
scale bar corresponds to 300 mm. (Data courtesy of Annabelle Medebach, Paul Scherrer Institut.)

Figure 16
Compression results computed from a single ‘propagation-based phase
contrast’ dataset: mean structural similarity and standard deviation over
compression ratio for the three different compression methods. Note that
a compression ratio of up to about 6–8� seems possible for all three
codecs, as the similarity remains high with low variation. After this point,
the quality of the bit reset method deteriorates (red) while the other two
methods continue to yield good results.

Figure 17
Compression results computed from the three ‘fast’ datasets after
retrieval of ‘propagation-based phase contrast’: mean structural similarity
and standard deviation over compression ratio for the three different
compression methods. Note that a compression ratio of up to about 6�
seems possible for all three codecs, as the similarity remains high with low
variation. After this point, the quality of the bit reset method deteriorates
(red) while the other two methods continue to yield good results at higher
variation.



tions motivated by human perception. Modern movie codecs

reach their relatively low data rate by making heavy use of

block prediction, and a tomography-specific codec (or tomo-

graphy-specific block prediction within an existing standard)

may be able to optimally compress projection data. Devel-

oping and standardizing such a method, however, may be an

effort of considerable dimension (beyond the scope of this

study), particularly when a hardware implementation is

required. Furthermore, coupling the compression of projec-

tion images to the versatile process of tomographic recon-

struction is far from ideal. Doing so would hinder, or at least

strongly limit, a posteriori re-evaluation of ‘raw’ data biased

by initial choices on the type of reconstruction.

After years of widespread use of JPEG for most purposes

despite the availability of more modern formats, recently the

field of image compression has been exploring new avenues.

One of the leading manufacturers of consumer electronics has

extended its operating system to support HEIF (Hannuksela

et al., 2015), a compression format based on the still image

component of the HEVC standard (ITU, 2016). We have

considered the same method (wrapped into a different file

format) in our earlier work (Vogel, 2017), but found

compression using an available implementation too slow to be

realistically applied to our large datasets. Considering though

the recently introduced support for consumer electronics,

sufficiently fast implementations may soon become available.

At that point the potential of HEVC-based image or even

movie compression for large tomographic datasets will need to

be further assessed.

In addition, the image compression community is also

probing entirely new directions, leaving the well known

paradigms of coefficient transforms and block prediction.
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Figure 18
Cropped absorption (left) and phase contrast (right) reconstructed slices through a tomographic dataset of a fuel cell sample (Marone et al., 2020). From
top to bottom the total scan time increased from 0.1 to 4 s. The SNR (calculated using the areas encompassed by the red rectangles) for the full
tomographic volumes is indicated by the numbers in the slice corners. The grey-level values for the shown absorption and phase contrast reconstructions
are scaled between �0.002 and 0.005, and �3 � 10�6 and 1.5 � 10�5, respectively. The scale bar corresponds to 400 mm. (Sample courtesy of Jens Eller,
Paul Scherrer Institut.)

Figure 19
Compression results for the fuel cell datasets shown in Fig. 18: mean
structural similarity over compression ratio for the JPEG 2000 codec. For
both absorption (solid) and phase (dotted) contrast dataset suites, a clear
trend is observed. With increasing scan time (and SNR) the similarity
also increases.



In particular, auto-encoders – first known for pre-training

deep neural networks – have recently been investigated for

compression purposes (Theis et al., 2017). Future codecs may

thus be able to dynamically adapt to the imaging scenario

much more than present-day solutions, and may thus implicitly

exploit the predictability of the tomographic problem.

In the meantime, still image codecs look to be a good

intermediate solution to significantly safe resources, particu-

larly until dynamic future codecs become widely available.

When wrapped into a suitable container format such as HDF5,

the compression process may even be transparent, and thus

adaptable to future development in the field of compression.
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Mokso, R., Schlepütz, C. M., Theidel, G., Billich, H., Schmid, E.,
Celcer, T., Mikuljan, G., Sala, L., Marone, F., Schlumpf, N. &
Stampanoni, M. (2017). J. Synchrotron Rad. 24, 1250–1259.

Mozilla Research (2013). Studying lossy image compression effi-
ciency, https://research.mozilla.org/2013/10/17/studying-lossy-
image-compression-efficiency/.

Nam, C.-M., Lee, K. J., Ko, Y., Kim, K. J., Kim, B. & Lee, K. H. (2018).
BMC Med. Imaging, 18, 53.

Paganin, D. M., Mayo, S. C., Gureyev, T. E., Miller, P. R. & Wilkins,
S. W. (2002). J. Microsc. 206, 33–40.
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