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Under the condition of high counting rate, the phenomenon of nuclear pulse

signal pile-up using a single exponential impulse shaping method is still very

serious, and leads to a severe loss in counting rate. A real nuclear pulse signal

can be expressed as a dual-exponential decay function with a certain rising edge.

This paper proposes a new dual-exponential impulse shaping method and shows

its deployment in hardware to test its performance. The signal of a high-

performance silicon drift detector under high counting rate in an X-ray

fluorescence spectrometer is obtained. The result of the experiment shows that

the new method can effectively shorten the dead-time caused by nuclear signal

pile-up and correct the counting rate.

1. Introduction

Owing to the dead-time of a measurement system, the rela-

tionship between the incidence rate and counting rate is

nonlinear under the condition of high radiation levels. The

dead-time correction method or the fast and slow dual-

channel measurement method (Hong et al., 2018) are used to

correct the analysis system in energy spectrum analysis. The

dead-time caused by nuclear signal pile-up is the main reason

affecting the counting rate accuracy. Pulse shaping methods

(Cano-Ott et al., 1999; Bolić & Drndarević, 2002; Ehrenberg

et al., 1978; Imperiale & Imperiale, 2001; Jordanov, 2016;

Jordanov & Knoll, 1994) can be used to correct the counting

rate. For the fast channel method, Huang et al. (2017) studied

the single-exponential nuclear signal pile-up discrimination

system, and Hong et al. (2018) studied the deconvolution unit

impulse shaping system – these two systems aimed at solving

the problem of pile-up dead-time. However, the dead-time

correction of the single exponential fast shaping method is still

barely satisfactory and therefore its practicality is limited.

This paper analyzes the dual-exponential characteristic of

the nuclear signal, and then the transfer function between

dual-exponential signal and impulse response is derived. The

fast-shaping method of the impulse response based on dual-

exponential signals can effectively reduce the dead-time and

improve the counting rate accuracy of the measurement

system.

2. Theory

2.1. Dual-exponential impulse shaping theory

In the digital processing of pulses, pulse discrimination

systems are used to discriminate the pulses’ generation time

and count the pulses. As shown in Fig. 1, the input of the

transfer function model of the system is an ideal dual-expo-
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nential pulse (Sun et al., 2017) and of which the output is an

ideal impulse response function. The time when the impulse

response emerges can be used to locate the generation time of

the pulse, and the number of impulse responses can be used to

correct the counting rate.

In the system, the input dual-exponential pulse can be

expressed as

viðtÞ ¼ A expð�t=MÞ � expð�t=mÞ½ �; t � 0; ð1Þ

where M and m represent the decay time constants of the slow

and fast components, respectively. The impulse response of the

system is given as

voðtÞ ¼ A�ðtÞ; t � 0: ð2Þ

By using a Z transformation for equations (1) and (2), the

transform function of the shaping system is given by

HðzÞ ¼
Vo½z�

Vi½z�
¼

1� d1z�1
� �

1� d2z�1
� �

d1 � d2ð Þ z�1
; ð3Þ

where d1 = exp(�Ts /M), d2 = exp(�Ts/m) and Ts is the

sampling rate period (corresponding to the ADC sampling

rate). Then equation (3) can be rewritten as

d1 � d2ð Þ z�1 Vo½z� ¼ 1� d1z�1
� �

1� d2z�1
� �

Vi½z�: ð4Þ

After inverse Z transformation, the recursive model in the

time domain can be obtained,

vo½n� 1� ¼
vi½n� � d1 þ d2ð Þ vi½n� 1� þ d1d2vi½n� 2�

d1 � d2ð Þ
: ð5Þ

According to equation (1), pile-up pulses are simulated with

M = 50Ts and m = 2.5Ts. The simulated dual-exponential

pulses are illustrated in Fig. 2. Equation (5) is used to obtain

the output signal of the discrimination system. It can be seen

that the proposed method can identify the pile-up pulse.

According to the decomposition principle of a cascade

system, equation (3) can be written as a cascade equation, i.e.

HðzÞ ¼ H1ðzÞH2ðzÞH3ðzÞH4ðzÞ; ð6Þ

where

H1ðzÞ ¼ ð1� d1 z�1Þ; H2ðzÞ ¼ ð1� d2 z�1Þ;

H3ðzÞ ¼ z; H4ðzÞ ¼
1

d1 þ d2

:

Module H1 can shorten the slow component of the dual-

exponential and H2 can reduce the fast component of the dual-

exponential. H3 is a leading bit system, used to align the

moment of pulses generation; H4 is an amplification system.

The impulse pulse is finally obtained after one clock delay.

Equations (7), (8), (9) and (10) can be obtained from the

inverse transformation of equation (6),

v1ðnÞ ¼ viðnÞ � d1viðn� 1Þ; ð7Þ

v2ðnÞ ¼ v1ðnÞ � d2v1ðn� 1Þ; ð8Þ

v3ðnÞ ¼ v2ðnþ 1Þ; ð9Þ

voðnÞ ¼
v3ðnÞ

d1 � d2ð Þ
: ð10Þ

2.2. Selection of the shaping parameters

2.2.1. Module H1. In the system, module H1 shapes the slow

component of the dual-exponential pulse into an impulse

signal to reduce the system dead-time. In Fig. 3(a), a dual-

exponential pulse is acquired and converted with a high-

performance silicon drift detector (fast SDD) and ADC

[20 Megasamples per second (MSPS)]. According to the fitting

calculation, the decay constants of the slow and fast compo-

nent are M ’ 2.5 ms and m ’ 83 ns, respectively. Therefore,

the theoretical values of the parameters d1 and d2 in equation

(5) are d �1 = exp(�1/50) and d �2 = exp(�3/5). Letting d1 =

exp(�1/10), exp(�1/50) and exp(�1/200), respectively,

according to equation (7), the output signals of the inter-

mediate system v1 are displayed in Figs. 3(b), 3(c) and 3(d).

It can be seen that there still exists tailing in v1 when d1 < d �1 ,

and v1 becomes a bipolar signal when d1 > d �1 . The long tailing

due to the slow component of the dual-exponential pulse can

be reduced as d1 = d �1 .

2.2.2. Module H2. Module H2 shapes the fast component of

the dual-exponential pulse into an impulse signal to reduce the

dead-time. H3 is only a delay to H2. H4 is an amplification

module; the performance of the module H2 can be obtained by

analyzing the output vo. In order to obtain an optimal d2, the

output of the impulse pulse-shaping system vo should be

simulated and discussed. Under the condition d1 = d �1 ,

different parameters of d2 are simulated to test the perfor-

mance of peak pile-up identification. The simulation results

are illustrated in Figs. 4(b), 4(c) and 4(d).
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Figure 2
Simulation of dual-exponential pulse pile-up discrimination.

Figure 1
Pulse discrimination system model.



Fig. 4(b) indicates that there is a reverse impulse sequence

in vo when d2 > d �2 ; and the reverse component can be reduced

if d2 = d �2 .

Although the output is a synthetic polar impulse sequence

when d2 < d �2 , the width of the shaped pulse is 250 ns.

The output in Fig. 4(c) is the response of the system with

d2 = d �2 and the pulse width is 100 ns instead of the theoretical

50 ns. This is because the real nuclear

signal is not a strictly dual-exponential

signal but only a dual-exponential-like

pulse signal.

3. Counting loss correction in the
fast channel

The distribution of the intervals

between random events is

pðtÞ ¼ � expð��tÞ; ð11Þ

where � is the exponential distribution

constant, representing the average pulse

counting rate. When the interval time

of two consecutive pulses is less than

the dead-time tpileup, the fast-shaping

method cannot discriminate, and the

two pulses will be misidentified as one

pulse and result in a loss of counting

rate. When the interval time of two

consecutive pulses is longer than the

dead-time tpileup, the pulse is recorded,

and the probability of the measured

pulse is given by

p t1 > tpileup

� �
¼ exp ��tpileup

� �
: ð12Þ

Therefore, the correction formula between the real pulse

counting rate Rreal and the measured pulse counting rate

Rmeasure is

Rreal exp ��tpileup

� �
¼ Rmeasure: ð13Þ

Equation (13) is an implicit equation

and has two solutions. The slow channel

cannot directly perform self-correction,

and it needs to be corrected assisted

by the fast channel. In the fast channel,

when the counting loss is not severe,

equation (13) can be used to perform

the counting rate correction, and the

smaller value of the two solutions

should be taken as the result of the

counting rate correction.

4. Experiment

4.1. Experimental conditions and
comparative analysis

A data acquiring board embedded

with a 20 MSPS 14-bit ADC was

developed by Sichuan X-STAR Tech-

nology (M&C Co. Ltd). An Amptek

fast-SDD detector was used to acquire

the pulse signal; it has a 25 mm2 active

area, a thickness of 500 mm and a 0.5 mil

Be window. Dual-exponential-like pulse
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Figure 4
Relationship between system output and parameter d2 when d1 = d1*.

Figure 3
Relationship between system output and parameter d1 and d �1 .



sequences with a less than 300 ns rising edge and decay

constant of 3.2 ms were acquired. Some experimental pulses

based on an XRF platform were also obtained from the

Sichuan X-STAR.

An X-ray tube with Ag target was used to irradiate an

MnO2 sample; the tube voltage was set to 33.3 kV while the

tube current varied from 3.9 mA to 160.8 mA. A vacuum

pump was used to evacuate; the vacuum degree was about

0.093 MPa.

Fig. 5(a) shows a section of original pulses data acquired at

160.8 mA. The single-exponential impulse fast-shaping method

(Huang et al., 2017; Hong et al., 2018) was used to shape

the acquired pulses, as shown in Fig. 5(b). The tailing of the

fast-shaping output narrow-beam signal has an exponential

attenuation characteristic, so the single-exponential impulse

shaping only eliminates the slow component of the dual-

exponential pulse while the fast component still exists. The

time width of the fast component output signal in Fig. 5(b)

is approximately 300 ns; it is close to the rise time of the

acquired pulse. Fig. 5(c) shows the processing result of the

collected pulses data using the dual-exponential impulse

shaping method proposed in this paper, and the output is a

narrow impulse signal of which the width is about 100–150 ns.

4.2. Results analysis

The calculation results of the counting rate under different

currents is shown in Table 1. The dual-exponential impulse

shaping method with parameters d1 = exp(�1/50) and d2 =

exp(�3/5) is used for pulse shaping. Rf1 and Rf2 represent

the counting rate obtained with the dual-exponential impulse

shaping method and the single exponential impulse shaping

method, respectively.

Rf1c and Rf2c are the corrected results of Rf1 and Rf2,

respectively, and the dead-time tpile-up of the dual-exponential

impulse shaping is 150 ns while that of the single-exponential

impulse shaping is 300 ns.

When the X-ray tube current is 3.9 mA, the counting rate is

relatively low, then Rf = Rreal. When the other experiment

variables are the same, the amount of emitted beam from the

X-ray tube is proportional to the tube current; then the true

counting rate Rcal is derived from the counting rate Rf

measured at the current of 3.9 mA,

Rcal ¼ kI; ð14Þ

where k is a constant; when the current is weak, k = Rf /I and

I represents the X-ray tube current.

Fig. 6 shows the relationship between counting rate and

current. As the current increases, the counting rate increases.

Also, as the X-ray tube current increases, the pile-up pulse

increases.

It can be seen from Fig. 6 that the counting rate of dual-

exponential impulse shaping is higher than that of single

exponential impulse shaping. After the counting rate correc-

tion, the counting rate of dual-exponential impulse shaping is

closer to the real value. Table 1 shows Rf1, Rf2 and their errors

relative to Rcal, and Table 2 shows Rf1c,

Rf2c and their relative errors with Rcal as

the tube current increases.

The relative errors of Rf1 and Rf2

gradually increase as the tube current

increases. When the current is

maximum at 160.8 mA, the pulse inci-

dence rate is 746 kcps theoretically.

The pulses counting rate identified with

the dual-exponential impulse shaping

method is 622 kcps, and the relative

error is �16.67%. The pulse counting

rate identified with single exponential

impulse fast shaping is 541 kcps, and the

relative error is �27.49%. The results

using the dead-time correction are

shown in Table 2.

After dead-time correction, the

counting rate acquired using dual-

exponential impulse shaping is 690 kcps
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Table 1
Test results and error analysis of the dual-exponential impulse shaping
counting rate and single exponential fast shaping counting rate.

Current
(mA) Rf1 (cps) Rf2 (cps) Rcal (cps)

(Rf1 � Rcal)
/ Rcal � 100

(Rf2 � Rcal)
/ Rcal � 100

3.9 18113.6 18039.84 18113.6 – –
7.8 35667.6 35392.48 36227.2 �1.54 �2.30

19.6 87299.04 85750.72 91032.45 �4.10 �5.80
31.4 137694.64 133803.44 145837.70 �5.58 �8.25
43.1 187122.48 179955.12 200178.50 �6.52 �10.10
54.9 235764.24 224313.04 254983.75 �7.53 �12.02
66.7 283972.48 267369.52 309789.00 �8.33 �13.69
78.4 330456.64 307879.2 364129.80 �9.247 �15.44
90.2 375808.64 346500.48 418935.05 �10.29 �17.29

102 419772.56 383127.84 473740.30 �11.39 �19.12
113.7 462556.8 417992.48 528081.10 �12.40 �20.84
125.5 504771.68 451667.12 582886.3 �13.40 �22.51
137.3 546055.36 483875.92 637691.61 �14.36 �24.12
149 584720.08 513246.08 6920320.41 �15.50 �25.83
160.8 622314.72 541458.48 746837.66 �16.67 �27.49

Figure 5
Comparison of dual-exponential and single exponential rapid shaping.



with a relative error of �7.9%, while that acquired using the

single exponential impulse fast-shaping method is 660 kcps

with a relative error of �11.62%. Therefore, the dual-expo-

nential impulse shaping algorithm has a better pulse recog-

nition ability.

5. Conclusion

This paper proposed a new dual-exponential impulse shaping

method for pulse shaping in the fast channel. The output

signal of the fast SDD is a dual-exponential-like pulse signal

with a fast and slow component. The application of the new

method can not only eliminate the long tailing of the slow

component but also weaken the tailing of the fast component.

A comparison between the new method and the single

exponential impulse fast-shaping method is made. The output

pulse width of the fast channel with the new method is about

100–150 ns, while for the single exponential impulse fast-

shaping method it is approximately 300 ns; the dead-time of

the pulse identification can be reduced significantly with the

new method. Different X-ray tube currents are set: Mn in the

high purity sample MnO2 is measured for 100 s with the fast

SDD, as the current is maximum at 160.8 mA and the counting

rate loss is most severe. Before the counting rate correction,

the relative error with regard to the real counting rate is

�16.67% with the new method, while for the single expo-

nential impulse fast-shaping method it is �27.49%; after the

counting rate loss correction, the relative error with regard to

the real counting rate is �7.9% with the new method, while

for the single exponential impulse fast-shaping method it is

�11.62%. Thus, the counting rate obtained by the proposed

dual-exponential impulse pulse-shaping method is closer to

the real counting rate. As mentioned in the discussion above,

the new method proposed in this paper can not only shorten

the dead-time but also can be used to effectively correct the

counting rate under the condition of a high counting rate.
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Table 2
Counting statistics and error analysis after correction.

Current
(mA) Rf1c (cps) Rf2c (cps) Rcal

(Rf1c � Rcal)
/ Rcal � 100

(Rf2c � Rcal)
/ Rcal � 100

3.9 18167.94 18148.07 18113.6 – –
7.8 35845.93 35764.1 36227.2 �1.05 �1.27

19.6 88433.92 88065.98 91032.45 �2.85 �3.25
31.4 140586.22 139423.18 145837.70 �3.60 �4.39
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54.9 244487.51 241136.51 254983.75 �4.11 �5.43
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78.4 348301.29 341130.15 364129.80 �4.35 �6.31
90.2 399108.77 389639.78 418935.05 �4.73 �6.99

102 449156.63 436574.17 473740.30 �5.18 �7.84
113.7 498636.23 483199.30 528081.10 �5.57 �8.49
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Figure 6
The counting rate as a function of the current.
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