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Pump–probe experiments at synchrotrons and free-electron lasers to study

ultrafast dynamics in materials far from equilibrium have been well established,

but techniques to investigate equilibrium dynamics on the nano- and pico-

second timescales remain underdeveloped and experimentally challenging. A

promising approach relies on a double-probe X-ray speckle visibility spectro-

scopy setup at split-and-delay beamlines of X-ray free-electron lasers. However,

the logistics in consistently producing two collinear, perfectly overlapping pulses

necessary to conduct a faithful experiment is difficult to achieve. In this paper,

a method is introduced to extract contrast in the case where an angular

misalignment and imperfect overlap exists between the two pulses. Numerical

simulations of a dynamical system show that contrast can still be extracted for

significant angular misalignments accompanied by partial overlap between the

two pulses.

1. Introduction

1.1. X-ray photon correlation spectroscopy

X-ray photon correlation spectroscopy (XPCS) is a

powerful coherent X-ray technique capable of probing

nanoscale dynamics for a wide range of material systems

(Sutton et al., 1991; Shpyrko et al., 2007; Evenson et al., 2015;

Fluerasu et al., 2005; Chen et al., 2013). When a coherent beam

interacts with a sample, the interference creates a speckle

pattern in the far-field that is a signature of the nanoscale

heterogeneities present in the system. By measuring how fast

or slow the speckle pattern evolves, it is possible to resolve and

quantify the fluctuation timescale of the order parameter of

interest. This can be achieved by measuring the time-averaged

intensity–intensity autocorrelation function between detector

images that are separated by a delay time, �, as defined in

equation (1),

g2ðq; tÞ ¼
hIðq; tÞ Iðq; t þ �Þi

hIðqÞi2
: ð1Þ

Here g2(q, t) is a correlation function, q is the X-ray scattering

vector, t and � are time variables, and the angular brackets

denote averaging over the time �. The decay rate of the

correlation function g2(q, t) gives one the characteristic time-

scale of dynamics present in the system (Shpyrko, 2014; Sinha

et al., 2014). However, this approach based on the evaluation

of the g2-function has an inherent limitation in the temporal

resolution that is defined by the frame rate of the detector,

which is presently on the order of milli- to micro-seconds for
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the fastest CCD and photon-counting area detectors (Madden

et al., 2016; Ponchut et al., 2011).

1.2. X-ray speckle visibility spectroscopy

With the advent of split-and-delay lines at X-ray free-

electron lasers (XFELs) (Hirano et al., 2018; Roseker et al.,

2018, 2020; Rysov et al., 2019), it is now possible to circumvent

this limitation with a modified technique known as X-ray

speckle visibility spectroscopy (XSVS) that is capable of

probing ultrafast dynamics such as atomic diffusion and

skyrmion lattice phases (Hruszkewycz et al., 2012; Seaberg et

al., 2017). Instead of relying on several detector images, XSVS

exploits a single speckle pattern on the detector generated by

either one or several X-ray pulses. XSVS has already been

successfully employed using a single X-ray pulse with variable

duration, in other words a single coherent XFEL pulse

(Hruszkewycz et al., 2012). If the system is static or the

dynamical timescale is longer than the pulse duration, then the

speckle pattern on the detector will have a relatively high

contrast value defined by the temporal and spatial coherence

of the beam. However, if the system exhibits dynamics within

the pulse duration, the speckle pattern

on the detector smears out, resulting in

a lower contrast value than its corre-

sponding static case (Wingert et al.,

2015). This decay of the speckle

contrast, defined as �(t) in an XSVS

experiment, provides a timescale for the

dynamics in the system. Therefore, by

varying the pulse duration, it is possible

to probe dynamics by examining the

change in contrast. For example, a

coherent pulse varied between 10 fs and

120 fs was used to measure caging

effects of ultrafast water dynamics

(Perakis et al., 2018). The disadvantage

with the single pulse method is the

limitation of the largest time delay that

is defined by the sub-picosecond pulse

duration.

A second method of XSVS that is

capable of probing a wider range of

timescales uses two identical coherent

pulses that are separated by a delay

time as shown in Fig. 1(a). The experi-

mental setup in this case uses optics

in a split-and-delay line to separate

a coherent pulse into two identical

probes, delaying one of the probes in

time, and recombining them into two

collinear signals (Yabashi et al., 2017).

In practice, this is extremely difficult to

achieve consistently (Sun et al., 2020),

and there will often be an angular

misalignment between the two pulses

and a nonperfect overlap on the sample

as illustrated in Fig. 1(b). In both cases, the speckle contrast

is affected in a double probe XSVS experiment where the

detector records the sum of two speckle patterns. Using

numerical simulations, we show how the angular misalignment

and nonperfect overlap affects the speckle contrast, and how it

is possible to recover the contrast lost through selective

binning of the detector data.

2. Extracting contrast

The contrast � for a speckle pattern on an area detector is

defined in equation (2) as

�2
ðqÞ ¼ �ðqÞ þ

1

kðqÞ
; ð2Þ

where k is the average photon count per pixel corresponding

to the scattering vector q, and �2 is the normalized variance of

the photon count (Li et al., 2014). In the high photon count

regime where k is large, it is possible to measure the decay of

contrast by simply tracking the variance of the speckle pattern

since the last term in equation (2) is small compared with �. In

the low photon count regime where k is small, the last term
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Figure 1
Schematic for an XSVS experiment where the two pulses are collinear and perfectly overlapping (a)
and where the two pulses have an angular mismatch and imperfect overlap (b). (c) The
corresponding detector images for the two cases (a) and (b) for a high photon count regime (left
column) and low photon count regime (right column) where Poisson noise is significant. The
contrast as measured by the variance for the high photon count regime (d) and for the low photon
count regime (e).



becomes significant and the variance can no longer accurately

capture the contrast. This is demonstrated in Figs. 1(d) and

1(e) where the decay of contrast using the variance is evident

in the system where k = 6 photons per pixel but fails for the

case of k = 0.015 photons per pixel. This becomes problematic

for a XSVS experiment since the typical signal produced from

the interaction of a single or double pulse with a system,

especially at large q values, is quite low (Sun et al., 2020). To

overcome this impediment, we have to resort to photon

counting statistics and measure the contrast in terms of

coherent modes, M, where � = 1/M. The value of M represents

the number of independent speckle patterns recorded by

the detector.

Here we consider a speckle pattern with M coherent modes

where the intensity distribution is well approximated by a

gamma density function, and where the discretized photon

counts on the detector follows a Poisson distribution. The

signal on the detector follows the compound distribution of

these two independent probability distributions, which is the

negative-binomial distribution, P(K), as given in equation (3),

PðKÞ ¼
�ðK þMÞ

�ðMÞ�ðK þ 1Þ

�
1þ

M

k

��k�
1þ

k

M

��M

; ð3Þ

where M is the speckle degree of freedom, P(K) is the prob-

ability of finding K photon hits, and k is the average photon

per pixel of the entire detector. In a real experiment, a proper

droplet algorithm must be applied to convert the area detector

signal into localized and discretized photon counts. In our

simulations, this is achieved by feeding the final speckle

pattern on the detector, characterized by the gamma distri-

bution of the speckle intensity, through a Poisson filter. By

counting the double K = 2 and triple K = 3 photon hits on the

detector, it is possible to extract the contrast by fitting M to the

P(K = 2) and P(K = 3) cases of the negative binomial distri-

bution in equation (3).

3. Simulation

Speckle patterns are simulated following the example

presented by Goodman (2007). A random phase field �(qx,qy)

is created on a 1024 � 1024 grid, and a Gaussian beam

G1ðx; yÞ = A exp½�ðx2 þ y2Þ=2�2� with a full width at half-

maximum (FWHM) profile of 235 pixels is centered on the

middle of the grid at (x1,y1) = (512,512). The intensity of the

speckle pattern produced on a 1024� 1024 pixel area detector

in the far-field can be calculated using discrete Fourier trans-

forms described in equation (4),

Iðqx; qyÞ ¼
��F �1

�
G1 x� x1; y� y1ð Þ F exp

�
i�ðqx; qyÞ

�� 	
��2:
ð4Þ

Here F and F �1 denote the direct and inverse Fourier

transforms, respectively. A dynamic system can then be

created using a predefined correlation timescale (Federico et

al., 2006). In this approach, the random phase field �(qx,qy, t)

is iteratively evolving in time as described by

� qx; qy; t þ dt
� 


¼ � qx; qy; t
� 


þD qx; qy; t
� 


� ln½cðtÞ� � ln½cðt þ dtÞ�
� 	1=2

; ð5Þ

where D(qx, qy, t) is a Gaussian distribution with zero mean

and unitary standard deviation to confine the magnitude of

change to the phase field, and dt is the time step between two

consecutively generated speckle patterns. Federico et al.

(2006) showed that the standard deviation between successive

phase fields, �(qx,qy, t) and �(qx,qy, t + dt), is related to the

correlation function by fln½cðtÞ� � ln½cðt þ dtÞ�g1=2. The

dynamics of the system is thus encoded in the time-dependent

correlation function, c(t), which describes how fast the

correlation between speckle patterns decay with time. A

monotonic function, cðtÞ = exp½�ðt=tcÞ
2
�, was chosen to simu-

late a dynamical system where t is an arbitrary unit of time

and tc is a time constant set to 200 to describe the temporal

evolution. The final speckle pattern of a dynamic system in

a double-probe XSVS experiment with collinear pulses is

therefore

Iðqx; qyÞ ¼ F
�1 G1ðx� x1; y� y1Þ F

�
exp i�ðqx; qy; 0Þ

� �	� 
�� ��2
þ F

�1 G2ðx� x2; y� y2Þ F
�

exp i�ðqx; qy; tÞ
� �	� 
�� ��2

ð6Þ

where t is the time delay between the two pulses and G1(x,y) =

G2(x,y) for overlapping, collinear pulses. To simulate a partial

overlap between the two pulses, the center of the second pulse

is simply shifted to a different point (x2,y2). An example of

detector images for a high and low k value at t = 0 for this case

is shown in Fig. 1(c).

To simulate an angular mismatch �� along the x-direction

to the second pulse, we introduce a phase shift to the second

Gaussian beam so that the illumination function G2(x, y) can

be written as

G2ðx� x2; y� y2Þ ¼ A exp �
ðx� x2Þ

2
þ ðy� y2Þ

2

2�2

� �

� exp i�qx x sð Þ: ð7Þ

Here �qx = q�� for a small angular mismatch �� between the

propagation directions of the two pulses where q = 2�/� is the

wavevector of photons with wavelength �, x is the index of the

pixels, and s is the size of the pixel in real space. We chose an

energy of 10 keV and set the size of a pixel to s = 6.38 nm

per pixel to give a realistic FWHM of the Gaussian beam

to be 1.5 mm (235 pixels). The parameters for our simulation

produced an average speckle size on the detector of

approximately 2 pixels as calculated from fitting a Gaussian to

the normalized 2D autocorrelation of a detector image at time

zero. In any real experiment, the speckle size is determined by

the wavelength, the spot size of the coherent pulse, and the

sample-to-detector distance and should be calibrated so that

the average speckle size is at least 1 pixel size. Typically this is

achieved by changing the sample-to-detector distance, but this

parameter is fixed in our system due to the use of discrete

Fourier transforms to simulate the speckle pattern on the

detector instead of using a continuous Fourier transform.
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To model a low photon count regime, the amplitude of the

Gaussian pulses, A, was defined so that the final detector

images have an average photon count between k = 0.014–

0.015 photons per pixel within approximately two standard

deviations. To account for the statistical nature of the photon

detecting process, 50 independent phase fields �(qx,qy) were

simulated and advanced for a total of 30 time steps.

4. Results

4.1. Angular misalignment

A perfectly overlapping, but slightly misaligned, second

pulse effectively shifts the second signal along the detector to

create a smeared speckle pattern as demonstrated in Fig. 1(c)

(left column) for the high photon regime where the second

pulse is misaligned by 60 mrad. Note that such smearing is not

visually evident for low photon counts where the Poisson

fluctuations are on the order of the signal itself, as shown in

Fig. 1(c) (right column). To compare the difference in contrast

between the collinear and misaligned cases, we first calculate

the number of K = 2 photoevents relative to the average

intensity k at time zero where the system is static, and compare

the results to the probability distribution for full contrast

P(K = 2, M = 1) and zero contrast P(K = 2, M ! 1). In

Fig. 2(a), we can immediately see the probability P(K = 2) for

the misaligned case is lower than for the collinear one, which

means the decrease of the contrast is caused by the angular

misalignment. The two probes are fully coherent in our

simulation and therefore the theoretical maximum contrast is

1 for a completely static system where there is only a single

speckle degree of freedom (M = 1), and 1/2 for a completed

decorrelated system with two speckle degrees of freedom

(M = 2) coming from the interaction of two pulses with

different phase fields. At each time delay, the speckle contrast

was evaluated as � = 1/M, where M was determined by fitting

equation (3) for P(K = 2) photon hits over the 50 independent

diffraction patterns. The error bars are defined to be one

standard deviation from the best fit. After evaluating the

contrast � at all time delays in Fig. 2(b), we see the contrast

drop from approximately 1 to 1/2 for the collinear case but is

approximately 1/2 at all time delays for the misaligned case.

In other words, a 60 mrad angular mismatch is sufficient to

completely destroy the contrast in a double-probe XSVS

experiment.

In principle, since an angular misalignment shifts the

speckle pattern along the detector, the original speckles with

two or three photon hits produced from the two pulses

effectively split between neighboring pixels along the detector.

Therefore, it should be possible to partially recover the

contrast lost by binning the detector images along the direc-

tion of misalignment, i.e. summing together the photon counts

of N neighboring pixels along the x-direction. By binning,

some information about the speckle pattern is lost because

now we consider only the total signal within a bin, which might

include a few speckles. At first glance, this contradicts the

well established rule stating the optimal setup for an XPCS

experiment corresponds to one speckle per pixel. However,

for extremely low photon flux, the probability that several

photons belonging to different speckles fall in the same bin is

negligible. Moreover, our simulations show that the increased

photon count per bin outweights the loss of some resolution

on the detector, which is already spoiled by the angular

mismatch.

In Fig. 3(a), we directly show that by binning the data the

contrast can be partially recovered to the point where the

decay is significant above the error bars. Since our speckle size

is approximately 2 pixels, we see that a bin size of 2 pixels does

not drastically change the contrast trend, but the decay is

evident starting at N = 4 pixel bin sizes. The contrast trend for

the misaligned case also approaches the one for the collinear

case with increasing bin size. Since the collinear pulses accu-

rately describe the underlying dynamics, we can consider the

bin size of 10 pixels to be the optimal binning as the contrast

decay of the misaligned case most resembles the collinear one.

However, by binning the data, we are also adding more

speckle degrees of freedom within a bin, i.e. effectively

increasing M, and thus inherently lowering the range of the
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Figure 2
(a) The distribution of K = 2 photon hits on a 1024 � 1024 detector in a
static system for 50 independent phase fields for the cases (i) two pulses
are collinear and overlapping and (ii) the two pulses are overlapping but
misaligned by 60 mrad. The solid blue line marks a contrast of � = 1 and
the dotted blue line marks a contrast of � = 0. (b) The change of contrast
for a dynamical system for the cases (i) and (ii) from fitting the P(K = 2)
case in equation (3).



theoretical maximum and minimum contrast. Therefore, while

the contrast trends of the two cases do approach each other

monotonically with bin size, the absolute change in contrast

between time zero and long-time delays grows smaller as well.

In Fig. 3(b), the characteristic timescale extracted from fitting

the contrast decay with a stretched exponential function is

shown for various bin sizes for both the collinear and mis-

aligned cases. It is evident that the error bars grow smaller

with bin size, and the fits to the misaligned case approach that

of the collinear case after N = 2 bin size.

In Figs. 4(a) and 4(b), the absolute change in contrast

between time zero and long-time delays for various angular

misalignments from 0 to 90 mrad and for various bin sizes up to

N = 10 pixels calculated from P(K = 2) and P(K = 3) fits are

shown. These values were calculated after averaging the first

and last three time delays (t = 0, 1, 2 and t = 27, 28, 29) as the

starting and ending contrast values. At low angular mis-

matches, the offset in the second probe is not large enough to

split the speckles across the detector and thus binning does

not improve the resolution in the contrast difference.

However, at higher values of angular mismatch, it is clear that

the maximum drop of contrast during the time-series is

achieved for a bin size exceeding the speckle size. In Fig. 4(c),

we show that the optimal bin size in terms of contrast differ-

ence varies depending on the angular mismatch angle. For all

cases where binning recovers the decay of contrast outside the

error bars, the dynamic timescale can be accurately extracted

from an exponential fit.

The effects of binning can also be achieved by using a

detector with larger pixel sizes. However, bins have a rectan-

gular shape elongated in the direction of angular mismatch.
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Figure 4
The decay of contrast for various bin sizes and angular mismatch angles
from fits to the negative binomial distribution for (a) P(K = 2) and
(b) P(K = 3) cases. (c) The contrast difference for various bin sizes
and select angular mismatches to show optimal bin sizes. The contrast
difference is calculated from averaging the contrast of the first three time
steps (t = 0,1, 2) and averaging the contrast of the last three time steps
(t = 27,28, 29).

Figure 3
(a) The decay of contrast from fits to the negative binomial distribution
for P(K = 2) after binning detector images along the direction of the
angular misalignment for various bin sizes. The range of � grows smaller
with increasing bin sizes since there are more speckle degrees of freedom,
but the 60 mrad and collinear contrast profiles approach each other as
well. (b) The characteristic decay time constant extracted from fitting a
stretched exponential function to the change in contrast for various bin
sizes in both the collinear and angular mismatch cases.



Binning in the orthogonal direction would only decrease the

contrast value and not correct for the angular mismatch.

Moreover, the optimal binning N is determined by the speckle

size and the value of angular mismatch ��, which can change

from one experiment to another even at the same beamline.

Therefore, collecting the data using existing detectors with

small pixels and performing the binning at the data analysis

stage can be advantageous at current split-and-delay setups.

4.2. Imperfect overlap

The effect on contrast for imperfectly overlapping Gaussian

probes was also investigated without taking into account the

angular misalignment. The two probes with a FWHM of

235 pixels originally centered on the 1024 � 1024 phase field

were displaced so that the centers of the Gaussian probes were

separated in increments of 20 pixels along the x-direction. We

define a fractional offset as the ratio of the probes’ displace-

ment to the FWHM of the probes. Since the pulses have a

Gaussian profile, a more accurate representation is a weighted

overlap between the two that can be calculated from a 2D

autocorrelation of the Gaussian pulses centered at (x1,y1) and

(x2,y2), as defined in equation (8),

pðx2 � x1; y2 � y1Þ ¼ ð8Þ

RR
G1ðx� x1; y� y1ÞG2ðx� x2; y� y2Þ dx dyRR

G1ðx� x1; y� y1Þ dx dy
RR

G2ðx� x2; y� y2Þ dx dy
;

where G1(x,y) and G2(x,y) are intensity profiles of the two

X-ray pulses.

The overlap percentages as a function of fractional offset

for Gaussian profiles are shown in Fig. 5(a) along with the

change in contrast. We see that, even at a fractional offset of

50%, there is still a contrast difference of 0.2 that is sufficient

to extract dynamic timescales in a system. This is not

surprising since the distribution in intensity for a fully

coherent Gaussian beam allows for a large offset as seen by

the weighted overlap. In Fig. 5(b), we show that binning the

detector along the direction of displacement decreases the

contrast difference for all offsets, as expected. Therefore,

binning of the data cannot improve the contrast value,

suppressed by the partial overlap. However, the decrease in

contrast is not dramatic, especially for Gaussian beams.

To demonstrate the possibility of binning the data where

both the angular mismatch and imperfect spatial overlap are

present, we performed simulations with both effects. The

results shown in Fig. 6 indicate that a sufficient decay of

contrast can be obtained for a wide range of parameters,

namely for �� < 90 mrad and the fractional offset less than 0.4.

5. Conclusion

The parameters of our simulation are set to mimic a realistic

double-probe XSVS experiment, but in general the experi-

ment should be set up so the speckle size is at least one pixel

on the detector. This can be achieved by varying the sample-

to-detector distance or the beam spot size, with the latter

being a variable in our simulation. A larger beam (5–10 mm)

will produce speckles smaller than the detector pixels. Indeed

this will make the system more robust to the angular

mismatch, but will also reduce the initial contrast and open

the possibility of making different speckles indistinguishable

within a pixel. Using a larger beam is not equivalent to

binning, since we propose to bin along the direction of angular
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Figure 5
(a) The fractional offset is defined as the ratio of the displacement of
the two pulses to the FWHM of the pulses. The overlap percentages
corresponding to circular and Gaussian profiles and the contrast
difference are shown. (b) Effect of binning the detector along the
direction of pulse displacement for various bin sizes and fractional offsets.

Figure 6
The effects of binning on the contrast difference is shown for various bin
sizes when both an angular mismatch and nonperfect overlap exists. Note
that the results of binning are particularly effective at higher angular
mismatch angles as depicted in the blue rectangular region.



mismatch (for example qx), and changing the beam size will

influence the speckle size in both directions (qx and qy). Our

simulations show that binning in the direction perpendicular

to the angular mismatch does not help to eliminate the effect

of the angular mismatch on the speckle contrast. Therefore,

using a smaller beam together with binning along one direc-

tion is more efficient than using larger beam (which is

equivalent to binning along two directions).

Our simulations of a 2D phase field is also representative

of surface scattering from a sample in reflection geometry or

a thin sample in transmission geometry that is typical for

systems of interest in an XSVS experiment (Sinha et al., 2014).

Through numerical simulations, we show that a double-probe

XSVS experiment can endure a large offset in the overlap

between the two pulses, but a small angular misalignment

can completely destroy the contrast difference necessary

to measure dynamics. Depending on the magnitude of the

overlap and angular misalignment, a proper binning of the

detector along the direction of angular misalignment can

partially recover the contrast. Recently, Sun et al. (2020)

proposed another approach to compensate for the shift of the

speckle pattern by evaluating the autocorrelation function.

In principle, both techniques yield similar results in partially

recovering the original contrast, and should act as comple-

mentary tools to verify the results in a double-probe XSVS

experiment. In our case, in addition to the angular mismatch,

we simulated a dynamic speckle pattern with a predefined

correlation function in the low photon count regime. By

successfully extracting the time constant from fitting a

stretched exponential to the decay of contrast in the binned

data, we show that this analysis tool is effective in addressing a

double-probe XSVS experiment where an angular misalign-

ment and partial overlap exists.
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Synchrotron Rad. 26, 1052–1057.

Seaberg, M. H., Holladay, B., Lee, J. C. T., Sikorski, M., Reid, A. H.,
Montoya, S. A., Dakovski, G. L., Koralek, J. D., Coslovich, G.,
Moeller, S., Schlotter, W. F., Streubel, R., Kevan, S. D., Fischer, P.,
Fullerton, E. E., Turner, J. L., Decker, F.-J., Sinha, S. K., Roy, S. &
Turner, J. J. (2017). Phys. Rev. Lett. 119, 067403.

Shpyrko, O. G. (2014). J. Synchrotron Rad. 21, 1057–1064.
Shpyrko, O. G., Isaacs, E., Logan, J., Feng, Y., Aeppli, G., Jaramillo,

R., Kim, H., Rosenbaum, T., Zschack, P., Sprung, M., Narayanan, S.
& Sandy, A. R. (2007). Nature, 447, 68–71.

Sinha, S. K., Jiang, Z. & Lurio, L. B. (2014). Adv. Mater. 26, 7764–
7785.

Sun, Y., Dunne, M., Fuoss, P., Robert, A., Zhu, D., Osaka, T., Yabashi,
M. & Sutton, M. (2020). Phys. Rev. Res. 2, 023099.

Sutton, M., Mochrie, S. G. J., Greytak, T., Nagler, S. E., Berman, L. E.,
Held, G. A. & Stephenson, G. B. (1991). Nature, 352, 608–610.

Wingert, J., Singer, A. & Shpyrko, O. G. (2015). J. Synchrotron Rad.
22, 1141–1146.

Yabashi, M., Tanaka, H., Tono, K. & Ishikawa, T. (2017). Appl. Sci. 7,
604.

research papers

1632 Nelson Hua et al. � X-ray speckle visibility spectroscopy in imperfect conditions J. Synchrotron Rad. (2020). 27, 1626–1632

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB101
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB100
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB100
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB100
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB102
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB102
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ok5027&bbid=BB20

