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Ronchi testing of a focused electromagnetic wave has in the last few years been

used extensively at X-ray free-electron laser (FEL) facilities to qualitatively

evaluate the wavefront of the beam. It is a quick and straightforward test, is easy

to interpret on the fly, and can be used to align phase plates that correct the

focus of aberrated beams. In general, a single Ronchigram is not sufficient

to gain complete quantitative knowledge of the wavefront. However the

compound refractive lenses that are commonly used at X-ray FELs exhibit a

strong circular symmetry in their aberration, and this can be exploited. Here, a

simple algorithm that uses a single recorded Ronchigram to recover the full

wavefront of a nano-focused beam, assuming circular symmetry, is presented,

and applied to experimental measurements at the Matter in Extreme Conditions

instrument at the Linac Coherent Light Source.

1. Introduction

Shearing interferometry and other forms of wavefront sensing

have in the last few years become widely used to determine

the focal characteristics of X-ray free-electron lasers

(Rutishauser et al., 2012; Nagler et al., 2017; Liu et al., 2018;

Seaberg et al., 2019; Makita et al., 2020). Indeed, the unique

scientific opportunities at X-ray FELs (Bostedt et al., 2016)

have required ever more precise knowledge of the focal

properties of the X-ray source, especially in fields where the

highest X-ray intensities are needed, such as in anomalous

nonlinear X-ray Compton scattering (Fuchs et al., 2015), the

formation of hollow atoms (Tamasaku et al., 2014), radiation

damage studies on protein micro-crystals (Nass et al., 2015),

dense plasma science (Vinko et al., 2012) and phase contrast

imaging (Schropp et al., 2015; Nagler et al., 2016).

At the same time, a simple Ronchi test has frequently been

used to gather quick, easy interpretable qualitative data

about the wavefront, and therefore the focus, of X-ray

beams (Nilsson et al., 2012). They have been especially useful

to align phase plates that correct the aberrations of compound

refractive lenses (CRLs) of beryllium, and achieve near

diffraction limited foci of approximately 100 nm (Seiboth et

al., 2017).

Measurements of the wavefront of X-ray beams focused

with CRLs have revealed that the predominant aberrations

have a circular symmetry (Schropp et al., 2013; Seaberg et

al., 2019). This is not surprising, considering the processes

involved in the manufacturing of a Be lens (Lengeler et al.,

2002). This circular symmetry can be exploited when deter-

mining the wavefront of the beam. While in general at least

four Ronchigrams are needed to measure the wavefront of

circular beams (Nagler et al., 2017), we show that, by
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exploiting the circular symmetry, a single Ronchigram is

sufficient. We will start by giving an overview of the principle

of Ronchi testing, summarizing the method explained in detail

by Nagler et al. (2017). We then introduce the algorithm to

retrieve the phase that exploits the circular symmetry of the

wavefront. We conclude with an example based on measure-

ments of the nano-focus at the Matter in Extreme Conditions

(MEC) (Nagler et al., 2015) instrument at Linac Coherent

Light Source (LCLS).

2. Principle of Ronchi shearing interferometry

The principles of Ronchi shearing interferometry are treated

in detail by Nagler et al. (2017). A conceptual sketch of the

setup can be seen in Figs. 1(a) and 1(b). The Ronchi target is a

one-dimensional (1D) diffraction grating, with a pitch chosen

such that the first orders overlap with the zeroth order (i.e. the

transmitted beam), but do not overlap with each other. This is

achieved when the pitch of the grating D = 2f# �, with f# the

f-number of the optic that is used to focus the X-rays (i.e. the

CRL), and � the wavelength of the X-ray photons. Where the

first orders overlap with the zeroth order (i.e. the transmitted

beam), interference fringes appear. The properties of the

interference fringes can be easily understood, by tracing back

the first-order diffractions to their virtual foci. This is shown

in Fig. 1(b), where only the +1 diffraction order is shown for

clarity. The virtual foci can be viewed as secondary sources

of spherical waves. The resulting interference pattern [see

Fig. 1(c)] is nothing but the interference of two spherical wave

sources, separated by a distance d. This interference pattern

is therefore identical to the pattern of the famous Young’s

double slit experiment, and the fringes will have the same

spatial frequency, with the wavenumber equal to

2�z1

zcD
: ð1Þ

However, the focus (and virtual focus) is not a perfect source

of spherical waves, since the beam has aberrations. Therefore,

the interference fringes seen on the detector will be distorted.

From the above, it follows that the phase difference between

the first order and the zeroth order, also called the differential

phase, which uniquely determines the fringe pattern, can be

written as

�� ¼ Cte þ ŜSXD
½�c0ðx; yÞ� �

2�z1

zcD
x ð2Þ

with Cte a constant, XD the displacement of the first order of

the beam with respect to the zeroth order (i.e. half the beam

diameter) at the camera plane, �c0ðx; yÞ the phase of the beam

at the detector position after removing its spherical compo-

nent, z1 the distance between the Ronchi target and the focus,

zc the distance between the focus and the camera position, and

ŜSXD
the shearing operator defined as
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Figure 1
(a) Conceptual sketch (not to scale) of the setup. A 1D Ronchi grating is placed somewhat behind the focus of the X-rays [e.g. 5 mm in the data presented
in (c)]. The period of the Ronchi grating is chosen such that orders 1 and �1 do not overlap, while maintaining a large overlap between order 0 and the
first orders. Only the +1 order is drawn for clarity. A monochromator [e.g. Si(111) for data shown in (c)] may be necessary due to the chromaticity of the
CRL. (b) Closeup of the rays close to the focus and the Ronchi grating, showing the focus of the beam and the virtual focus of the +1 order, that act as
secondary sources. (c) Image of the interference pattern on the camera, showing the distorted linear fringes.



ŜSXD

�
f ðx; yÞ

�
¼ f ðx; yÞ � f ðx� XD; yÞ: ð3Þ

A mathematically rigorous justification of equation (2) is

given by Nagler et al. (2017), and in Appendix A for

completeness.

The phase difference in equation (2) can be easily recov-

ered from the experimental data in Fig. 1(c) using standard

Fourier transform and phase unwrapping methods (Takeda et

al., 1982). Inverting the shearing operator is therefore the only

remaining problem. As elaborated by Nagler et al. (2017), it

usually requires multiple Ronchigrams. We will show below

that only one Ronchigram is necessary if we assume a circular

symmetry in �c0ðx; yÞ.

3. Inverting the shearing operator exploiting circular
symmetry

3.1. The cost function

To invert the shearing operator we use the same optimiza-

tion method as in Nagler et al. (2017) and Makita et al. (2020):

we minimize a cost function that expresses the difference

between our experimental measured differential phase and

the differential phase that is calculated from an initial guess

of the X-ray wavefront. It is this guess that will be optimized

iteratively [e.g. by using a conjugate gradient descent method,

or a limited memory Broyden–Fletcher–Goldfard–Shanno

algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970;

Shanno, 1970; Nocedal, 1980)]. We define the cost function as

U2 ¼ U2
�ss þ �U2

� þ � R2
x þ R2

y

� �
; ð4Þ

where � and � are regularization parameters that need to be

chosen judiciously. The difference with Makita et al. (2020) is

that we only use one interferogram and we add a term to the

cost function, U2
� . This new term will be chosen in such a way

that it will drive the solution of optimization towards cylind-

rical symmetric phases.

As in Makita et al. (2020), we have

U2
�ss ¼

X
k;l

ŜS�ss½�k;l� � �
�ss
k;l þ �

�ss
c

� �2

P �ss
k;l ð5Þ

where �k;l is the phase of the beam that needs to be optimized

at pixel ðk; lÞ, ��ss
k;l is the measured differential phase, ��ss

c is a

constant phase that needs to be optimized and P �ss
k;l is the

analysis mask.

The shear operator is defined as

ŜS�ss½�k;l� ¼ �k;l �d̂d�ss �k;l

� �
; ð6Þ

with the shift operator d̂d�ss given by

d̂d�ss½�ðx; yÞ� ¼ � x� sx; y� sy

� �
: ð7Þ

Rx and Ry are added to the cost function to regularize for

smoothness and are defined as

R2
x ¼

X
k;l

�k�1;l � 2�k;l þ �kþ1;l

� �2
Pk�1;l Pkþ1;l ð8Þ

R2
y ¼

X
k;l

�k;l�1 � 2�k;l þ �k;lþ1

� �2
Pk;l�1 Pk;lþ1 : ð9Þ

Since the shift operator d̂d�ss is unitary, we can show that the

partial derivatives of the cost function are equal to

@U2

@�k;l

¼
@U2

�ss

@�k;l

þ �
@R2

x

@�k;l

þ
@R2

y

@�k;l

� 	
þ �

@U2
�

@�k;l

; ð10Þ

@U2

@��ss
c

¼ 2
X

k;l

P �ss
k;l

�
ŜS�ss½�k;l� � �

�ss
k;l þ �

�ss
c

�
þ �

@U2
�

@��ss
c

; ð11Þ

with

@U2
�ss

@�k;l

¼ 2ŜS��ss ŜS�ss½�k;l� � �
�ss
k;l þ �

�ss
c

� �
P �ss

k;l

h i
; ð12Þ

@R2
x

@�k;l

¼ 2 �k;l � 2�kþ1;l þ �kþ2;l

� �
Pk;l Pkþ2;l

� 4 �k�1;l � 2�k;l þ �kþ1;l

� �
Pk�1;l Pkþ1;l

þ 2 �k�2;l � 2�k�1;l þ �k;l

� �
Pk�2;l Pk;l ; ð13Þ

@R2
y

@�k;l

¼ 2 �k;l � 2�k;lþ1 þ �k;lþ2

� �
Pk;l Pk;lþ2

� 4 �k;l�1 � 2�k;l þ �k;lþ1

� �
Pk;l�1 Pk;lþ1

þ 2 �k;l�2 � 2�k;l�1 þ �k;l

� �
Pk;l�2 Pk;l : ð14Þ

These equation can be used for non-integer shear values, if we

use an interpolated form of the shift function (e.g. bi-linear, or

bi-quadratic interpolation). The introduction of U2
� and its

partial derivatives are the new elements compared with the

previous work of Nagler et al. (2017), and are explained in

detail below.

3.2. Cost function for circular symmetry

To impose circular symmetry, we can define a cost function

that expresses the variance of the wavefront over the angle �,
in the polar coordinates ð�; �Þ. This cost function has the form

U2
� ¼ h�

2i� � h�i
2
� ð15Þ

with

h�2
i� ¼

1

2�

Z2�
0

�2
ð�; �Þ d�; ð16Þ

h�i� ¼
1

2�

Z2�
0

�ð�; �Þ d�: ð17Þ

The total cost function can be defined as

U2
� ¼

Z
U2
� d�; ð18Þ

or, alternatively, if the circumference is used to weight the

function, as
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U2
� ¼

Z
U2
�� d�: ð19Þ

In practice, since different radii optimize independently, both

cost functions (18) and (19) optimize to the same minimum,

although the path of the optimizer would differ due to the

different gradients. We choose a numerical implementation

of (18).

3.3. Numerical implementation

A numerical implementation will require resampling the

wavefront in polar coordinates, with center ðxc; ycÞ, using

the relation

x� xc ¼ � cosð�Þ; ð20Þ

y� yc ¼ � sinð�Þ; ð21Þ

where x and y are expressed in pixels. The sample spacing

along the radius, d�, can be constant, but the spacing in angle

will depend on the radius, since we want to keep dli = �i d�i

pseudo-constant. It is only pseudo-constant since we need the

sampling to be uniform over 2�, which implies dli will vary

slightly with �. We choose the size of dli to be close to, but

larger than, one pixel. If this value is too large, we risk

introducing circular harmonic artifacts, although this is

somewhat mitigated by the Tikonov regularization for

smoothness. We choose �max, the largest radius in the apper-

ture that will be considered, dl, the nominal distance in pixels

between sample points in the polar angle and d�, the radial

distance in pixels between sample points. We can then calcu-

late

Imax ¼
�max

d�


 �
� 1; ð22Þ

�i ¼ ðiþ 1Þ d�; ð23Þ

Ji ¼ 2��i dl�1
� 


� 1; ð24Þ

dli ¼
2��i

Ji þ 1
; ð25Þ

�ij ¼ j
2�

Ji þ 1
¼ j ��1

i dli : ð26Þ

We use the floor function (i.e. b. . .c) to calculate the integer

Imax, the largest index in the radial sampling. This is to ensure

that �I � �max. The integer Ji is the number of sample points in

the polar angle for the radius �i and is defined using the ceiling

function (i.e. d. . .e). This ensures that Ji � 0. In equations (22)

to (26), we have

i 2 f0; 1; 2; . . . ; Imaxg; ð27Þ

j 2 f0; 1; 2; . . . ; Jig: ð28Þ

We will express the sampling of the polar coordinates in a

matrix. Since the number of samples in � is different for every

�, we will zero pad them to keep the matrix rectangular. We

define

Jmax ¼ maxfJig; ð29Þ

and

W ij ¼ �ð�i; �ijÞ; for j 2 f0; 1; 2; . . . ; Jig; ð30Þ

W ij ¼ 0; for j 2 fJi þ 1; . . . ; Jmaxg: ð31Þ

The matrix W ij has dimensions ðImax þ 1Þ � ðJmax þ 1Þ. With

these definitions, the discrete implementation of equations

(16) and (17) becomes

hW
2
i�i
¼

1

Ji þ 1

XJmax

j¼ 0

W
2
i j ; ð32Þ

hWi�i
¼

1

Ji þ 1

XJmax

j¼ 0

W ij : ð33Þ

Note that the sum can run up to Jmax, due to our definition of

the padding of W ij in equation (31), but the denominator

needs to be Ji þ 1. With these definitions, the discrete

equivalent the total cost function [i.e. equation (18)] becomes

U2
� ¼

1

Imax þ 1

XImax

i¼ 0

hW
2
i�i
� hW i

2
�i

� �
: ð34Þ

Since the phase of the beam �ðx; yÞ is only expressed at integer

pixel values, interpolation will need to be used to obtain

the correct values. For example, if we needWð� ¼ 1:1; � ¼ 5Þ

with the center of the beam at ð10; 10Þ, we need to know

�ðx ¼ 12:27; y ¼ 14:46Þ. This value will need to be calculated

by interpolating between the values of the neighboring pixels

[for example by using a bilinear interpolation between pixels

(12, 14), (12, 15), (13, 14) and (13, 15)]. For the moment we

will not specify the interpolation method we use, but write in

general that

W ij ¼ Aijkl �kl ð35Þ

and

@W ij

@�kl

¼ Aijkl ð36Þ

where we use Einstein’s summation convention. Substitution

into equation (34) yields

U2
� ¼

1

Imax þ 1

"X
ij

1

Ji þ 1
Aijkl�kl

� �2

�
X

i

1

ðJi þ 1Þ2

�X
j

Aijkl�kl

	2
#
: ð37Þ

The partial derivatives of U2
� are

@U2
�

@�kl

¼ Bklpq �pq � Cklpq �pq ð38Þ

with

Bpqkl ¼
2

Imax þ 1

X
ij

Ji þ 1ð Þ
�1Aijpq Aijkl ; ð39Þ
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Cpqkl ¼
2

Imax þ 1

X
ijm

Ji þ 1ð Þ
�2

Aijpq Aimkl : ð40Þ

The matrices Aijkl and Bpqkl may seem prohibitively large: if we

sample � and � as densely as x and y, the number of elements

in these matrices scales as N4. However these matrices are in

general extremely sparse. Indeed, if we use nearest-neighbor

interpolation, we only have one non-zero element for every

ði; jÞ, making it no larger in content than Wkl.

For bilinear and bicubic interpolation, this would become

4 and 16 non-zero elements per ði; jÞ, respectively. Therefore,

sparse matrix routines can be used to implement the calcula-

tion of the cost function efficiently and with little memory

overhead. Care needs to be taken never to loop over all

indices of the matrices, since this will take prohibitively long.

3.4. Flattening and assembling indices: reducing
the dimension

To simplify notations, and since sparse matrix routines are

generally only defined in 2D matrices in most computational

libraries, we will contract two indices to one. In this way,

matrices are reshaped by putting all the columns after each

other into one large vector with dimension YD =

ðImax þ 1Þ � ðJmax þ 1Þ. The mapping of the two-dimensional

indices to the 1D one is given by

Y ¼ JD: iþ j ð41Þ

and

i ¼ Y mod JD; ð42Þ

j ¼ Y rem JD; ð43Þ

where JD is the dimension of the index j (e.g. Jmax þ 1 in the

case of the polar coordinate indices defined above). In the

remainder of this paper, we will use capital letters to denote

flattened indices. The index Y will generally refer to the flat-

tened indices (ij) of the polar coordinates ð�; �Þ. The indices K

and P will refer to the flattened Cartesian indices (i.e. kl and

pq). KD is the total number of elements (or the length) of

the flattened Cartesian indices (i.e. total number of pixels in

the original image). With this convention, we can rewrite the

matrices and cost functions in a compact and computationally

manageable form.

3.4.1. Defining ��AA�AA = AYK . This matrix has dimension

YD � KD. As mentioned above, it interpolates between the

original image and the polar sampling of the image, and is

sparse. We have

WY ¼ AYK �K ð44Þ

or

�WW ¼ ��AA�AA ���: ð45Þ

3.4.2. Defining ��BB�BB = BPK . This matrix has a dimension

KD � KD and is symmetric. To calculate ��BB�BB we first define the

extended matrix Jij ,

Jij ¼ Ji for all j: ð46Þ

We can then rewrite equation (39) as

��BB�BB ¼ 2
��ATAT�ATAT ��DD�DD ¼ 2

��DTDT�DTDT ��AA�AA ð47Þ

with

DYK ¼
AYK

ðJY þ 1ÞðImax þ 1Þ
: ð48Þ

3.4.3. Defining ��CC�CC = CPK. This matrix has a dimension

KD � KD and is symmetric. We first define

GiK ¼
1

Imax þ 1ð Þ
1=2

X
j

AijK

Ji þ 1
: ð49Þ

The matrix GiK is somewhat sparse, and has dimension

ðImax þ 1Þ � KD.

With this definition, we can easily calculate CPK,

��CC�CC ¼ 2
��GTGT�GTGT ��GG�GG: ð50Þ

3.5. Expressions for the cost function and its derivative

With the matrices defined above, we can recast the cost

function and its partial derivatives [i.e. equations (37) and

(38)] as

U2
� ¼

1

2
��� ��BB�BB ���� k ��GG�GG ���k2; ð51Þ

@U2
�

@�K

¼
��FF�FF ���; ð52Þ

with

��BB�BB ¼ 2
��ATAT�ATAT ��DD�DD; ð53Þ

��FF�FF ¼ ��BB�BB� 2
��GTGT�GTGT ��GG�GG; ð54Þ

DYK ¼
AYK

ðJY þ 1ÞðImax þ 1Þ
; ð55Þ

GiK ¼
1

Imax þ 1ð Þ
1=2

X
j

AijK

Ji þ 1
: ð56Þ

3.6. Calculating the matrices ��AA�AA, ��DD�DD and ��GG�GG

While the matrices ��BB�BB, ��CC�CC, ��FF�FF, the cost function, and its deri-

vatives can be calculated using sparse matrix multiplication,

this is not the case for ��AA�AA, ��DD�DD and ��GG�GG. They need to be

constructed, and looping over their indices takes prohibitively

long. A procedure to calculate the non-zero elements of these

matrices, and their corresponding indices, is outlined in Fig. 2.
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4. Experimental results and conclusions

The phase retrieval and optimization method described above

was applied to data obtained during an experiment at the

MEC endstation (Nagler et al., 2015) at LCLS. A set of 25

beryllium CRLs with a radius of curvature of 50 mm at their

apex was used to focus the X-ray beam. A photon energy of

8.2 keV was used, leading to a focal length for the CRL of

205.9 mm. A four-bounce Si(111) monochromator was used to

reduce the bandwidth of the beam to approximately 1 eV. This

is necessary, since the chromaticity of the CLR together with

the native bandwidth of LCLS (i.e. approximately 30 eV at

8.2 keV photon energy) would wash out the fringes of the

Ronchigram. A Ronchi grating with a pitch of 250 nm was

placed approximately 5 mm behind the focus of the CRL. The

Ronchi grating consisted of 1.5 mm-thick diamond with an

additional layer of 250 nm tungsten (Uhlén et al., 2011), giving

a diffraction efficiency of approximately 13% (Nilsson et al.,

2012). A Princeton Instruments PIXIS X-ray camera with

13.5 mm pixels was placed 3.85 m behind the focus. High-

quality Ronchigrams were recorded in a single shot. In

general, integrating multiple shots is not possible with this

method, unless the spatial jitter of the beam is extremely

small. Indeed, if the beam jitter on the grating is half of the

pitch of the grating (i.e. 125 nm in our case), the position of the

maxima and minima in intensity is reversed, and the fringes

are completely washed out in the integration. A sketch of the

setup is shown in Figs. 1(a) and 1(b). A raw camera image is

shown in Fig. 1(c).

The retrieved phase of the beam is shown in Fig. 3, where

we removed the wavefront curvature to make the aberrations

more visible. The total RMS of the remaining aberrations is

approximately 1/4 wave, with a peak-to-valley of 1 wave.

We then proceeded to test this result in the following

manner. The phase difference (or differential phase) of the

reconstructed wavefront of the beam was calculated in the

same vertical shearing direction as in the experimental data

shown in Fig. 1(c). This calculated differential phase was

compared with the actual measured differential phase, and we

call the difference the residual differential phase error. This

residual differential phase error is shown in Fig. 4. The resi-

dual differential phase error is a good measure of how well the

reconstruction algorithm can find a wavefront that matches

the measured data, and is therefore a good indication of the

overall (minimal) error of the whole phase retrieval proce-

dure. The RMS value of the residual differential phase error

over the whole measurement aperture is �=40.

Armed with both the phase and the intensity of the beam,

we can now calculate the focal properties of the beam by back-

propagating the electric field to the focus. This result can be

seen in Fig. 5, where we show the beam profile a the best focus
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Figure 3
Retrieved wavefront of the beam, after removal of the wavefront
curvature. The total RMS of the aberrations over the measurement
aperture is approximately 1/4 wave.

Figure 4
The residual differential phase error of the reconstruction. The RMS of
the residual differential phase error over the whole measurement
aperture is �=40, giving an indication of the reliability of the algorithm
(and the symmetry of the beam).

Figure 2
Procedure to calculate the non-zero elements of ��AA�AA, ��DD�DD and ��GG�GG, and
their indices.



location, as well as around the focus in 1 mm steps. In Fig. 6 we

show lineouts in both the horizontal and vertical direction of

the best focus.

Wavefront sensing of X-ray FEL beams focused by CRLs to

100 nm focal spots have been performed in the past with

similar lens sets, using a variety of techniques (Schropp et al.,

2013; Seaberg et al., 2019). They reported wavefronts with

aberration dominated by spherical aberration, of the same

order as measured in this paper.

In conclusion, we have presented a method and algorithm

that can retrieve the phase of a focused X-ray beam using a

single Ronchigram, with a prior of circular symmetry. The

algorithm was designed for use on an X-ray free-electron

laser, but can be used in general for any wavefront with

circular symmetry. We applied it to X-ray beams focused with

CRLs to 100 nm size at the MEC endstation at LCLS, and

obtained results that compare well with previous measure-

ments.

APPENDIX A
Mathematical description of Ronchigrams

A mathematical rigorous derivation of equation (2) can be

derived as follows. Consider an X-ray beam with a focus

located at z = 0, with electric field E0ðx; y; 0Þ. Using the

paraxial approximation, we can propagate the electric field to

the camera position, zc, using the Fresnel intergral,

Ec0ðx; yÞ ¼ Pzc
ðx; yÞE F

c0ðx; yÞ; ð57Þ

with

E F
c0ðx; yÞ ¼ �

ik

2�zc

expðikzcÞ F E0ðx; yÞPzc
ðx; yÞ

� �
kx¼

k:x
zc
;ky¼

k:y
zc

ð58Þ

with k the wavenumber of the electromagnetic field, and the

spherical phase factor Pzc
defined as

Pzc
ðx; yÞ ¼ exp

ik

2zc

ðx2
þ y2
Þ

� �
: ð59Þ

E F
c0 represents the electric field at the camera position, after

removal of the wavefront curvature due to the propagation

distance zc. The Ronchi grating is placed at position z = z1. We

propagate the beam from focus to the grating using the

Fresnel integral. We multiply the field with the transmission

function of the Ronchi grating. Since the Ronchi grating is

periodic along the x-axis, and has no dependence on y, its

Fourier transform can be written as

Rðkx; kyÞ ¼ 2�
Xþ1

l¼�1

Rl �ðkx � klÞ �ðkyÞ; ð60Þ

with

kl ¼
2�

D
l with l 2 Z; ð61Þ

with D the pitch of the grating, and Rl a sequence of complex

numbers that depend on the grating characteristics. When we

propagate the field back to the (now virtual) focus of the

beam, we obtain the (virtual) field ER0,

ER0 ¼
1

2�

Xþ1
l¼�1

Rl exp i
klXl

2

� 	

� E0ðxþ Xl; y; 0Þ exp iklxð Þ; ð62Þ

with

Xl ¼
2�z1

kD
l with l 2 Z: ð63Þ

We now use the Fresnel integral to propagate this field to

z = zc. Substituting equation (58) we obtain
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Figure 5
Calculated spatial profile of the X-ray beam at its focal position (bottom)
and a scan of the profile around the focal position (top row) in 1 mm
steps. Negative values indicate a position before the focal plane.

Figure 6
Line-out of the spatial profile of the X-ray beam at its focal position, in
both the horizontal (red) and vertical (blue) direction.



ERc ¼
1

2�
Pzc
ðx; yÞ

Xþ1
l¼�1

Rl exp i�lð Þ

� E F
c0 x� X l

D; y; zc

� �
exp ikl

z1

zc

x

� 	
; ð64Þ

with

�l ¼
klXl

2

z1

zc

� 1

� 	
; ð65Þ

Xl
D ¼

kl

k
zc � z1ð Þ: ð66Þ

When different orders (i.e. different values of l) overlap, they

will interfere, and form predominantly linear fringes due to

the linear phase in x. From equation (64) we can calculate the

phase difference between the zeroth and first order,

�� ¼ �R0
� �R1

�
2�2z1

kD2

z1

zc

� 1

� 	

þ ŜSXD
�c0ðx; yÞ
� �

�
2�z1

zcD
x; ð67Þ

with �R0
the phase of R0, �R1

the phase of R1, �c0ðx; yÞ the

phase of E F
c0ðx; y; zcÞ, and ŜSXD

the shearing operator defined as

ŜSXD
½ f ðx; yÞ� ¼ f ðx; yÞ � f ðx� XD; yÞ; ð68Þ

and XD 	 X1
D. The first three terms of equation (67) give the

constant phase difference between the orders [corresponding

to the undetermined Cte in equation (2)]. The last two terms

show how the phase varies in x and y. The linear phase in x of

the last term will result in linear fringes in the intensity of ERC,

provided that the spatial frequency 2�z1=zcD is large enough.

Using standard Fourier methods (Takeda et al., 1982) and

phase unwrapping algorithms, we can retrieve ŜSXD
½�c0ðx; yÞ� as

long as the spatial frequency 2�z1=zcD is at least twice as big

as the highest spatial frequency that is present in the intensity

of ERC; otherwise some aliasing will occur.

Funding information

Use of the Linac Coherent Light Source (LCLS), SLAC

National Accelerator Laboratory, is supported by the US

Department of Energy, Office of Science, Office of Basic

Energy Sciences under Contract No. DE-AC02-76SF00515.

The MEC instrument is supported by the US Department of

Energy, Office of Science, Office of Fusion Energy Sciences

under contract DE-AC02-76SF00515.

References

Bostedt, C., Boutet, S., Fritz, D. M., Huang, Z., Lee, H. J., Lemke,
H. T., Robert, A., Schlotter, W. F., Turner, J. J. & Williams, G. J.
(2016). Rev. Mod. Phys. 88, 015007.

Broyden, C. G. (1970). IMA J. Appl. Math. 6, 76–90.
Fletcher, R. (1970). Comput. J. 13, 317–322.
Fuchs, M., Trigo, M., Chen, J., Ghimire, S., Shwartz, S., Kozina, M.,

Jiang, M., Henighan, T., Bray, C., Ndabashimiye, G., Bucksbaum,
P. H., Feng, Y., Herrmann, S., Carini, G. A., Pines, J., Hart, P.,
Kenney, C., Guillet, S., Boutet, S., Williams, G. J., Messerschmidt,

M., Seibert, M. M., Moeller, S., Hastings, J. B. & Reis, D. A. (2015).
Nat. Phys. 11, 964–970.

Goldfarb, D. (1970). Math. C. 24, 23–26.
Lengeler, B., Schroer, C. G., Benner, B., Gerhardus, A., Günzler, T. F.,

Kuhlmann, M., Meyer, J. & Zimprich, C. (2002). J. Synchrotron
Rad. 9, 119–124.

Liu, Y., Seaberg, M., Zhu, D., Krzywinski, J., Seiboth, F., Hardin, C.,
Cocco, D., Aquila, A., Nagler, B., Lee, H. J., Boutet, S., Feng, Y.,
Ding, Y., Marcus, G. & Sakdinawat, A. (2018). Optica, 5, 967–975.

Makita, M., Seniutinas, G., Seaberg, M. H., Lee, H. J., Galtier, E. C.,
Liang, M., Aquila, A., Boutet, S., Hashim, A., Hunter, M. S., van
Driel, T., Zastrau, U., David, C. & Nagler, B. (2020). Optica, 7,
404–409.

Nagler, B., Aquila, A., Boutet, S., Galtier, E. C., Hashim, A., Hunter,
M. S., Liang, M., Sakdinawat, A. E., Schroer, C. G., Schropp, A.,
Seaberg, M. H., Seiboth, F., van Driel, T., Xing, Z., Liu, Y. & Lee,
H. J. (2017). Sci. Rep. 7, 13689.

Nagler, B., Arnold, B., Bouchard, G., Boyce, R. F., Boyce, R. M.,
Callen, A., Campell, M., Curiel, R., Galtier, E., Garofoli, J.,
Granados, E., Hastings, J., Hays, G., Heimann, P., Lee, R. W.,
Milathianaki, D., Plummer, L., Schropp, A., Wallace, A., Welch, M.,
White, W., Xing, Z., Yin, J., Young, J., Zastrau, U. & Lee, H. J.
(2015). J. Synchrotron Rad. 22, 520–525.

Nagler, B., Schropp, A., Galtier, E. C., Arnold, B., Brown, S. B., Fry,
A., Gleason, A., Granados, E., Hashim, A., Hastings, J. B.,
Samberg, D., Seiboth, F., Tavella, F., Xing, Z., Lee, H. J. & Schroer,
C. G. (2016). Rev. Sci. Instrum. 87, 103701.

Nass, K., Foucar, L., Barends, T. R. M., Hartmann, E., Botha, S.,
Shoeman, R. L., Doak, R. B., Alonso-Mori, R., Aquila, A., Bajt, S.,
Barty, A., Bean, R., Beyerlein, K. R., Bublitz, M., Drachmann, N.,
Gregersen, J., Jönsson, H. O., Kabsch, W., Kassemeyer, S., Koglin,
J. E., Krumrey, M., Mattle, D., Messerschmidt, M., Nissen, P.,
Reinhard, L., Sitsel, O., Sokaras, D., Williams, G. J., Hau-Riege, S.,
Timneanu, N., Caleman, C., Chapman, H. N., Boutet, S. &
Schlichting, I. (2015). J. Synchrotron Rad. 22, 225–238.

Nilsson, D., Uhlén, F., Holmberg, A., Hertz, H. M., Schropp, A.,
Patommel, J., Hoppe, R., Seiboth, F., Meier, V., Schroer, C. G.,
Galtier, E., Nagler, B., Lee, H. J. & Vogt, U. (2012). Opt. Lett. 37,
5046–5048.

Nocedal, J. (1980). Math. Comput. 35, 773–782.
Rutishauser, S., Samoylova, L., Krzywinski, J., Bunk, O., Grünert, J.,

Sinn, H., Cammarata, M., Fritz, D. M. & David, C. (2012). Nat.
Commun. 3, 947.

Schropp, A., Hoppe, R., Meier, V., Patommel, J., Seiboth, F., Lee,
H. J., Nagler, B., Galtier, E. C., Arnold, B., Zastrau, U., Hastings,
J. B., Nilsson, D., Uhlén, F., Vogt, U., Hertz, H. M. & Schroer, C. G.
(2013). Sci. Rep. 3, 1633.

Schropp, A., Hoppe, R., Meier, V., Patommel, J., Seiboth, F., Ping, Y.,
Hicks, D. G., Beckwith, M. A., Collins, G. W., Higginbotham, A.,
Wark, J. S., Lee, H. J., Nagler, B., Galtier, E. C., Arnold, B., Zastrau,
U., Hastings, J. B. & Schroer, C. G. (2015). Sci. Rep. 5, 11089.

Seaberg, M., Cojocaru, R., Berujon, S., Ziegler, E., Jaggi, A.,
Krempasky, J., Seiboth, F., Aquila, A., Liu, Y., Sakdinawat, A.,
Lee, H. J., Flechsig, U., Patthey, L., Koch, F., Seniutinas, G., David,
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