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A third-order aberration analytical analysis method of soft X-ray optical

systems with orthogonal and coplanar arrangement of the main planes of

elements is proposed. Firstly, the transfer equations of the aperture ray and the

principle ray are derived; then, based on the third-order aberration theory

with the aperture-ray coordinates on the reference exit wavefront of a plane-

symmetric optical system, the aberration expressions contributed by the wave

aberration and defocus of this kind of optical system are studied in detail.

Finally, the derived aberration calculation expressions are applied to calculate

the aberration of two design examples of such types of optical systems; the

images are compared with ray-tracing results obtained using the Shadow

software to validate the aberration expressions. The study shows that the

accuracy of the aberration expressions is satisfactory. The analytical analysis

method of aberration is helpful in the design and optimization of the soft X-ray

optical systems with orthogonal and coplanar arrangement of the main planes

of optical elements.

1. Introduction

The imaging resolution of a soft X-ray optical system is a key

factor determining the working performance of the large

scientific apparatus applying the optical system, such as

synchrotron radiation sources, soft X-ray microscopes, etc.

(Veyrinas et al., 2019; Fogelqvist et al., 2017; Yang et al., 2016).

For soft X-ray optical systems, researchers need to adopt rays

with a grazing-incidence impinged optical surface in order to

gain a sufficiently high optical transmission. Consequently, the

shape of the wavefront will significantly deviate from sphe-

rical, and the focusing geometry of a light beam in the meri-

dional plane will differ from that in a sagittal one, thus

determining the imaging performance of the plane-symmetric

optical system (Lu, 2008). At synchrotron radiation facilities,

in order to meet the design requirements of beam splitting and

avoid space conflict with adjacent beamline facilities, an

optical system with an orthogonal arrangement of the main

planes of elements is usually used. However, beamline design

often requires a number of optical elements to achieve high-

resolution imaging, and the main plane of these optical

elements may be orthogonal or coplanar.

To design a grazing-incidence optical system, like a soft

X-ray optical system, the aberration analysis method is the

key measure and is mainly as follows: light-path function

(LPF) (Beutler, 1945; Noda et al., 1974), analytic formulas of

the ray-tracing spot diagram (SD) (Namioka et al., 1994; Masui
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& Namioka, 1999), Lie optics (Goto & Kurosaki, 1993; Palmer

et al., 1998a,b) and wavefront aberration (WFA) (Chrisp, 1983;

Lu, 2008); the WFA method is a classical method for studying

the ray aberration of a multi-element optical system. Recently,

Lu (2008) adopted a toroidal surface as a reference wavefront

to develop the fourth-order wave aberration theory with the

aperture-ray coordinates on the optical surface of plane-

symmetric optical systems based on the WFA method. The

aberration theory was applicable to the aberration analysis of

plane-symmetric optical systems of mirrors or gratings of

different figures; but it is only suitable for analysing the

aberrations of an optical system with a coplanar arrangement

of the main planes of optical elements (Lu & Lin, 2010). In

order to transfer the relationship of the aperture-ray coordi-

nates to an orthogonal arrangement of optical elements, we

used the aperture coordinates of the ray on the reference exit

wavefront instead of those on the optical surface; then we

derived the wave aberration expressions and studied the

aberrations calculation method of soft X-ray and vacuum

ultraviolet optical systems with orthogonal arrangement of

double elements (Cao & Lu, 2017). However, for a soft X-ray

optical system with orthogonal and coplanar arrangement of

the main planes of elements, as yet there is still no aberration

theory to analyse the aberration of such kinds of optical

systems as a whole. Therefore, its imaging analysis and design

relies mainly on the designer’s experience and ray-tracing

software.

According to the above discussions, based on the third-

order aberration theory with the aperture-ray coordinates on

the reference exit wavefront of the plane-symmetric optical

system, here we propose an analytical analysis method of the

third-order aberrations of a soft X-ray optical system with

orthogonal and coplanar arrangements of the main planes of

elements. In Section 2 we introduce the definition and the

third-order aberration theory of plane-symmetric optical

systems with the aperture-ray coordinates on the reference

exit wavefront. In Section 3 we derive the transfer equations

of the aperture ray and the principal ray, while Section 4 shows

the aberration calculation method and the corresponding

expressions in detail. Finally, we calculate the aberrations of

two design examples, and the calculation results are compared

with ones obtained using the ray-tracing software Shadow

(Sanchez del Rio et al., 2011) to validate the aberration

expressions derived in this paper.

2. Third-order aberration theory of a plane-symmetric
optical system

2.1. Definitions of a plane-symmetric optical system

Figs. 1 and 2 show a plane-symmetric optical system with an

off-plane object point S0 and its coordinate system on the

meridional plane, respectively (Lu, 2008). The optical surface

is symmetrical with respect to the plane �Oz0, where O is the

vertex of the optical surface. O0OO1, lying in the symmetry

plane, is defined as the base ray; and its sign will be positive if

rotation from the z0 -axis to the ray is counterclockwise. The

ray S0PS1, emitted from source S0 and passing through the

centre of the entrance pupil, is the principle ray; it intersects

the optical surface at P, which is stipulated to be the common

origin of the coordinate systems xyz, x0 y0 z0 and x 00 y 00 z 00,

and they are represented as that of the optical surface, the

entrance and exit wavefront. u and u0 are the sagittal field

angles in the object space and image space, respectively;

and � and � denote the angles of incidence and diffraction,

respectively.

The general form of a plane-symmetric surface can be

expressed in the vertex coordinate system of ��z0 by the

equation (Lu & Cao, 2017)

z0 ¼
P1
i¼ 0

P1
j¼ 0

ci; j �
i� j;

c0;0 ¼ c1;0 ¼ 0; j ¼ even:

ð1Þ

For the third-order aberration theory of plane-symmetric

optical systems, the power series needs to be kept up to the

fourth order; thus the figure equation is denoted by

z0 ¼ c2;0�
2
þ c0;2�

2
þ c3;0�

3
þ c1;2��

2

þ c4;0�
4 þ c2;2�

2�2 þ c0;4�
4; ð2Þ

where the coefficient ci, j has been given for a toroid, ellipsoid

and paraboloid by Peatman (1997). For a toroidal surface,

ci, j is as follows,
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Figure 1
Optical scheme of a plane-symmetric optical system.

Figure 2
Coordinate systems of a plane-symmetric optical system on the
meridional plane.



c2;0 ¼
1

2R
; c0;2 ¼

1

2�
; c3;0 ¼ 0; c1;2 ¼ 0;

c4;0 ¼
1

8R3
; c0;4 ¼

1

8�3
; c2;2 ¼

1

4R2�
;

ð3Þ

where R and � are major and minor curvature radii of the

toroid. If R = �, equation (2) becomes a spherical equation.

2.2. Third-order aberration expressions with the aperture-ray
coordinates on the reference exit wavefront

In order to make the transfer the relationship of the aper-

ture-ray coordinates between the adjacent optical elements

much simpler, for the two cases of orthogonal and coplanar

arrangements of the main planes of elements, we use both the

aperture-ray coordinates on the reference exit wavefront as

the reference ones. Therefore, based on the fourth-order wave

aberration expressions with the aperture-ray coordinates on

the optical surface developed by Lu & Lin (2010), the wave

aberration expressions are expressed with the aperture coor-

dinates of the ray on the reference exit wavefront using the

mapping relationships of aperture-ray coordinates between

the optical surface and the reference exit wavefront; the

corresponding expressions for ~wwijk are given by Cao & Lu

(2017).

According to the above discussion, we firstly calculate the

wave aberration with the aperture-ray coordinates on the

optical surface; and the calculation expression of the wave

aberration of a plane-symmetric optical system with the

aperture-ray coordinates on the optical surface, x, y, and a

sagittal field angle of u,

W ¼
X4

ijk

wijk xiy juk; iþ jþ k � 4ð Þ: ð4Þ

The wave aberration coefficients, wijk , are given by

wijk ¼ Mijk �; rm; rs; lsð Þ þ ð�1Þk Mijk �; r 0m; r 0s; l 0sð Þ þ�Nijk;

ð5Þ

where Mijk(�, rm, rs, ls) and Mijkð�; r 0m; r 0s; l 0s Þ represent the

wave aberration coefficients of the object and image beam

pencil, rm, r 0m, rs, r 0s are the object and image distance in the

meridional and sagittal plane, which means the respective

curvature radius of the wavefront in the calculation of the

wave aberration; ls and l 0s are non-physical parameters and

represent the position of the entrance and exit pupil on the

sagittal plane. The last term of the above expression is the

addition contribution of wave aberration when the optical

element is a grating, and their expressions as well as Nijk are

given by Lu (2008) and � = ðm�=�Þ�; otherwise, it should

be zero.

The calculation of wave aberration coefficients requires

knowing the parameters of the base ray and principle ray, �, �,

rm, r 0m, rs, r 0s , ls, l 0s of each optical element. Firstly, the direction

of the base ray is determined by w100 = 0,

sin �þ sin � ¼ m�=�: ð6Þ

To determine the direction of the principal ray, an additional

condition, w011 = 0, should be satisfied,

ls 2c0;2 cos ��
1

rs

� �
� l 0s 2c0;2 cos��

1

r 0s

� �
¼ n02�ls: ð7Þ

In addition, the positions of the image along the base ray on

the meridional and the sagittal plane are determined by

w200 = 0 and w020 = 0, respectively,

2c2;0 cos�þ cos�ð Þ �
cos2�

rm

þ
cos2�

r 0m

� �
¼ n20�; ð8Þ

2c0;2 cos�þ cos �ð Þ �
1

rs

þ
1

r 0s

� �
¼ n02�: ð9Þ

Once �, �, rm, r 0m, rs, r 0s , ls and l 0s are determined, the third-

and fourth-order wave aberration coefficients with the aper-

ture-ray coordinates on the optical surface, wijk , can be

calculated. Then, by applying the relationship between wijk

and the wave aberration coefficient with the aperture-ray

coordiantes on the reference exit wavefront, ~wwijk, given in

equations (11)–(26) of Cao & Lu (2017), ~wwijk can be obtained.

Therefore, the imaging aberration is contributed by the

remaining third- and fourth-order wave aberration,

~WW ¼ ~ww300 x030 þ ~ww120 x00y020 þ ~ww400 x040 þ ~ww040 y040 þ ~ww220 x020 y020

þ ~ww102 x00u2
þ ~ww111 x00y00uþ ~ww031 y030 uþ ~ww022 y020 u2

þ ~ww211 x020 y00uþ ~ww202 x020 u2
þ ~ww013 y00u3: ð10Þ

Since equation (10) is derived with respect to the aperture-ray

coordinates on the reference exit wavefront, x00, y00, the angular

deviation of the actual ray from the reference ray can be

obtained; then the aberration yield by the wave aberration

contribution on the image plane at a distance r 00 from the final

element of the optical system will be

~XX 0 ¼ ~dd200 x020 þ ~dd020 y020 þ ~dd300 x030 þ ~dd120 x00y020 þ ~dd002 u2

þ ~dd011 y00uþ ~dd111 x00y00uþ ~dd102 x00u2;

ð11Þ

~YY 0 ¼ ~hh110 x00y00 þ ~hh030 y030 þ ~hh210 x020 y00 þ ~hh101 x00uþ ~hh021 y020 u

þ ~hh012 y00u2
þ ~hh201 x020 uþ ~hh003 u3:

where

~ddijk ¼ iþ 1ð Þ r 00 ~ww iþ1ð Þjk; ~hhijk ¼ jþ 1ð Þ r 00 ~wwi jþ1ð Þk

iþ jþ k � 3ð Þ:
ð12Þ

In the above discussions, equation (11) denotes the aberra-

tions on the arbitrary image plane without defocus; however,

if the image plane is displaced from the focal plane, the

defocus aberration occurs. The defocus aberration calculation

expressions with the aperture-ray coordinates on the refer-

ence exit wavefront are given by equation (49) of Cao &

Lu (2017).
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3. Transfer equations of the aperture ray and the
principal ray

For a soft X-ray optical system with orthogonal and coplanar

arrangements of the main planes of elements, it is possible for

the main planes of the optical elements to have an orthogonal

arrangement or a coplanar arrangement. Therefore, the

transfer equations of the aperture ray and the principal ray

will also be different in the two cases.

3.1. Case of orthogonal arrangement of the main planes
of the optical elements

Fig. 3 shows the optical scheme of an optical system with

orthogonal arrangement of the main planes of double

elements. The optical elements M1, M2 are arranged ortho-

gonally to each other, and the distance between them is d;

2	v and 2	h are the vertical and horizontal acceptance angles

of the light beam, rmi, r 0mi, rsi, r 0si are the object and image

distances in the meridional and sagittal plane of the ith (i =

1, 2) optical element. For an optical system, the transfer

equations of the aperture ray and the principal ray have been

derived by Cao & Lu (2017), and are as follows,

x 001 ¼ A1y 002; y 001 ¼ B1x 002; ð13Þ

u2 ¼ C1v1; v2 ¼ D1u1; ð14Þ

lm1 ¼ C 2
1 ls2 �

d

A1

� �
; ls1 ¼ D1 D1lm2 � dð Þ; ð15Þ

where ui and vi (i = 1, 2) are the sagittal and meridional field

angle in the object space of the ith optical element; lmi and lsi

represent the position of the meridional and sagittal pupil in

the object space of the ith optical element; A1 = r 0m1=rs2, B1 =

r 0s1 cos�2= rm2 cos �2ð Þ, C1 = r 0m1 cos �1= rs2 cos �1ð Þ, D1 = r 0s1=rm2.

3.2. Case of coplanar arrangement of the main planes of
optical elements

Fig. 4 shows the optical scheme of an optical system with a

coplanar arrangement of the main planes of double elements,
�MM1, �MM2. According to the geometry of the ray, the transfer

equations of the aperture ray and the principal ray between
�MM1 and �MM2 can be obtained, respectively,

�xx 001 ¼
�AA1 �xx 002; �yy 001 ¼

�BB1 �yy 002; ð16Þ

�uu2 ¼
�BB1 �uu1; �vv2 ¼

�CC1 �vv1; ð17Þ

�llm1 ¼
�CC1

�CC1
�llm2 �

�rrm3

�rr 0m2

� �
�dd

� �
; �lls1 ¼

�BB1
�BB1

�lls2 þ
�dd

� �
; ð18Þ

where a bar above a parameter distinguishes it from the case

of the orthogonal arrangement of the main planes of elements,
�AA1 = �rr 0m1 cos ���2= �rrm2 cos ���2

� �
, �BB1 = ��rr 0s1=�rrs2, �CC1 =

�rr 0m1 cos ���1= �rrm2 cos ���1

� �
.

4. Calculation of third-order transverse aberration

For a multi-element optical system, the total wave aberration

is the sum of that of each optical element. In this paper, we

discuss the aberration of an optical system of three elements.

The main plane of the first and second element is orthogonal

while that of the second and third element is coplanar; its

optical scheme is shown in Fig. 5. Although an aberration

calculation method of soft X-ray optical systems with ortho-

gonal and coplanar arrangement of the main planes of three

elements is given in the following discussion, this method can
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Figure 3
Optical scheme of an optical system with an orthogonal arrangement of
the main planes of double elements. Figure 4

Optical scheme of an optical system with coplanar arrangement of the
main planes of double elements.

Figure 5
Optical scheme of an optical system of three elements; the main plane of
the first and second elements is orthogonal while that of the second and
third elements is coplanar.



be extended to any case of multi-element optical systems.

Therefore, the total wave aberration of the optical system is

~WW ¼ ~WW 1ð Þ þ
~WW 2ð Þ þ

~WW 3ð Þ

¼
P4

ijk

~wwijk 1ð Þ x
0i
01y
0j
01uk

1 þ
P4

ijk

~wwijk 2ð Þ x
0i
02y
0j
02uk

2

þ
P4

ijk

~wwijk 3ð Þ x
0i
03y
0j
03uk

3 : ð19Þ

For convenience of calculation of the wave aberration and

aberration of multi-element optical systems, the aperture-ray

coordinates on the reference exit wavefront of the final optical

element and the field angles of the first optical element are

assumed to be the reference ones of the optical system. With

the transfer equations (13)–(14), and (16)–(17), the relation

of the aperture-ray coordinates and the field angles between

each optical element and the reference one can be obtained,

x 001 ¼ A1
�BB1y 003; y 001 ¼

�AA1B1x 003;

x 002 ¼
�AA1x 003; y 002 ¼

�BB1y 003:
ð20Þ

u2 ¼ C1v1; v2 ¼ D1u1;

u3 ¼
�BB1C1v1; v3 ¼

�CC1D1u1:
ð21Þ

Combining (20) and (21), the wave aberration of equation (19)

can be transformed into

~WW ¼
X4

ijk

A1
�BB1

� �i �AA1B1

� �j
~wwijk 1ð Þ x

0j
03y 0i03uk

1

þ
X4

ijk

�AAi
1
�BBj

1Ck
1 ~wwijk 2ð Þ x

0i
03y
0j
03vk

1

þ
X4

ijk

�BB1C1

� �k
~wwijk 3ð Þ x

0i
03y
0j
03vk

1 : ð22Þ

Similar to the conversion relationship from equations (10) to

(11), the third-order transverse aberration from the wave

aberration contribution of the optical system are derived,

�xx 0 ¼ �dd2000 x 0203 þ
�dd1100 x 003y 003 þ

�dd0200 y 0203 þþ
�dd1200 x 003y 0203

þ �dd3000 x 0303 þ
�dd0110 y 003u1 þ

�dd2010 x 0203u1 þ
�dd1020 x 003u2

1

þ �dd0210 y 0203u1 þ
�dd0030 u3

1 þ
�dd0002 v2

1 þ
�dd0101 y 003v1

þ �dd1101 x 003y 003v1 þ
�dd1002 x 003v2

1;

ð23Þ

�yy 0 ¼ �hh0200 y 0203 þ
�hh2000 x 0203 þ

�hh1100 x 003y 003 þ
�hh0300 y 0303

þ �hh2100 x 0203y 003 þ
�hh0020 u2

1 þ
�hh1010 x 003u1 þ

�hh1110 x 003y 003u1

þ �hh0120 y 003u2
1 þ

�hh1001 x 003v1 þ
�hh0201 y 0203v1 þ

�hh0102 y 003v2
1

þ �hh2001 x 0203v1 þ
�hh0003 v3

1;

where the expressions of the aberration coefficients, �ddijkh and
�hhijkh are given as follows:

�dd2000 ¼ 3r 00 �AA3
1 ~ww300 2ð Þ þ ~ww300 3ð Þ

� �
; ð24Þ

�dd1100 ¼ 2r 00 A1
�BB1

�AA1B1

� �2
~ww120 1ð Þ; ð25Þ

�dd0200 ¼ r 00 �AA1
�BB2

1 ~ww120 2ð Þ þ ~ww120 3ð Þ

� �
; ð26Þ

�dd1200 ¼ 2r 00 A1
�BB1

� �2 �AA1B1

� �2
~ww220 1ð Þ þ

�AA1
�BB1

� �2
~ww220 2ð Þ þ ~ww220 3ð Þ

h i
;

ð27Þ

�dd3000 ¼ 4r 00 �AA1B1

� �4
~ww040 1ð Þ þ

�AA4
1 ~ww400 2ð Þ þ ~ww400 3ð Þ

h i
; ð28Þ

�dd0110 ¼ r 00 A1
�BB1

� �
�AA1B1

� �
~ww111 1ð Þ; ð29Þ

�dd2010 ¼ 3r 00 �AA1B1

� �3
~ww031 1ð Þ; ð30Þ

�dd1020 ¼ 2r 00 �AA1B1

� �2
~ww022 1ð Þ; ð31Þ

�dd0210 ¼ r 00 A1
�BB1

� �2 �AA1B1

� �
~ww211 1ð Þ; ð32Þ

�dd0030 ¼ r 00 �AA1B1

� �
~ww013 1ð Þ; ð33Þ

�dd0002 ¼ r 00 �AA1C2
1 ~ww102 2ð Þ þ

�BB1C1

� �
~ww102 3ð Þ

� 	
; ð34Þ

�dd0101 ¼ r 00 �AA1
�BB1C1 ~ww111 2ð Þ þ

�BB1C1

� �
~ww111 3ð Þ

� 	
; ð35Þ

�dd1101 ¼ 2r 00 �AA2
1
�BB1C1 ~ww211 2ð Þ þ

�BB1C1

� �
~ww211 3ð Þ

� 	
; ð36Þ

�dd1002 ¼ 2r 00 �AA2
1C2

1 ~ww202 2ð Þ þ
�BB1C1

� �2
~ww202 3ð Þ

h i
; ð37Þ

�hh0200 ¼ 3r 00 A1
�BB1

� �3
~ww300 1ð Þ; ð38Þ

�hh2000 ¼ r 00 A1
�BB1

� �
�AA1B1

� �2
~ww120 1ð Þ; ð39Þ

�hh1100 ¼ 2r 00 �AA1
�BB2

1 ~ww120 2ð Þ þ ~ww120 3ð Þ

� �
; ð40Þ

�hh0300 ¼ 4r 00 A1
�BB1

� �4
~ww400 1ð Þ þ

�BB4
1 ~ww040 2ð Þ þ ~ww040 3ð Þ

h i
; ð41Þ

�hh2100 ¼ 2r 00 A1
�BB1

� �2 �AA1B1

� �2
~ww220 1ð Þ þ

�AA2
1
�BB2

1 ~ww220 2ð Þ þ ~ww220 3ð Þ

h i
;

ð42Þ

�hh0020 ¼ r 00 A1
�BB1

� �
~ww102 1ð Þ; ð43Þ

�hh1010 ¼ r 00 A1
�BB1

� �
�AA1B1

� �
~ww111 1ð Þ; ð44Þ

�hh1110 ¼ 2r 00 A1
�BB1

� �2 �AA1B1

� �
~ww211 1ð Þ; ð45Þ

�hh0120 ¼ 2r 00 A1
�BB1

� �2
~ww202 1ð Þ; ð46Þ

�hh1001 ¼ r 00 �AA1
�BB1C1 ~ww111 2ð Þ þ

�BB1C1

� �
~ww111 3ð Þ

� 	
; ð47Þ

�hh0201 ¼ 3r 00 �BB3
1C1 ~ww031 2ð Þ þ

�BB1C1

� �
~ww031 3ð Þ

� 	
; ð48Þ

�hh0102 ¼ 2r 00 �BB2
1C2

1 ~ww022 2ð Þ þ
�BB1C1

� �2
~ww022 3ð Þ

h i
; ð49Þ

�hh2001 ¼ 2r 00 �AA2
1
�BB1C1 ~ww211 2ð Þ þ

�BB1C1

� �
~ww211 3ð Þ

� 	
; ð50Þ
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�hh0003 ¼ r 00 �BB1C3
1 ~ww013 2ð Þ þ

�BB1C1

� �3
~ww013 3ð Þ

h i
: ð51Þ

Equation (23) represents the displacement of the actual ray

from the reference ray of the optical system; however, the final

coordinates of the ray on the arbitrary image plane should also

consider that of the reference ray from the principal ray, and

the principal ray from the base ray. The former applies

equation (49) of Cao & Lu (2017), and the latter can be

calculated by using the first-order approximation (Lu & Zhu,

2012),

�x 03 ¼ �
r00 cos �3

cos�3

þ
1� ðr00=r 0m3Þ
� 	

lm3 cos�3

cos�3


 �
�CC1D1

� �
u1;

�y 03 ¼ ls3 � r 00 1þ
ls3

r 0s3

� �� �
�BB1C1

� �
v1: ð52Þ

In this paper, we apply the third-order aberration theory with

the aperture-ray coordinates of the reference exit wavefront

with a one-dimensional source to study the aberration of the

optical system with a two-dimensional source. However, in this

case, for a source point with a meridional field angle of v1, the

meridional field angle will cause the angles of incidence and

diffraction of the principal ray on the optical surface of each

element to change by an amount, and thus they should actu-

ally be

�0i ¼ �i þ vi; �0i ¼ �i þ v0i; ð53Þ

where v0i = �ðcos �i = cos �iÞ vi.

The meridional field angle v1 is usually small, and thus

the variation of the angles of incidence and diffraction of the

principal ray on the optical surface of each element is also very

small. However, for a grazing-incidence optical system (� and

� are usually larger than 80�, even near to 89�), the object and

image distance in the meridional and sagittal plane of each

optical element, rmi, r 0mi, rsi, r 0si, will change quite significantly.

For a multi-element optical system, the calculation expressions

of their variables are too complex because the object and

image distance in the meridional and sagittal plane of the

latter optical element are determined by that of its preceding

ones; therefore, with substitution of the corresponding para-

meters of equations (8) and (9), �i! �0i, �i! �0i, the actual

value of rmi, r 0mi, rsi, r 0si of each optical element of the optical

system with two-dimensional source, ~rrmi, ~rr 0mi, ~rrsi, ~rr 0si, can be

calculated. Therefore, in applying the wave aberration and

aberration expressions as discussed above in this paper, the

parameters �i, �i, rmi, r 0mi, rsi, r 0si should be replaced by �0i, �
0
i, ~rrmi,

~rr 0mi, ~rrsi, ~rr 0si.

5. Numerical validation

To validate the third-order aberration calculation method

discussed above in this paper, we now apply the aberration

expressions to calculate the imaging of two design examples

of a soft X-ray optical system with orthogonal and coplanar

arrangement of the main planes of three elements and

compare them with the ray-tracing results from the Shadow

software. Optical system I is a modified design of the Kirk-

patrick–Baez (KB) microscope system with two spherical

mirrors (Gu et al., 2005), and adds a spherical mirror after it;

the main planes of the third spherical mirror and the second

optical element of the KB microscope system are coplanar, as

shown in Fig. 6. The optical system accepts from the source a

light beam with a diverging angle of 2	v � 2	h = 4 mrad �

4 mrad, and works at a wavelength of 4.4 nm. Its optical

parameters are listed in Table 1. In addition, in order to

further verify that the aberration calculation method proposed

in this paper is suitable for the case of the aspherical surface,

optical system II is thus a modified design of the third optical

element of optical system I. The structure of the optical

element to be modified is a toroidal mirror, and its major and

minor curvature radius are R3 = 20000 mm, �3 = 490.442 mm,

and its other optical parameters are consistent with that of

optical system I. In the following imaging calculations of the

optical systems discussed above, the field angles are assumed

to be u1 = 0.01�, v1 = 0.01�; and u1 = 0.03�, v1 = 0.03�.

Fig. 7 shows ray spot diagrams. Rays from row 1 to row 2 are

the aberration distributions at an image plane of r 00 = 400 mm
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Figure 6
Optical scheme of an optical system of three elements; the main planes of
the first and second elements is orthogonal while that of the second and
third elements is coplanar.

Table 1
Optical parameters of the optical system [units: mm (unless otherwise
stated)].

Parameters Value

R1 9700
R2 9700
R3 9700
�1 88.948�

�1 �88.948�

�2 �88.857�

�2 88.857�

�3 81�

�3 �81�

rm1 (rs1) 100
d1 10
d2 10



of optical system I, whereas those from row 3 to row 4 are the

calculation results of optical system II with an image plane of

r 00 = 668 mm. The field angles are shown on the right-hand

side of each row. Fig. 7(a) shows the the ray-tracing results

obtained using the Shadow software, whereas Fig. 7(b) shows

the aberration calculation results using the aberration

expressions derived in this paper.

As shown in Fig. 7, compared with the calculation result

obtained with the ray-tracing software Shadow, the calculation

accuracy of the aberration expressions derived in this paper is

satisfactory both in the size and shape of the spot diagrams.

However, there is a small deviation between them, mainly

because of the contribution of the high-order aberration

(including the intrinsic aberration and extrinsic aberration)

and high-order coordinate components in the transfer of the

aperture-ray coordinates.

6. Conclusions

In this paper, we have proposed an aberration calculation

method for a multi-element optical system using the third-

order aberration theory with the aperture-ray coordinates

on the reference exit wavefront of a plane-symmetric optical

system, and derived the corresponding calculation expres-

sions; the main planes of the adjacent optical element of

the optical system are likely to be orthogonal or coplanar

arrangements. The resultant aberration expressions are

applied to calculate the aberration of one design example of

such kind of optical systems to compare the results with those

obtained from the ray-tracing software Shadow, and they have

satisfactory calculation accuracy.

Compared with the ray-tracing software Shadow, this

aberration analytical analysis method discussed in this paper

has some advantages, as follows: analysing the contribution of

different types of aberration, determining of initial structural

parameters, the relationship between the optical structures

and parameters and the imaging performance, and so on. It

will give us some insight into the optimization and design of

these kinds of optical systems.

Acknowledgements

The authors would like to thank Lijun Lu for helpful discus-

sions and useful comments.

Funding information

The following funding is acknowledged: Young and Middle-

Aged Teachers’ Educational Research Projects of Fujian

Province of China (grant No. JAT190567, JAT190590); Project

from Fujian Provincial Department of Science and Tech-

nology of China (grant No. 2020J01916, 2017J05105,

2019J01811); Science and Technology Planning Project from

Putian City (grant No. 2020GP004).

References

Beutler, H. G. (1945). J. Opt. Soc. Am. 35, 311–350.
Cao, Y. Q. & Lu, L. J. (2017). J. Opt. Soc. Am. A, 34, 299–307.
Chrisp, M. P. (1983). Appl. Opt. 22, 1508–1518.
Fogelqvist, E., Kördel, M., Carannante, V., Önfelt, B. & Hertz, H. M.
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