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Promising achievements of resonance inelastic X-ray scattering and other

spectroscopy studies in the range from hard X-ray to extreme ultraviolet require

the development of exact tools for modeling energy characteristics of state-of-

the-art optical instruments for bright coherent X-ray sources, space science, and

plasma and superconductor physics. Accurate computations of the absorption

and scattering intensity by structured interfaces in short wavelength ranges, i.e.

realistic gratings, zone plates and mirrors, including multilayer-coated, are not

widely explored by the existing methods and codes, due to some limitations

connected, primarily, with solving difficult problems at very small wavelength-

to-period (or to correlation length) ratios and accounting for random roughness

statistics. In this work, absorption integrals and scattering factors are derived

from a rigorous solution of the vector Helmholtz equations based on the

boundary integral equations and the Monte Carlo method. Then, using explicit

formulae (in quadratures), the author finds the absorption and scattering

intensity of one- and bi-periodic gratings and mirrors, which may have random

roughnesses. Examples of space and spectral power distributions for gratings

and mirrors working in X-rays are compared with those derived using the usual

indirect approach and well known approximations.

1. Introduction

An accurate and fast computing of the absorption magnitude

A (i.e. resistive dissipation of electromagnetic wave energy

called Joule’s heat and normalized to the incidence radiation

energy) in structured layers is very important for many

applications. For gratings, examples are: microwave (Sisodia &

Gupta, 2007) and optical (Loewen & Popov, 1997; Rathsfeld et

al., 2006) devices, for lithography processes (Smith & Suzuki,

2007), in solar cell improvements (Nanotechnology, 2014); and

also such modern fields as plasmonics (Enoch & Bonod, 2012)

and metamaterials (Liu & Zhang, 2011), where absorption

plays a predominant role. For optics and optical instruments

working in the tender-X-ray–extreme ultraviolet (EUV)

range, values of A and also the scattering intensity � are most

relevant (Goray & Schmidt, 2010; Goray, 2010a) due to a lot of

critical applications in such fields as resonance inelastic X-ray

scattering (RIXS) (Strocov et al., 2010; Ament et al., 2011;

Voronov et al., 2016; Goray & Egorov, 2016), X-ray free-

electron lasers (XFELs) and synchrotron radiation sources of

the fourth generation (Choueikani et al., 2014; Yashchuk et

al., 2015; Vannoni & Freijo-Martin, 2017; Huang et al., 2017;

Goray et al., 2018; Siewert et al., 2018), X-ray microscopy

(Jacobsen et al., 2019), soft-X-ray–EUV lithography (Goray,

2007; Chkhalo & Salashchenko, 2013; Bakshi, 2018) and space

and laboratory spectroscopy of plasma physics (Seely et al.,

2011; Marlowe et al., 2016; Marshall et al., 2018; Shatokhin et
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al., 2018; Lingam & Loeb, 2020), etc. Because of the transverse

electric (TE) (polarization wherein the electric field is

perpendicular to the plane of incidence) and transverse

magnetic (TM) (polarization wherein the electric field is in the

plane of incidence) modes in cases for one-periodic (classical)

gratings working in conical diffraction (Goray & Schmidt,

2012) (see Fig. 1) or bi-periodic (crossed) gratings (bi-gratings,

Fig. 2) being coupled through the boundary conditions, the

associated 3D diffraction problems are more general, and

gratings, including multilayer-coated, can act as volume- and

surface-field enhancers or absorbers at any incidence polar-

ization state. In various disordered or random nanostructures

similar type properties can occur (Weitz et al., 1980; Maystre &

Saillard, 1994; Stuart & Hall, 1998; Stockman et al., 2001; Nau

et al., 2007). Besides being physically meaningful, a compu-

tation of A, as well as using the reciprocity theorem (Petit,

1980), is an important tool to check the quality of the

numerical solution for absorbing gratings, Fresnel zone plates

and rough mirrors with the requirement that the sum of

reflected, transmitted and total absorbed energies (powers, for

stationary processes) should be equal to the energy of the

incident wave. In some cases, direct calculus of A using

Poynting’s vector gives divergent or non-correct results;

‘however, when the definition has been applied cautiously, in

particular for averages over small but finite regions of space

or time, no contradictions with experiments have been found’

(Born & Wolf, 2002).

The motivation for the present work is a derivation on

the basis of the known analytically proved approaches and

applying general expressions for calculation of A and � of one-

periodic and bi-periodic X-ray gratings and general randomly

rough structures in the closed form, namely as surface inte-

grals versus electromagnetic field solutions. It is worth noting

that a computation of A itself is not connected with the specific

wavelength range and rigorous method, which are used for

near-zone electromagnetic field calculus. Such a computation

has not only intuitive significance but the same rigor, namely

in the sense of distributions (generalized functions). More-

over, the derivation of the generalized energy balance for

absorption gratings is similar to a deduction of the classical

energy conservation laws for perfectly conducting and lossless

gratings (see, for example, Popov, 2014, ch. 2). In the elec-

tromagnetic literature there are various expressions for

absorption calculus in particular cases, however without a

derivation of general formulae and references to mathema-

tical results for diffraction gratings. Botten et al. (1981)

considered the absorption of lamellar one-periodic gratings

for in-plane (classical) diffraction and TE/TM polarizations

using the modal method. Budzinski et al. (1991) gave the local

dissipation density in the metal of a sinusoidal grating profile

inside and outside an anomaly in explicit form. Jarem &

Banerjee (1999) evaluated the general power balance for an

anisotropic non-Hermitian one-periodic grating for the TM

polarization using the rigorous coupled-wave analysis. Botten

et al. (2000) presented the energy conservation properties for

wave propagation through stacked gratings comprising

metallic and dielectric cylinders using the Green’s function

approach based on lattice sums to obtain the scattering

matrices of each layer. Roger et al. (1984) established the

energy-balance criterion described for nonlinear in-plane one-

periodic and rough surfaces in the explicit form for both basic

polarization states and derived from Maxwell’s equations.

Popov (2014, ch. 12) derived the generalized energy balance in

the explicit form for multilayer-coated isotropic one-periodic

gratings working in classical and conical diffraction from the

boundary integral equation theory using the absorption

integrals. Petit (1980, ch. 7) obtained the energy absorption

formula for isotropic bi-gratings using the coordinate trans-

formation technique and boundary integral equations. And

Popov (2014, ch. 5) presented the global energy balance for

inhomogeneous anisotropic one- and bi-gratings using the

finite-element method and variational formulation of the

diffraction problem.

There are two classical and equivalent approaches in elec-

tromagnetism, with some restrictions in each of them, to

model light scattering intensities (effective radar cross

sections) for rough surfaces. The most general and time-

consuming one is using large surface lengths of many wave-

lengths �. In this approach some window functions and

tapered (narrowing) beams can be used to restrict the illu-
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Figure 1
Schematic conical diffraction by a multilayer one-periodic grating.

Figure 2
Schematic diffraction by a bi-periodic grating.



minated range and avoid numerical difficulties at endpoints

(Saillard & Maystre, 1988). The second widely explored

approach is using periodic boundary conditions (quasi-peri-

odicity of Floquet–Bloch modes). This method uses an infinite

beam (plane wave) and assumes that the random rough

surface length having some numbers of asperities repeats itself

for given large periods (Nieto-Vesperinas & Dainty, 1990).

That means using infinite grating samples and their periodicity

together with intensive Monte Carlo simulations (Sadiku,

2009). In most electromagnetic methods to find scattering

intensities, the Monte Carlo technique is employed to average

deterministic scattered fields due to individual rough surfaces

over a random ensemble of realizations. Scattered amplitudes

are rigorously computed for each surface realization and,

then, combined incoherently to obtain average scattering

coefficients as an ergodic process. From theoretical and

numerical reasons we thought it convenient to use the large-

period grating model in the short-wavelength range.

The current approach is presented for the general case of

inhomogeneous (multilayer-coated) randomly rough bi-grat-

ings. Such an approach was partially presented in a couple of

brief conference papers including some mathematics (Goray,

2015, 2016), however without any numerical examples and

discussions. A case of one-periodic gratings will be described

here briefly and addressed, mostly, to the references in the

literature. However, the final formulae and numerical exam-

ples are presented and discussed. A presentation of explicit

expressions considered for finding the absorption quantity,

as well as the scattering coefficients obtained for various

diffraction structure types, bear only on Maxwell’s equations

(or vector Helmholtz equations), the divergence (Gauss-

Ostrogradsky) theorem and the rigorous boundary conditions.

Besides more generality, the present formulation is based

on the developed mathematical foundation (Dobson &

Friedman, 1992; Dobson, 1994; Bao et al., 1995; Bao, 1997; Bao

& Dobson, 2000; Schmidt, 2003; Bugert & Schmidt, 2015)

and related publications via variational (weak) and integral-

equation formulations of one- and bi-periodic grating

diffraction problems including the existence, uniqueness and

convergence of the electromagnetic field solution. The varia-

tional and integral equation formulations has the great

advantage that it is applicable to very general diffraction

gratings with any topology of interfaces and materials: bi-

periodic, inhomogeneous, anisotropic, negatively refracted,

etc. Thus, the energy balance generalization and computation

in the explicit form (in quadratures) of A and � for complex

one- and bi-periodic gratings and rough mirrors can be

considered as having both academic and practical importance.

The paper is organized as follows. The diffraction problem for

a general bi-grating is described in Section 2. A generalization

of the energy balance, absorption and scattering intensity

for bi-gratings, classical gratings and rough 2D surfaces is

formulated in Section 3. Several numerical results devoted to

various absorption or scattering problems, i.e. of the multi-

layer W/B4C blaze grating working in classical and conical

soft-X-ray diffraction, randomly rough multilayer Mo/Si

lamellar grating working in the EUV, 1D rough GaAs surface

investigating in hard X-rays and rough 2D Au surfaces

working in soft X-rays, are presented in Section 4.

2. Diffraction problem

We consider the general case of vector diffraction by an

arbitrary crossed grating with periods dx and dy directed, in

general, non-orthogonally. Consider a time-harmonic [with

time-dependence expð�i!tÞ] electromagnetic linearly polar-

ized plane wave incident from above (+) on a bi-periodic lossy

structure G bounded in R3 and separated by two homo-

geneous half-spaces G+ := {z� 0} and G� := {z��h}, h� 0, in

Cartesian coordinates (x, y, z) = r 2 R3 (Fig. 2). We assume

constant relative electric permittivity �� and constant relative

magnetic permeability �� such that Re �þ > 0 ^ Re �þ > 0,

Im �þ = 0 ^ Im �þ = 0 ^ Im �� � 0 ^ Im �� � 0 and �� 6¼ 0 ^

_ �� 6¼ 0. Otherwise, the relative permittivity �̂�ðx; y; zÞ and

permeability �̂�ðx; y; zÞ functions of the grating region G are

given by nonsingular 3 � 3 matrices with doubly periodic,

complex-valued L1 (bounded) components. In physics, these

components are usually piecewise continuous or piecewise

constant functions corresponding to material refractive

indices. Thus, we allow rather general anisotropic bi-periodic

structures including edges, intersected surfaces, inclusions and

also metamaterials.

It is important in the treatment of periodic problems that we

restrict the consideration to one unit-cell G := {r 2 � � R:

�h � z � 0}, for one biperiod � := [0, dx) � [0, dy) and

uniform regions G� above and below G such that G+ :=

{r 2 � � R: z > 0} and G� := {r 2 � � R: z < �h} (thus, G is a

compact set).

In the physical problem the surface is illuminated by an

electromagnetic plane wave with the incident wavevector k+ =

(�, �, ��)T,

ui ¼ ðEi;HiÞ ¼ ðp; sÞ exp½ið�xþ �y� �zÞ�: ð1Þ

In (1), polarization vectors p, s satisfy

kþ 	 p ¼ kþ 	 s ¼ s 	 p ¼ 0:

Due to the grating periodicity the incident wave is scattered

into a finite number of plane waves in G+ � R and possibly

in G� � R. |k+| = kv(�+�+)1/2, where kv = w=c, ! is a fixed

positive frequency and c is the vacuum light velocity. Note that

this condition is satisfied by dielectric media with "+ > 0, �+ > 0

as well as negative index materials, satisfying "+ < 0, �+ < 0.

The wavevector k+ is expressed using the incidence angles

|	| < 
/2, |�| < 2
 and the polarization angle |�| < 
: kþ =

kv�þðsin 	 cos�; sin 	 sin�;� cos 	ÞT and px = cos � cos 	 cos�
� sin � sin�, py = cos � cos 	 sin� + sin � cos�, pz =

� cos � sin 	. For the upper refractive index �+ = (�+�+)1/2

we determine � > 0 if "+ > 0, �+ > 0, whereas � < 0 for

negative index materials.

The total electromagnetic fields u� are given by

uþ ¼ ui
þ ðEþ;HþÞ; in Gþ;

u� ¼ ðE�;H�Þ; in G�;
ð2Þ
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and satisfy: quasiperiodicity by a multiplication operator F�,�

acting on (�, �)-quasiperiodic function u :R3
! C such that

F�;� uðrÞ :¼ exp½ið�xþ �yÞ� uðrÞ; ð3Þ

the outgoing wave conditions in the sense of Rayleigh series

with coefficients c�n;m,

uþ � ui
¼

X1
n;m¼�1

cþn;m exp ið�nxþ �myþ �þn;mzÞ
� �

; z � 0;

u� ¼
X1

n;m¼�1

c�n;m exp ið�nxþ �my� ��n;mzÞ
� �

; z � �h;

ð4Þ

where �n = � + 2
n/dx, �m = � + 2
m/dy and ��2
n;m =

k2
� � �

2
n � �

2
m with ��n;m > 0 or �i��n;m > 0; and also boundary

conditions for the tangential components of E, H, curl E and

curl H,

½n� u�@�� ¼ 0; for E and H;

½n� �̂��1
ðr � EÞ�@�� ¼ 0; for r � E;

½n� �̂��1ðr �HÞ�@�� ¼ 0; for r �H:

ð5Þ

The square brackets in (5) denote the jump of functions

across ��.

Using (4) for the field and its normal derivative repre-

sentations on �� , equation (5) can be transformed to the form

of nonlocal transmission conditions (see, for example,

Dobson, 1994), which satisfy

@zuðx; y; 0Þ ¼ �T þ�;� uðx; y; 0Þ � 2i�p;

@zuðx; y;�hÞ ¼ T ��;� uðx; y;�hÞ;
ð6Þ

where

T ��;� uðx; yÞ ¼
X1

n;m¼�1

�i��n;m c�n;m exp ið�nxþ �myÞ
� �

; ð7Þ

with the Fourier coefficients

c�n;m ¼
1

dxdy

Z
�

uðx; yÞ exp �ið�nxþ �myÞ
� �

dx dy:

The pseudodifferential operators T ��;� acting on doubly peri-

odic vector functions on R2 specify the Dirichlet-to-Neumann

map. The operators T ��;� map the Sobolev space H s
p ð�Þ of

doubly periodic functions defined on � boundedly into

H s�1
p ð�Þ, s 2 R. The equality in (7) is valid in the sense of

distributions. The space H s
p ð�Þ denotes the closure of smooth

doubly periodic functions on R2 with respect to the norm, 
jc0;0j

2
þ

X1
n;m¼�1nf0;0g

jðn;mÞj2s
j cn;mj

2

!
:

Note that H s
p ðGÞ denotes the restriction to G of all doubly

periodic functions in H s
locðR

3Þ, and for u 2 H 1
p ðGÞ the

boundary values uj�� 2 H 1=2
p ð��Þ

3.

In the following we need vector fields E�, H� of locally

finite energy

E�;H�;r � E�;r �H� 2 L2
locðGÞ

3

that is enough to satisfy Meixner’s edge condition (Li, 2014)

and two couples of time-harmonic Maxwell equations without

exterior current [it is also valid for metamaterials; see, for

example, Popov (2014, ch. 12) and Bugert & Schmidt (2015)],

r � E ¼ i!B; r �H ¼ �i!D; ð8Þ

D ¼ �v�̂�E; B ¼ �v�̂�H; ð9Þ

where �v and �v are vacuum constants. Thus, equations

introduced in (8) and (9) together with (1)–(7) give us the full

problem statement.

3. Power balance, absorption and scattering intensity
formulae

3.1. Power balance

The efficiency of a diffracted or transmitted propagating

mode (order) represents the proportion of power radiated in

each order. Defining the power for time-harmonic electro-

magnetic incident fields as the flux density of the Poynting

vector modulus jSi
j = Re ðEi �HiÞ=2 (C means here the

complex conjugate of C) through a normalized rectangle

parallel to the (x, y)-plane (Fig. 2), the ratio of the power of

reflected or transmitted propagating orders and of the incident

wave gives the sum of diffraction efficiencies of reflected

orders R or transmitted orders T. Diffraction efficiencies for

the reflected and transmitted orders of any grating can easily

be found from the corresponding Rayleigh coefficients or

boundary values (Popov, 2014). If a general multilayer grating

(Fig. 1) has the perfectly conducting substrate, i.e. �N = (0,1),

where �N is a refractive index in the substrate and there is not

any power absorption in the grating layers, Im �̂�j = 0, where �̂�j

are refractive index matrices, j = 1, . . . , N � 1; then energy

conservation under unitary normalization for the incident

wave is expressed by the standard energy criterion R = 1. If the

grating is lossless, Im �̂�j = 0, j = 0, . . . , N, then power conser-

vation is expressed by a similar energy balance criterion

R + T = 1. In most publications devoted to the theory of

diffraction gratings (e.g. Popov, 2014), one verifies power

conservation by calculating the real part of a surface integral

over the lossless grating region for the normal component of

Poynting’s vector S = E�H=2,

Rþ T � 1 ¼ Re

I
Sn ds ¼ 0: ð10Þ

If Im �̂�j > 0 for some j = 1, . . . , N, then there is some energy

absorption in the grating layers or/and in the substrate. Thus,

the above-mentioned principle of power conservation, that

the sum of efficiencies of all reflected and transmitted orders

should be equal to the power of the incident wave, does not

hold. In a general case,

Aþ Rþ T ¼ 1; ð11Þ

where A is called the absorption coefficient or simply the

absorption in the given diffraction problem. In the lossy case,
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an independently calculated quantity A is required to verify

(11). In particular, the values of the field on �+ and �� can

give valuable information on the absorbing power. To find

such a quantity a valid approach should be used because some

arbitrariness exists in the definition of S as well in the calcu-

lation of the surface integral in (10) (Born & Wolf, 2002).

Besides, knowledge of a directly calculated value of the

absorption for a grating is a useful and self-consistent tool for

single-computation testing the correctness and reliability of

developed computer codes. In many difficult cases conver-

gence of A has to be compared with convergence of indirect

absorption calculus,

Ai ¼ 1� R� T; ð12Þ

that can be derived also from measurements of R and T. Due

to numerical differences in the concrete rigorous method to

compute near- and far-zone fields, the differences between

direct and indirect absorbtion calculations sometimes can be

big enough (Popov, 2014; Goray et al., 2006a,b).

3.2. Bi-periodic diffraction grating

The present formulation for the power balance and

absorption coefficient of anisotropic inhomogeneous bi-grat-

ings follows the classical line on the variational and integral-

equation approaches applying to the diffraction problem

formulation. Suppose from the literature (i.e. Dobson &

Friedman, 1992; Dobson, 1994; Bao et al., 1995; Bao, 1997; Bao

& Dobson, 2000; Schmidt, 2003; Bugert & Schmidt, 2015) that

E, H are a solution of the partial differential formulation of

the diffraction problem (1)–(9), the expression for the power

balance and absorption can be derived from Maxwell’s

equations for curl E and curl H in a periodic cell G, which has

in the x-direction the width dx, in the y-direction the width dy

and is bounded by planes z = 0, z = �h and contains �. A

simple derivation of the expression for direct absorption

calculus in quadratures is demonstrated by Goray (2015). The

absorption integral generalized by Goray (2015) for a lossy bi-

periodic grating is expressed using conductivity tensors and

the fields on the surface restricting a grating domain between

uniform medias as

A2 ¼
�þ=�þ
� �1=2

2dxdy cos 	
Im

Z
�

E 
̂
e Eþ Z2
v H 
̂
m H dv: ð13Þ

where Zv is the vacuum impedance (Born & Wolf, 2002), 
̂
e =

!�vð ~��� �̂�Þ=2, 
̂
m = �v!ð ~��� �̂�Þ=2 are electric and magnetic,

respectively, conductivity tensors and ~�� and ~�� are hermitian

conjugates to tensors �̂� and �̂� (e.g. obtained by a matrix

transposition and complex conjugations of matrix elements),

respectively. Formula (13) describes the Joule effect losses

density in the absorbing bi-periodic grating and the normal-

ization coefficient includes the diffraction problem para-

meters.

Equation (13) represents the main result for the absorption

of any bi-grating described above and is used in the normal-

ized energy balance of equation (11) to test numerical codes. It

is valid for any rigorous electromagnetic method which can

derive local values of E and H in the volume of one grating

period. Such a directly calculated absorption can be (and

should be) compared with the indirect value of Ai to check the

accuracy of results. However, for some rigorous approaches

such as boundary integral equation methods, boundary

element methods and methods of fictitious sources, surface

integrals are much more preferable to calculate. For such

numerical methods, direct calculus of A using a surface (or

contour, for one-gratings) integral for the Pointing vector

component over the closed grating region can be used. It reads

by (13) as

A2 ¼
Zv �þ=�þ
� �1=2

2dxdy cos 	
Re

Z
@�

E�H n ds: ð14Þ

The general existence and uniqueness of a solution for A

formally results immediately from the strong ellipticity

concept via the variational and integral-equation formulations

for E and H derived from the above-mentioned rigorous

mathematical studies. If the structure contains absorbing

materials and the permittivity tensors are piecewise analytic,

as it is in all the practical cases considered in this paper, then

the diffraction problem is uniquely solvable for all frequencies

(Schmidt, 2003).

3.3. One-periodic diffraction grating

For one-periodic gratings very similar results for the

absorption A1 can be obtained on the basis of the respective

integral-equation and/or weak formulation proofs (Popov,

2014, chs. 5, 12; Bao et al., 1995) and taking into account that

the field does not vary in one coordinate. The volume integral

should be exchanged with the surface one for a rectangle

surface �0 of area dxh and with the new normalization for the

incident power,

A1 ¼
�þ=�þ
� �1=2

2dx cos 	
Im

Z
�0

E 
̂
e Eþ Z2
v H 
̂
m H ds: ð15Þ

Popov ’s derivation (Popov, 2014, ch. 12) of the energy balance

and A1 for isotropic one-periodic gratings working in classical

or conical (azimuthal angle � 6¼ 0) diffraction (Fig. 1) is based

on computations of the respective contour integrals by values

of the fields Eðx; y; zÞ = Eðx; yÞ expði�zÞ and Uðx; y; zÞ =

ZvHðx; yÞ expði�zÞ, � = !ð�þ�þÞ
1=2 sin� and their normal

(@n) and tangential (@t) derivatives on a grating boundary �,

A1 ¼
1

�
Im

�
�2
þ

�2
�

� "�
"v

Z
�0

@�n EzEz þ
��
�v

Z
�0

@�n Uz Uz

þ
�þ�þ
�v�v

� 	1=2

2 sin� Re

Z
�0

Ez @
�
t Uz


�
; ð16Þ

where �� = ���� � �þ�þ sin� in the upper (+) and lower (�)

mediums, �� and �� are electric permittivities and magnetic

permeabilities, respectively, � is the wavevector y-component,

n is the outward unit vector of the normal, and arc length
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integration is performed assuming d = 1 along one period � of

the cut of the boundary by the z = 0 plane.

For multilayer gratings, A1 is similarly calculated as the

difference between energy flux densities, which cross the

upper, �0, and the lower, �N�1 , boundaries of the multilayer

structure through cells G�H bounded by planes x = 0, x = d,

z = 0, z = 1, y = �H and contained �0 or �N�1,

A1 ¼
1

�
Im

" Z
�0

� �þ
�v

@þn Ez Ez þ
�þ
�v

; @þn Uz Uz




�
�2
þ

�2
�

Z
�N�1

� "�
"v

@�n Ez Ez þ
��
�v

@�n Uz Uz


#
; ð17Þ

where n0 and nN�1 are unit vectors of the normal, which are

interior to the regions under study.

From the detailed mathematical analysis of the conical

diffraction solution using boundary integral equations, the

Fredholmness of operators V + and V�, i.e. which are bounded

linear operators between two Banach spaces, has been

established with the basic properties (Popov, 2014, ch. 12).

3.4. Random 2D surface

Here we use the model in which an uneven surface is

represented by a bi-grating with large periods of dx, dy in

perpendicular planes, which include appropriate numbers of

random asperities with correlation lengths of �x and �y,

respectively. We analyze a complex structure which, while

being the multilayer bi-grating from a mathematical view-

point, is actually the rough surface for dx, dy 
 �x, �y. If

�x, �y ’ � and the number of modes (orders) is large, the

continuous angular distribution of the power reflected or

transmitted from random boundaries can be described by a

discrete efficiency distribution �n, m in orders (n, m) 2 Z2 of

a bi-grating, similar to that reported by Goray (2010b) to

present random 1D surfaces using classical gratings. As the

ensemble size increases, the results converge to the statistical

moment using �10�x, y or more per dx, y that depends on

statistical properties of rough surfaces (Warnick & Chew,

2001; Saillard & Sentenac, 2001). In this section the author

describes an approach applicable for general 2D surfaces that

generalizes the methods (Popov, 2014, ch. 12; Goray, 2010b)

developed to study the scattering intensity (diffraction effi-

ciency), absorption and power balance of general 1D surfaces

and randomly rough one-periodic gratings.

Let E and H be a solution of the partial differential

formulation of the deterministic diffraction problem stated

above. The expression for the energy balance for random 2D

surfaces was derived (Goray, 2016) using statistical averaging.

By the definition of the bistatic scattering coefficients (BSCs)

�� for the reflected (+) and transmitted (�) powers (Tsang et

al., 2001) and using the definition for the normalized incident

power (Schmidt, 2003) one can formulate the energy conser-

vation law for random 2D surfaces,

1�
D X
�þn;m>0

�þn;m

E
�

D X
��n;m>0

��n;m

E
� A ¼ 0; ð18Þ

where A is a mean absorption value averaged out over all

statistical realizations,

A ¼
�þ=�þ
� �1=2

2dxdy cos 	

D
Im

Z
G

E �

e Eþ Z2
v H �

m H dv

E
: ð19Þ

Formula (19) can be expressed using a surface integral for the

Poynting vector component over the closed grating region �,

similarly to (14),

A2 ¼
Zv �þ=�þ
� �1=2

2dxdy cos 	

D
Re

Z
�

E�H n ds
E
: ð20Þ

A study of the scattering intensity by the Monte Carlo method

starts with obtaining statistical realizations of profile bound-

aries of the structure to be analyzed, after which one calculates

�� for random realizations. For �=dx;y � 1 the discrete order

efficiencies ��n;m are approximations of BSCs for a continuum

of scattered angles 	�n;m, ��n;m in G+ and G� (if exist) mediums.

Then, efficiencies are averaged out over all realizations to

obtain a mean BSC ~�� measured in real experiments,

D X
��n;m>0

��n;m

E
¼

Z Z
=2

�
=2

~�� 	�n;m; �
�
n;m

� �
d	�n;m d��n;m: ð21Þ

Finally, using (21) and (18) the generalization of the normal-

ized power balance for random lossy 2D surfaces can be

represented as

Z Z
=2

�
=2

~�� 	�n;m; �
�
n;m

� �
d	�n;m d��n;m þ A ¼ 1; ð22Þ

where the direct expression for one realization of � is given by

Goray (2016) and A is calculated in quadratures as (19) or

(20). By selecting large enough samples and numbers of

sampling points, one comes eventually to properly averaged

properties of the rough surface. There are not any approx-

imations in such an approach, except restrictions of the

numerical realization. The similar expression of �� for 1D

random surfaces is presented by Popov (2014, ch. 12).

4. Examples of X-ray absorption and scattering intensity
calculus

The numerical implementation approach expedient for the

calculation of near-fields, far-fields and polarization features of

classical or conical diffraction by one-periodic gratings and

general diffraction by bi-periodic gratings working in the

entire optical wavelength range was described in the earlier

publications (Goray & Schmidt, 2010, 2012; Goray & Egorov,

2016; Popov, 2014; Bugert & Schmidt, 2015). Here the author

presents several numerical experiments taken from important

applications of gratings and rough surfaces working in X-ray–

EUV ranges. Using the above-described methods, the present
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results demonstrate the impact of the rigorous approach on:

(1) the absorption in the multilayer W/B4C blaze grating

working in classical and conical soft-X-ray mounts; (2) the

scattering by the flight rough multilayer Mo/Si trapezoid

grating working in the EUV range; (3) the absorption in 1D

rough GaAs substrates illuminated by hard X-rays; (4) the

scattering by the rough 2D Au surfaces working in the soft

X-ray range. Examples of the found absorption and scattering

coefficients for gratings and mirrors working in X-rays are

compared with those derived using the usual indirect

approach and well known approximations. The refractive

indices of the materials were taken from the CXRO website

(CXRO, 2020).

4.1. Absorption of a multilayer blaze grating working in
classical and conical mounts

Multilayer-coated blazed gratings with high groove densi-

ties are the best candidates for use in high-resolution X-ray

and EUV spectroscopy including RIXS (Voronov et al., 2015).

Theoretical and experimental analysis show that such a grating

can be potentially optimized for high dispersion and spectral

resolution in a desired high diffraction order without signifi-

cant loss of diffraction efficiency. In order to realize this

potential, the grating should have a near-perfect triangular

groove profile and its absorption should be minimized. The

grazing-incidence conical-diffraction mounting in which the

direction of incident light is confined to a plane parallel to the

direction of the grooves has the unique property of main-

taining high and sustained diffraction efficiency due to an

additional angular parameter (Goray & Egorov, 2016). In this

section, we analyze the optical absorption of a blazed multi-

layer grating working in the equivalent grazing classical and

conical diffraction mounts in the soft X-ray range.

In Fig. 3 the absorption of the 114.3 nm-period blazed Si

grating coated with 50 bi-layers of W/B4C working in classical

(‘classic’) and conical (‘conic’) mounts was calculated for the

TE and TM polarized incidence radiation as a function of �.

For the classical mount, 	 = 83.25
 and the azimuthal angle � =

0. For the conical mount, 	 = 6
 and the azimuthal angle � =

77.24. The grating has a triangular groove profile with a blaze

angle of 6
 (�4th blazed order) and antiblaze angle of 64.53


and a conformal multilayer coating with the same thickness of

1.5 nm of W and B4C layers. For gratings in the grazing-inci-

dence off-plane mount, we refer to linearly polarized incident

light whose electric field vector lies in the plane of incidence as

the TE polarization (p), and define the TM polarization (s) as

when the electric field vector lies almost parallel to the plane

of the grating (Marlowe et al., 2016). Fig. 3 displays for

comparison theoretical absorption spectra of a Si mirror

coated with the same multilayer and working at the optimal

grazing incidence.

As one can see in Fig. 3, for the defined polar and azimuthal

angles the conical grating and mirror absorption spectra are

close in the wavelength range investigated. The grating

absorption minima �73% can be obtained for the optimal

wavelength of�1.288 nm (s polarization). Thus, almost all the

reflected energy in this mount can be directed into the prin-

cipal diffraction order without additional losses for the grating

absorption. In contrast, the best in-plane value of A calculated

at � ’ 1.26 nm is �7% higher. The absorption spectral

dependence calculated using the indirect method exhibits a

minor difference, less than 1%, in the vicinity and around the

absorption minima. That is, mostly, due to inaccurate calculus

of higher-order efficiencies in the indirect approach.

Only N = 400 were used to compute this grating example

which allocates �60 MB of RAM. The relative error calcu-

lated from the energy balance using (11) is �10�3. The

average time taken up by one point on a portable workstation

MSI WT73VR 7RM with an Intel1 Xenon1 E3-1505M V6

and 3–4 GHz processor and 64 GB of RAM is �2 min when

operating on Windows1 10 Pro.

4.2. Scattering intensity of a flight Mo/Si multilayer rough
trapezium grating in the EUV

Examples of the Mo/Si lamellar-type grating efficiency and

scattering light intensity computations were carried out for

the Extreme-Ultraviolet Imaging Spectrometer (EIS) on the

Hinode (former Solar-B) mission (Hinode, 2020), the first

implementation of a multilayer grating on a satellite instru-

ment. For today, the mission duration elapsed is about

14 years instead of the initially planned three-year mission.

Here we present the efficiency (of orders) and scattered

light intensity (between orders) calculus of the flight FL1

4200 grooves mm�1 multilayer-coated grating operating at 	 =

6.5
 of the in-plane configuration for a wavelength of 19.25 nm

in the working wavelength region 17–23 nm (Fig. 4). The

efficiency was directly calculated by boundary-integral-equa-

tion software (PCGrate1-SX v. 6.6; IIG, 2020) using data of

AFM measurements and accounting for the random rough-

ness. The results of computations agree well with synchrotron
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Figure 3
Absorption of the W/B4C multilayer blazed diffraction grating working in
conical (‘conic’) or classical (‘classic’) mount calculated for the TE (‘p’)
and TM (‘s’) polarized incident radiation versus wavelength. ‘1 � R’ are
non-direct absorption calculations.



efficiency measurements (Popov, 2014, ch. 12). The calculated

scattering light intensity between the orders is about 1000

times lower than the �1 order minimal efficiency that is in a

quantitative agreement with the measured level.

The depth of all the boundary profiles of the multilayer

grating was �6.0 nm, with side slopes of 35
 and equal top

and groove widths, as derived from the AFM and efficiency

measurements. Because polarization effects are small near

normal incidence, the efficiencies are presented for the case of

TM-polarized radiation. To determine the absolute values of

the scattering intensity, a model of the two-period rando-

mized-trapezium grating describing the realistic boundary

shape and roughness was applied. For a rigorous accounting of

the random roughness impact on the efficiency, a model

with 41 randomly rough borders of the period of �476.19 nm

having 400 random sampling points on two trapezoidal

grooves with the same Gaussian surface roughness height

statistics and the Gaussian autocorrelation function was

applied. The rough boundary parameters are as follows: the

Si–Mo interface r.m.s. roughness 
Si–Mo = 0.2 nm and the Mo–

Si r.m.s. roughness 
Mo–Si = 0.85 nm. The lateral correlation

length � = 5 nm was chosen from the detailed microscopic

analysis and the growth model of typical Mo/Si layers obtained

by using magnetron sputtering (Goray & Lubov, 2013). An

assumption about the absence of a vertical correlation

between the border random roughness components was

applied in this model. Seven sets of 41 rough border profiles

were generated to compute the exact efficiency and scattering

light intensity of the FL1 multilayer grating. The Si protective

capping layer of 2 nm was modeled by using 1.5 nm-thick

amorphous SiO2 on 1.5 nm Si in order to account for the

oxidation of the Si capping layer. The FL1 multilayer para-

meters extracted from the mirror investigation are as follows:

20 Mo/Si layer pairs with the bilayer period D = 10.3 nm,

Mo thickness to D ratio � = 0.37.

A medium rate of convergence of the light intensity results

was observed for a wavelength of 19.25 nm and the above

computation model. About 100 random sets of 41 rough

border profiles and the medium number of discretization

points (800–1200) are enough to compute exact values of

scattering light intensities between orders. The difference

between efficiencies obtained using medium (N = 1000) and

high (N = 1200) accuracy is about 10�5 for almost all diffrac-

tion orders. The scattered light intensities were calculated with

different numbers of statistical boundary sets (35, 70, 98, 105)

and N = 1000 for all diffraction (scattering) angles. The

differences between scattering light intensities obtained with

98 and 105 statistical boundary sets are about 10�6. For the

final scattering intensity modeling, N = 1000 and 105 random

boundary sets were chosen. The error derived from the energy

balance was about 10�5 for all computation points and random

sets. The time taken up by one rigorous computation (one

random set) for N = 1000 on the aforementioned workstation

and operating system is �12 min.

4.3. Absorption in rough GaAs substrates

Rigorous computations of the absorption in rough GaAs

substrates were performed using the method of deep X-ray

reflectometry (DXRR) (Goray et al., 2019, 2020). That new

approach in the short-wave scatterometry (Goray, 2009) is

based on the rigorous theory of diffraction of electromagnetic

radiation, i.e. the boundary integral equation method using

the method of Monte Carlo, or microscopic images, or growth

model data of realistic surfaces to take into account boundary

irregularities (Goray & Lubov, 2013, 2015; Goray et al., 2009,

2010). It can describe different situations from total external

reflection to full absorption of short-wave radiation; in addi-

tion to specular reflectances, it enables accurate determination

of the intensity of scattered light and absorption. For example,

the big differences, in orders of magnitude, between the

rigorous approach and the Debye–Waller (DW) and Nevot–

Croce (NC) approximations were firstly demonstrated in

specular reflectances of Au mirrors with different roughness

parameters at wavelengths where grazing incidences occur at

close to or larger than the critical angles (Goray, 2010b).

It is known that the second-order distorted-wave Born

approximation (DWBA) and the height perturbation theory

may be used accounting for any correlation length and more

general rough statistics (Goray et al., 2020). However, all

approximations have strong restrictions, mainly in the allowed

maximal values of 
 (Ogilvy, 1987; Stearns, 1992; de Boer,

1996; Kozhevnikov & Pyatakhin, 1998). In particular, for

specular reflection the DWBA model is generally valid for

very small values of 
 and � when the Gaussian-like correla-

tion function is used: 
 � �=ð2
 sin 	Þ and � � �=ð2
 sin2 	Þ.
The case of diffuse scattering is even more complex and

the result depends also significantly on real rough statistics

(Saillard et al., 1986).

To investigate examples of GaAs surfaces we used the

interface roughness with the Gaussian height statistics and the

Gaussian autocorrelation function. Different values of 
 were

applied to generate boundary samples: 0.35 nm, 0.7 nm and

1.5 nm. Various correlation lengths evaluated had values close
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Figure 4
Scattering intensity of the Mo/Si multilayer-coated randomly rough
lamellar grating in the EUV versus scattering angle.



to those given by either the DW model (� = 1) or the NC

model [or more general Sinha’s approximation (Sinha et al.

(1988)] (� = 0), or more realistic models (� = 0.15, 1.5, 15 mm)

in the entire grazing-incidence angle range. The calculated TE

absorption (TM absorption data are close in magnitude) of

GaAs surfaces versus grazing angle of incidence for different

values of 
 and � is shown in Fig. 5. We discuss here only the

behavior of exact and approximate values of the absorption

when the grazing-incidence angle is close to the critical angle.

For � = 0.15 mm, the absorption calculated for the rigorous and

NC model differ only by a few percent near and below the

critical angle, and by several percent in the range slightly

higher than the critical angle. For � = 1.5 mm, the difference is

several percent in the low absorption range, and approxi-

mately a few tens of percent in the high absorption range. For

� = 15 mm, the difference is about a few tens of percent in

the low absorption range, and approximately several tens of

percent or a few times in the high absorption range; similar

differences can be observed for � = 15 mm and the DW model.

For 
 = 0.7 nm, the NC model absorption (not shown) is close

(with the maximal difference of several percent) to the

absorption of the perfect surface, and also to the rigorous

model absorption with the highest value of � = 15 mm. For 
 =

0.35 nm, all the models are very close (with the maximal

difference of only a few percent) in the working incidence

angle range. Thus, the exact results for small values of 
 and �
are close to the NC model near and slightly below the critical

angle, in accordance with de Boer (1996). For higher than

�0.35 nm values of 
, big differences between the rigorous

model and any widely used approximations may result in a

non-correct estimation of the absorption. For higher grazing-

incidence angles the absorption is higher, the reflectance is

lower and the difference between the rigorous and asymptotic

models may increase many times (Goray, 2010b; Goray et

al., 2020).

The results presented in Fig. 5 exhibit moderate conver-

gence and high accuracy required for simulating absorption

of GaAs random surfaces. In PCGrate, we used 1000–1200

discretization points per boundary, 99–195 random surface

sets, and the scattering matrix approach (IIG, 2020). An error

of about 10�6 was estimated from the energy balance. The

difference between absorptions obtained using 99 and 195

random surface sets is approximately 0.1%. The difference

between absorptions obtained using 49 and 195 random

surface sets is approximately (or less than) 10%. The average

time taken by each discretization point (99 random sets) on

the mentioned portable workstation is approximately four

hours when operating on Windows1 10 Pro using eightfold

parallelization.

4.4. Scattering intensity of Au 2D rough surfaces with
different correlation functions

Here we study the influence of 2D surface topology of a

continuum Au film on short-wave scattering intensity, i.e. the

bistatic scattering coefficient (Tsang et al., 2001). With this last

example, � of mirrors with different types of rough statistics

working at a wavelength of 1.54 nm are calculated using the

equivalence formulae for orthogonal planes (Goray, 2013).

Two types of Au mirrors have the same models of roughness

in different directions [(yOz) and (xOy) planes], which are

approaching closely the typical realistic conditions: (1) having

a Gaussian height distribution with 
x, z and a Gaussian

autocorrelation function Cx;z = 
x;z exp½ðx; zÞ
2=�2

x;z�; (2) having

the same Gaussian height distribution and an exponential

autocorrelation function Cx;z = 
x;z exp½ðx; zÞ=�x;z� with


x = 
z = 
 and �x = �z = �. Statistical surface realizations with


 = 1 nm, � = 15 nm and the different correlation functions

were generated using the spectral method (Tsang et al., 2001).

In Fig. 6, �(TE) (the vector of the electric field is perpen-

dicular to the incident plane) of Au mirrors is plotted versus

reflection grating order number (angle of scattering) in

perpendicular planes for the incident angle of 	 = 87
 which is

beyond the critical angle at a wavelength � = 1.54 nm. Note

that the TM values of �, as well as the respective Fresnel

coefficients, are very close to the TE values for both types of

statistics. As follows from a comparison of the curves shown in

Fig. 6, �0, n corresponding to the (yOz) plane is much higher,

beyond the specular reflection, than �m, 0, which are related

to the (xOy) (incident) plane. Moreover, �0, n are, roughly,

symmetric functions with respect to specular peaks, while �m, 0

depend on negative order numbers only due to the grazing-

incidence geometry. The diffuse reflection coefficients of the

model with the exponential autocorrelation function mostly

exceed the corresponding coefficients of the model with the

Gaussian autocorrelation function in the (yOz) plane. In the

(xOy) plane, �m, 0 for the Gaussian autocorrelation function

has a smooth incline, without significant fluctuations, opposite

to the exponential autocorrelation function. Such behaviors

are due to the higher noisiness of boundaries with the expo-

nential autocorrelation function. Thus, the observed discre-

pancies between the angle dependences of scattering
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Figure 5
Absorption of GaAs versus grazing-incidence angle. Absorption
calculated by approximations (NC or DW curves) and rigorously
(symbols) with 99 statistical surface realizations for � = 0.1541 nm and
different r.m.s. roughness 
 and correlation length �. ‘1 � R’ are non-
direct absorption calculations using approximations.



intensities of mirrors with similar surface topologies indicate

that, in practice, critical samples must be calculated with the

help of an accurate roughness model.

To obtain the required ensemble averaging and calculation

accuracy for rough surfaces, 100–200 statistical sets have to be

used with 1000 node points within a 1 mm interval dx = dz = d

on each. To take into account the fine structure of the rough

surface and low convergence of the results obtained, we chose

the number of discretization points N = 2000 and �200

statistical sets in the PCGrate1-SX v.6.7 code. An error of

about 10�5 was estimated from the energy balance. The

average time taken by one calculation (198 random sets) on

the mentioned portable workstation is �13 h using eightfold

parallelization.

5. Summary and conclusions

The generalized power balance for structured interfaces

allows direct calculus of light absorption and scattering using

expressions derived from a rigorous solution of Maxwell’s

equations (vector Helmholtz equations). Absorption integrals

generalized for lossy one- and bi-periodic gratings and

randomly rough 1D and 2D surfaces are expressed using

conductivity tensors and the fields on the surface restricting a

grating domain between uniform medias. Explicit formulae (in

quadratures) for finding the absorption coefficients for one-

periodic gratings working in conical diffraction and bi-periodic

gratings and general 2D surfaces via diffraction problem

parameters are presented using the normalization factors.

Examples of absorption and scattering intensity problems

calculated by the fast and accurate boundary integral equation

method for one- and bi-periodic gratings and rough surfaces

are demonstrated and compared with those calculated using

the usual indirect and approximated approaches. An explicit

computation of the absorption quantity A and the scattering

intensity � is an important tool to check the quality of the

numerical solution for absorbing and/or rough gratings and

mirrors with the requirement that the sum of reflected,

transmitted and total absorbed energies should be equal to the

energy of the incident wave. Thus, the present energy balance

approach for very general absorbing and/or scattering struc-

tures can be considered as universal and useful as the well

known energy conservation laws for perfectly conducting and

lossless gratings and rough mirrors. The direct and indirect

results computed for the grating absorption and scattering

coefficients are close for the presented numerical examples

taken from various applications. Such a comparison is a good

measure of accuracy of near-zone field calculus in a case when

far-zone fields (intensities) are computed or measured accu-

rately. Valuable differences between the scattering intensities

of various surfaces show the need of using exact roughness

statistics, diffraction and polarization angles, and rigorous

methods in computations of practical significance for a sample.

Acknowledgements

The author thanks Gunther Schmidt for useful comments and

Alexander Dashkov for numerical investigations.

Funding information

Funding for this research was provided by: Russian Science

Foundation (grant No. 19-12-00270).

References

Ament, L., van Veenendaal, M., Devereaux, T., Hill, J. P. & van den
Brink, J. (2011). Rev. Mod. Phys. 83, 705–767.

Bakshi, V. (2018). Editor. EUV Lithography, 2nd ed. SPIE.
Bao, G. (1997). SIAM J. Appl. Math. 57, 364–381.
Bao, G. & Dobson, D. C. (2000). Proc. Am. Math. Soc. 128, 2715–

2723.
Bao, G., Dobson, D. C. & Cox, J. A. (1995). J. Opt. Soc. Am. A, 12,

1029–1042.
Boer, D. K. G. de (1996). Phys. Rev. B, 53, 6048–6064.
Born, M. & Wolf, E. (2002). Principles of Optics, 7th exp. ed.

Cambridge University Press.
Botten, L. C., Craig, M. S., McPhedran, R. C., Adams, J. L. &

Andrewartha, J. R. (1981). Opt. Acta: Int. J. Opt. 28, 1087–1102.
Botten, L. C., Nicorovici, N. P., Asatryan, A. A., McPhedran, R. C., de

Sterke, C. M. & Robinson, P. A. (2000). J. Opt. Soc. Am. A, 17,
2177–2190.
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Figure 6
Scattering intensity of an Au mirror having Gaussian roughness with 
 =
1 nm, � = 15 nm and indicated correlation function (CF) for radiation
incident at � = 1.54 nm and 	 = 87
 versus diffraction order number m or n.
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