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The emerging concept of ‘beam by design’ in free-electron laser (FEL)

accelerator physics aims for accurate manipulation of the electron beam to tailor

spectral and temporal properties of the radiation for specific experimental

purposes, such as X-ray pump/X-ray probe and multiple wavelength experi-

ments. ‘Beam by design’ requires fast, efficient, and detailed feedback on the

spectral and temporal properties of the generated X-ray radiation. Here a

simple and cost-efficient method to extract information on the longitudinal

Wigner distribution function of emitted FEL pulses is proposed. The method

requires only an ensemble of measured FEL spectra and is rather robust with

respect to accelerator fluctuations. The method is applied to both the simulated

SASE spectra with known radiation properties as well as to the SASE spectra

measured at the European XFEL revealing underlying non-linear chirp of the

generated radiation. In the Appendices an intuitive understanding of time–

frequency representations of chirped SASE radiation is provided.

1. Introduction

Various fields of science such as structural biology (Seibert et

al., 2011; Chapman et al., 2011), plasma physics (Vinko et al.,

2012), atomic physics (Young et al., 2010), ultrafast photo-

chemistry (Liekhus-Schmaltz et al., 2015), and many others

have benefited from the development of X-ray and extreme

ultraviolet (XUV) free-electron lasers (XFELs) (Saldin et al.,

2010; McNeil & Thompson, 2010; Pellegrini et al., 2016). FELs

provide a unique combination of high power with narrow-

bandwith, ultra-short pulses with tunable photon energy. For

instance, at the European XFEL, powers of tens of GW with

relative spectral width in the order of 10�3–10�4, ten fs-order

duration and photon energies between 0.25 keV and 25 keV

are within specifications.

There has been a rapid growth both in the number of

scientific users and in the diversity of new science enabled by

FEL sources (Hemsing et al., 2014). This growth is possible

due to the continuously improving capabilities of FEL facil-

ities. One promising avenue to new experiments is tuning the

spectral and temporal properties of radiation for specific

experimental purposes, e.g. generating large-bandwidth

(Serkez et al., 2013; Zagorodnov et al., 2016; Prat et al.,

2016), narrow-bandwidth (Reiche, 2013) or extremely short

(Zholents, 2010; Serkez et al., 2018) radiation pulses.

All these and other techniques require ‘beam by design’

(Hemsing et al., 2014) via precise manipulation of the accel-

erator conditions and rely upon accurate diagnostics of elec-
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tron beam and radiation pulse parameters. Of particular

importance is the information on the longitudinal phase space

of electrons or on the spectrogram (time–frequency repre-

sentation) of the radiation. They can be obtained by installing

a transverse deflecting structure (Behrens et al., 2014) or an

optical streaking setup (Grguraš et al., 2012; Hartmann et al.,

2018), respectively. Both methods require the installation of

additional complicated hardware downstream every undulator

line.

However, some information about the duration of the

typical radiation pulse, hence the length of the electron beam

lasing window, can be extracted from the radiation spectra

of an FEL operating in self-amplified spontaneous emission

(SASE) mode. The temporal shape of FEL pulses can be

deduced by comparing energy losses between lasing and non-

lasing electron beams with transverse deflecting structure

(Behrens et al., 2014).

Taking advantage of the statistical properties of SASE

radiation (Saldin et al., 1998) and assuming a particular

temporal profile, measurement of spectral spike width

(Inubushi et al., 2012) or spectral correlation analysis (Lutman

et al., 2012) provides an estimate of the average duration of the

SASE FEL pulse assuming its temporal profile. Correlation

functions of Gaussian and sinc shapes correspond to Gaussian

and flat-top radiation pulse profiles, respectively. The close

relation between the electron phase space and the radiation

characteristics must be taken into account. For example, a

chirp in the electron beam energy yields a chirp in radiation

frequency (Krinsky & Huang, 2003), and affects the range of

spectral coherence (Gorobtsov et al., 2018), and hence the

spectrum-based estimation of the SASE pulse duration.

The resolution, as well as the minimum group duration

applicable to the spectrum-based methods, is several coher-

ence lengths of the SASE radiation, i.e. the length of several

temporal ‘spikes’.

In this contribution we show that by exploiting the full

information contained in the correlation function it is possible

to analyze the shape of the radiation pulse at each photon

energy. We present a fast and efficient method to provide

feedback on the temporal and spectral properties of FEL

radiation, namely the measurement of the autocorrelation

of an ensemble-averaged Wigner distribution of SASE FEL

pulses. The method relies entirely on spectrometry of the

generated pulses and does not require additional equipment.

It thus allows for straightforward implementation at existing

and future FEL facilities.

In the following sections we study an ensemble-averaged

Wigner distribution of SASE FEL pulses and its temporal

autocorrelation. We discuss how to acquire an autocorrelation

of this distribution based on measured SASE spectra and what

information such reconstruction reveals. We finally present

results of numerical simulations performed with the code

GENESIS (Reiche, 1999) and compare calculated Wigner

distributions with evaluated reconstructions. We also present

results of an experimental application of the algorithm at

the European XFEL where information about a nonlinear

frequency chirp is extracted.

2. Theory

In this section we describe the theoretical background at the

basis of our retrieval algorithm. We then proceed to the

formulation of the Wigner distribution autocorrelation

reconstruction algorithm.

2.1. Definitions and conventions

Consider a scalar field E(t) in the time domain and its

Fourier transform eEEð!Þ,
eEEð!Þ ¼ 1

2�

Z1
�1

dt EðtÞ expði!tÞ;

EðtÞ ¼

Z1
�1

d! eEEð!Þ expð�i!tÞ:

ð1Þ

Measurable single-shot radiation spectra are proportional to

the square-modulus of the single-shot scalar field1

eIIð!Þ � eEEð!ÞeEE �ð!Þ: ð2Þ

The statistical autocorrelation function of the field E(t) in the

time and frequency domains can then be defined as

�ðt;�tÞ ¼ E t �
�t

2

� �
E � t þ

�t

2

� �� �
;

e��ð!;�!Þ ¼ eEE !�
�!

2

� �eEE � !þ
�!

2

� �� �
;

ð3Þ

where angle brackets h . . . i denote the ensemble average.

Note that the autocorrelation function depends on both time t

and time separation �t, allowing to describe non-stationary

radiation fields. The intensity autocorrelation function is,

instead,

�Iðt;�tÞ ¼ I t �
�t

2

� �
I t þ

�t

2

� �� �
;

e��Ið!;�!Þ ¼ eII !�
�!

2

� �eII !þ
�!

2

� �� �
:

ð4Þ

It is also customary to define and analyze normalized corre-

lation functions (Saldin et al., 1998). For example, in the

frequency domain the normalized second-order correlation

function is given by

egg2ð!;�!Þ ¼
e��Ið!;�!ÞeII !��!=2ð Þ

D E eII !þ�!=2ð Þ

D E : ð5Þ

Two time–frequency representations widely used in signal

processing are the spectrogram,

Sðt; !Þ ¼

���� 1ffiffiffiffiffiffi
2�
p

Z1
�1

d� Eð�Þ hð� � tÞ expði!�Þ

����2
* +

; ð6Þ

[here h(t) is a spectrogram window function] and the Wigner

distribution,
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Wðt; !Þ ¼
1

2�

Z1
�1

dð�tÞ �ðt;�tÞ expði!�tÞ

¼

Z1
�1

dð�!Þ e��ð!;�!Þ expð�i�!tÞ: ð7Þ

The latter is commonly used to describe properties of FEL

radiation (Wu et al., 2007; Allaria et al., 2010; Marcus et al.,

2014; Huang et al., 2016; Serkez, 2016).

The spectrogram of a signal f(t) can be expressed through

the two-dimensional convolution of the Wigner distribution of

that signal W f and the Wigner distribution Wh of the spec-

trogram window function h(t),

Sf ðt; !Þ ¼ W f ðt; !Þ � �Whð�t; !Þ: ð8Þ

Here the symbol ** denotes a two-dimensional convolution

operator. For more details see Appendix A and Serkez et al.

(2018).

The Wigner distribution is real but can take negative values,

and yields the so-called ‘cross terms’ between signals in its

time–frequency representation. Nevertheless, when averaged

over an ensemble, it is positive for a great number of non-

stationary processes which allows one to interpret it similarly

to a radiation spectrogram (Flandrin, 1986). We find that this

is also the case for the SASE FEL radiation, as shown in

Appendix B.

In contrast to the Wigner distribution, the spectrogram is

positive, but it fails to yield radiation and spectral powers via

its marginal distributions, as they are convolved with window

functions (see Fig. 14 in Appendix B).

If the area covered by W f is much larger than that of Wh

(namely, the radiation pulse is far from its transform limit,

which applies to a typical SASE spectrum with large number

of spikes), then, given a proper choice of a window function,

the effect of convolution is small, the outlines of the statisti-

cally averaged Wigner and the spectrogram are similar and to

a certain extent these distributions can be referred to inter-

changeably.

However, the calculation of both Wigner distribution and

spectrogram relies on the knowledge of the complex amplitude

of the pulse, while the experimentally measurable single-shot

spectra are intensity distributions. This lack of phase infor-

mation necessitates introduction of a different time–frequency

representation.

2.2. Wigner distribution autocorrelation

Let us assume that a scalar field E(t) obeys Gaussian

statistics (Goodman, 2000) [which is the case for SASE FEL

radiation strictly in the linear regime and approximately at

saturation (Lutman et al., 2012)]. Then, the moment theorem

for Gaussian random variables can be applied to the intensity

autocorrelation function (Mandel & Wolf, 1995, Section 8.4.1),

to obtain

e��Ið!;�!Þ ¼ eII !�
�!

2

� �� � eII !þ
�!

2

� �� �
þ e��ð!;�!Þ��� ���2: ð9Þ

Let us now consider the following Fourier transform,

Rðt; !Þ ¼

Z1
�1

dð�!Þ e��ð!;�!Þ��� ���2expð�i�!tÞ: ð10Þ

Using the autocorrelation theorem we can equateZ1
�1

dð�!Þ e��ð!;�!Þ��� ���2expð�i�!tÞ ¼

A

Z1
�1

dð�!Þe��ð!;�!Þ expð�i�!tÞ

24 35; ð11Þ

whereA denotes the autocorrelation, defined as it is generally

done in signal processing,2

A
�

f ðtÞ
	
�

Z1
�1

f �ð�Þ f ðt þ �Þ d�: ð12Þ

We now note that the argument of the autocorrelation product

in equation (11) is the Wigner distribution function, and

therefore

Rðt; !Þ ¼ A
�
Wðt; !Þ

	
¼

Z1
�1

d�Wð�; !ÞWðt þ �; !Þ: ð13Þ

R(t, !) is the frequency-wise temporal autocorrelation of the

Wigner distribution and can be directly calculated based on

measured spectra of SASE FEL radiation. We refer to this

function as the reconstruction of spectrogram autocorrelation

or, for short, ROSA.

One of its properties is that its marginal distribution on the

frequency domain yields the square of the average radiation

spectrum,

Z1
�1

dt Rðt; !Þ ¼

Z1
�1

d� Wð�; !Þ

Z1
�1

dtWðt þ �; !Þ

24 35
¼

Z1
�1

d� Wð�; !Þ heIIð!Þi ¼ 4�2heIIð!Þi2: ð14Þ

A cut R(t, != !0) provides the autocorrelation of the intensity

after bandpass filtering at frequency !0 ,

Rðt; !0Þ ¼ A
�
hIðt; !0Þi

	
: ð15Þ

The integral of a reconstruction is roughly proportional to the

square of the integral of a spectrogram,
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Z Z1
�1

dt d! Rðt; !Þ ’

Z Z1
�1

dt d! Sðt; !Þ

24 352

: ð16Þ

2.3. ROSA algorithm

The algorithm of reconstruction of the spectrogram auto-

correlation consists of the following conceptual steps.

First, sufficiently large statistics (around a thousand events)

of single-shot SASE FEL spectra in the form of equation (2)

are acquired. Here we assume that only SASE-related fluc-

tuations are present. Otherwise, the measured data should be

filtered since they are prone to additional jitter, unrelated to

the SASE process, see Appendix C.

Second, we calculate the quantity

Qð!;�!Þ � e��ð!;�!Þ��� ���2
¼ eII !�

�!

2

� �eII !þ
�!

2

� �� �
� eII !�

�!

2

� �� � eII !þ
�!

2

� �� �
: ð17Þ

Finally, an inverse Fourier transform yields the reconstruction

function R(t, !),

Rðt; !Þ ¼

Z1
�1

dð�!Þ Qð!;�!Þ expð�i�!tÞ; ð18Þ

which is very similar in its formulation to the Wiener–

Khinchin relation, see Appendix D.

We have found that binning of the reconstruction function

R(t, !) over several points in both dimensions greatly reduces

numerical noise with practically no cost for effective resolu-

tion. This binning effectively serves as convolution of the

Wigner distribution of the signal with that of a window func-

tion, as in equation (8), effectively yielding an autocorrelation

of the radiation spectrogram.

2.4. Factorization for quasi-stationary pulses

The expression for R(t, !) is considerably simpler in an

asymptomatic case of a quasi-stationary process. This is the

particular case of constant instantaneous frequency and

bandwidth over the FEL pulse. The assumption of quasi-

stationarity allows us to neglect the dependence of the

normalized correlation functions on the central frequency !,

i.e. they depend only on the frequency separationegg2ð�!Þ.
Then one factorizes the autocorrelation functions as

e��ð!;�!Þ ¼ eIIð!ÞD E egg1ð�!Þ; ð19Þ

e��Ið!;�!Þ ¼ eIIð!ÞD E2 egg2ð�!Þ; ð20Þ

and, consequently, the reconstruction function

Rðt; !Þ ¼ eII !ð ÞD E2
A
�
hIðtÞi

	
: ð21Þ

By integrating over frequencies, or fixing any value ! = !0, we

see that the reconstructed function is simply, aside from an

unimportant multiplicative constant, the autocorrelation of

the FEL pulse power in the time domain.

The autocorrelation of the flat-top power profile with length

�s would yield an autocorrelation result with triangular shape

and half width at half-maximum (HWHM) equal to �s/2. In

the case of a Gaussian radiation pulse with FWHM �s, the

HWHM size of its autocorrelation result will be
ffiffiffi
2
p

�s=2. The

standard deviation size of the autocorrelation is
ffiffiffi
2
p

times

larger than that of the original pulse independent of its shape,

providing figure of merit independent of pulse shape.

3. Numerical simulations and discussions

In order to illustrate the reconstruction capabilities of ROSA,

we simulated four ensembles of FEL spectra with the simu-

lation code GENESIS (Reiche, 1999), and processed them

using the OCELOT package (Agapov et al., 2014; Ocelot,

2020) to apply the ROSA algorithm.

For an input spectral data set we generated 500 statistically

independent SASE events assuming a model 6 mm-long flat-

top electron beam with (I) and without (II) energy chirp. In

addition, we simulated SASE generation by two 2 mm-long

flat-top electron beams separated by 3 mm (III). Finally,

we computed 1000 statistically independent SASE events

assuming a nominal 100 pC electron beam from start-to-end

simulations for the European XFEL (IV) (Altarelli et al.,

2006; Zagorodnov, 2014).

The slice properties of the model beams are chosen to be

close to those of the 100 pC nominal electron beam. The

radiation generated by the model beams was dumped before

saturation to reduce the radiation slippage and maintain the

illustrative flat-top distributions of the ensemble-averaged

radiation power. The realistic 100 pC beam radiation was

dumped, instead, in deep saturation.

The ROSA function (bottom right panels of Figs. 1, 2, 3, 4)

for the simulated radiation is calculated with equation (18).

The coordinate along the propagation direction s = �ct is

related to the radiation arrival time. The reconstruction is

symmetrical with respect to the s coordinate, hence only half

of it is depicted. The ensemble-averaged Wigner distribution

of the radiation (bottom left in Figs. 1, 2, 3, 4) is based on

information about amplitudes and phases of the SASE

radiation provided by the simulation to assert representa-

tiveness of the bottom right plot.

If no energy chirp is present in the electron beam, the

undulator resonance condition is constant along the beam and

the generated radiation pulse has no frequency chirp (Fig. 1).

In this special case the Wigner distribution, and hence the

reconstruction, are factorisable [equation (21)] and the total

pulse length can be estimated.

When the energy chirp in the electron beam, in terms of the

relative difference of electron energy in the head and tail,
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becomes comparable with the FEL efficiency parameter

��/� >
� �, a frequency chirp along the SASE pulse will

appear. As a consequence, the pulse will yield a broader

spectrum (which is the integral of the Wigner distribution

over time) and typically a shorter pulse length at each photon

energy (Krinsky & Huang, 2003) (horizontal line-offs of the

Wigner distribution), as presented on Fig. 2. These effects are
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Figure 2
A 6 mm-long flat-top model electron beam with linear energy chirp, see
top left plot, used to generate SASE radiation. It is dumped during the
exponential growth for 500 statistically independent events. Subplots and
notations are identical to those in Fig. 1.

Figure 3
Two flat-top 2 mm-long electron beams, separated by 3 mm, generate two
consecutive SASE pulses of the same averaged shape – see top left plot.
The radiation is dumped during the exponential growth for 500
statistically independent events. Subplots and notations are identical to
those in Fig. 1.

Figure 4
The European XFEL 100 pC electron beam with a non-linear energy
chirp produces SASE radiation with different durations at different
photon energies. Note the bifurcation in Wigner distribution above
499 eV. Analysis based on 1000 simulated SASE spectra. Subplots and
notations are identical to those in Fig. 1.

Figure 1
A 6 mm-long flat-top model electron beam without energy chirp, see top
left plot, used to generate SASE radiation. Lines I, �, ��, "xn, "yn depict
electron beam current, energy (as Lorenz factor), energy spread and both
horizontal and vertical normalized emittances, respectively. The radiation
file is dumped during the exponential growth for 500 statistically
independent events. SASE spectra are presented on the top right plot.
The light gray area depicts spectral span of individual events, the dark
gray line depicts a single event, and the black line provides the ensemble-
averaged spectrum. The ensemble-averaged Wigner distribution of the
SASE radiation is presented in the bottom left plot. Hereafter the
diverging colormap of the Wigner distribution is normalized to its
maximum absolute value, while its zero value is depicted with a white
color. The spectrogram autocorrelation reconstruction R(s, h- !/e) is
presented in the bottom right plot. Colored lines in the top subplot
show the corresponding line-offs of the reconstruction at different photon
energies. These line-offs are normalized to 1 at their maximum value. The
black line depicts an average of these line-offs. s = �ct is the coordinate
along the radiation propagation direction.



also reflected in the spectral correlation functions, and, if not

accounted for, an underestimation of the total pulse duration

will take place. Spectrum-based reconstructions cannot

provide information on the group delay of different photon

energies, as this information is lost with radiation phases.3

Two sequential SASE pulses with overlapping spectra,

separated by time �t, will yield a combined spectrum with

modulated amplitude, on top of the typical SASE modulation.

The modulation period is given by

�E ½eV� ’
1:240

�s ½mm�
’

4:135

�t ½fs�
; ð22Þ

where �s and �t are the pulse separations in space (micro-

metres) and time (femtoseconds), respectively. If a spectro-

meter is capable of resolving this modulation, one can

estimate the temporal separation of the pulses. This scenario is

exemplified on Fig. 3. The discussed modulation of spectral

density takes place only at the frequencies common for both

pulses; therefore if individual spectra of the two pulses do not

have common frequencies, i.e. do not overlap in the frequency

domain, no ‘beating’ in this domain will take place.

Note that in the example above both the Wigner distribu-

tion and its reconstruction indicate the same temporal

separation between the SASE pulses at all photon energies. If

the temporal separation between the pulses is larger than their

duration, the average ratio between the energies of the pulses

RE within certain bandwidth can be retrieved as RE =

RR þ ðR
2
R � 1Þ1=2, where RR is the ratio of the integrals under

first and second maximum in the reconstruction within the

same bandwidth. In other words, the ratio of the areas under

line-offs in reconstruction allows the ratio of energies of the

investigated pulses to be calculated.

In general, the electron beam formation system may yield a

highly non-linear energy chirp, as illustrated in Fig. 4 (top left

plot). If the relative peak-to-valley energy difference in the

electron beam is comparable with or larger than the Pierce

parameter �, the electron beam energy chirp will be imprinted

into the SASE radiation spectrogram as a radiation frequency

chirp. In the given example the Wigner distribution at 501 eV

yields two distinct pulses separated by about 5.5 mm (18 fs), as

depicted in Fig. 5. The separation of these sub-pulses at given

frequency grows with the photon energy, following the

separation of the electron beam slices with an equal Lorenz

factor �. Similarly to the double-pulse case, illustrated in Fig. 3,

such photon-energy-dependent separation can be straightfor-

wardly observed in the reconstruction function.

Therefore the proposed reconstruction method may help to

diagnose non-linear energy chirps in the electron beam. It also

allows to estimate the duration and temporal shape of the

SASE radiation upon spectral filtering. We show the robust-

ness of the proposed method in Appendix C

4. Experimental results

In order to assess the actual performance of our technique, we

studied a set of 700 single-shot SASE spectra acquired with

the SASE3 beamline spectrometer (Gerasimova, 2018). SASE

radiation at 495 eV photon energy was emitted in the SASE3

undulator line with a 250 pC electron beam, accelerated to

11.5 GeV. All 21 undulator segments were closed and quad-

ratically tapered starting from cell 7.4 Each undulator segment

is 5 m long with 68 mm periods. The spectrometer resolution

was not characterized for the given YAG imager with which

the spectra were obtained; however, the experimental data

suggest that the effective resolution of the acquired data is

better than 0.15 eV FWHM.

The resulting spectra and the quality factor are provided in

Fig. 6, and the corresponding ROSA result is depicted in Fig. 7.

In the central region of the spectrum the quality factor devi-

ates from the value of 2 and we attribute it to the limited

resolving power of the spectrometer and poor spatial coher-

ence of the FEL radiation, as actually expected in deep

saturation and to a photon energy jitter/drift, see Fig. 18.

The reconstruction and its line-offs are nevertheless infor-

mative: there is a clearly visible, characteristic divergent
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Figure 5
The line-offs of the Wigner distribution presented in Fig. 4 for different
photon energies each binned over 0.2 eV (top plot) and their
corresponding autocorrelation traces (bottom plot). The color conven-
tion follows that of the line-offs of the reconstruction on the same figure.

3 Note that since the energy chirp increases the spectral bandwidth, a
comparison with the expected bandwidth (e.g. using the results of numerical
simulations for given electron beam properties and undulator settings) can
give an estimate of the chirp. Nevertheless, the results would be based on
a priori information, and cannot be conclusive, as in any method relying purely
on spectral measurements.

4 Such operation mode with all undulators in resonance is not nominal for the
SASE3 beamline. The emitted radiation is expected to have worse than usual
transverse coherence.



structure with length of about 6 mm, qualitatively similar to

that discussed in Fig. 4.5 It suggests the presence of two

radiation sub-pulses with photon-energy-dependent separa-

tion at a rate of about 1.5 mm eV�1. Thereby ROSA indicates

the presence of quadratic frequency chirp in the emitted

radiation. The quadratic component of the detected chirp, as

expected, results in lower instantaneous radiation frequency

in the middle of the pulse. From the reconstruction we can

deduce two sub-pulses at the 497 eV photon energy, separated

by about 6 mm (20 fs). The ratio of integrals under the

corresponding line-off indicates the pulse energy ratio below

9.5 :1 at that separation, making it our lower estimate on the

total pulse duration span.

One reason the total pulse may be longer is that at the

photon energies above 497 eV no second sub-pulse is present

because of an asymmetric shape of the radiation spectrogram.

Another possible reason is due to a natural limit of the

reconstruction time window from the effective resolving

power of the spectrometer, discussed in the previous section

and illustrated in Fig. 17. The latter ‘dampens’ the output of

ROSA at larger time scales.

The theoretical resolving power of the SASE3 spectrometer

at 500 eV is of the order of R ’ 6000 (resolution < 0.09 eV)

and can be improved by operating the grating at the second

diffraction order with R ’ 12000.

We applied ROSA to a series of hard X-ray spectra,

depicted in Fig. 8. It was measured at the SASE2 beamline

with the High Resolution X-ray Spectrometer HIREX

(Grünert et al., 2019; Kujala et al., 2020), equipped with a one-
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Figure 6
Top: ensemble average of measured soft X-ray SASE spectra (solid black
line), spectral density range within the ensemble (gray background area)
and three single-shot measurements of spectra (green, blue and orange
lines). Bottom: value of normalized second-order correlation function
at �! = 0.

Figure 7
Result of processing the soft X-ray experimental spectra with the ROSA
algorithm.

Figure 8
Top: ensemble average of measured hard X-ray SASE spectra (solid
black line), spectral density range within the ensemble (gray background
area) and three single-shot measurements of spectra (green, blue and
orange lines). Bottom: value of normalized second-order correlation
function at �! = 0.

5 Note that the calculations to illustrate the effect of a quadratic chirp (Fig. 4)
precede the experimental results (Fig. 7), and no quantitative agreement
between the two is expected.



dimensional high-repetition-rate Gotthard detector. The

SASE radiation was dispersed using a bend silicon crystal with

440 reflection. At the time of the data acquisition the energy of

the electron beam was chirped. This increased the radiation

bandwidth to 0.5% from the expected value of about 0.15%.

This chirp affected the group duration of the radiation, which

is detectable by ROSA or other spectral measurement

methods. The FWHM of the group duration in the middle of

the spectrum at 9035 eV is about 2 fs (see Fig. 9).

The HIREX spectrometer in given configuration can

provide a resolution of 0.2 eV. It can be decreased to 0.09 eV

by employing a two-dimentional 10 Hz Photonic Science

camera.

With a spectral resolution below 0.1 eV both SASE3 and

SASE2 spectrometers allow us to study SASE pulses with

group durations up to 16 fs providing important diagnostics

for the short pulse operation mode.

We can conclude that the numerical simulations provide a

good estimate for the behavior of ROSA, and that the ROSA

output from experimental data is relatively easy to interpret

and is consistent with the simulation results with start-to-end

electron beam.

5. Conclusions

An ensemble-averaged Wigner distribution is useful for

visualizing the time–frequency properties of numerically

simulated SASE radiation when full information on the

electric field distribution is available.

While the electric field distribution cannot be easily

measured experimentally, one can reconstruct the frequency-

wise temporal autocorrelation of the ensemble-averaged

Wigner distribution of the radiation based on an experimen-

tally measureable ensemble of spectra that enable calculations

of the second-order spectral correlation function. The recon-

structed Wigner function autocorrelation, upon noise filtering

via binning, is close in terms of its properties to the well known

spectrogram distribution. We call the proposed reconstruction

method ROSA, reconstruction of spectrogram autocorrela-

tion.

It constitutes an extended method to study the ensemble-

averaged time–frequency distribution of relatively short X-ray

SASE FEL pulses. The method does not require any hardware

aside from a high-resolution single-shot spectrometer, which is

typically available at XFEL facilities. The spectrometer reso-

lution limits the maximum group duration of the pulse that

can be analyzed.

The proposed method allows characterizing the pulse group

duration and the approximate temporal shape individually for

any photon energy present in the radiation. For instance, it

indicates the presence of two temporally separated FEL

pulses with common photon energies and provides informa-

tion about their duration and temporal separation. In simu-

lations, comparison of calculated Wigner distributions with

the respective ROSA distributions shows that the method

provides extensive information about the pulse structure.

ROSA relies on the fact that FEL pulses are short, narrow-

bandwidth, and follow Gaussian statistics. It is statistical in

nature and is based on the assumption that FEL hardware

provides a reproducible electron beam moving along a stable

orbit. Otherwise, discrimination of outlier events should

take place.

In comparison with the conventional method of fitting the

second-order spectral correlation function with a theoretical

form-factor (Lutman et al., 2012), ROSA does not require an

initial assumption on the power profile of the SASE pulse. On

the contrary, it yields additional information about the time–

frequency distribution of SASE radiation. By exploiting the

full information contained in the correlation function it is

possible to analyze the shape of radiation pulse at each photon

energy which allows, for instance, to diagnose the presence of

sub-pulses at each photon energy.

We applied ROSA to an ensemble of SASE spectra

measured at both SASE3 and SASE2 undulator lines at the

European XFEL. We were able to diagnose the presence of

a strong quadratic and linear frequency chirps in the X-ray

pulses. In addition, the method provided a lower estimate on

the total pulse duration. Due to this, ROSA may facilitate the

analysis of experimental results, radiation diagnostics while

performing a certain class of pump–probe experiments with

small delay and can be used as an objective function to

provide slow feedback to the accelerator.

The minimum pulse duration measureable by spectrum-

based methods is limited to several coherence lengths, which

almost certainly would exceed the temporal resolution of a

transverse deflecting structure, in particular at high electron

energies, making the two approaches complementary.

Our results suggest that the analysis of ROSA is more

informative than fitting of the egg2 function, especially in the

presence of non-linear frequency chirps. Due to the successful

application to the real experimental data we thus conclude

that ROSA may be a valuable tool for diagnostics of XFEL

operation and ‘beam-by-design’ applications.
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Figure 9
Result of processing the hard X-ray experimental spectra with the ROSA
algorithm.



APPENDIX A
Time–frequency representations and Wigner
distribution

In order to characterize radiation pulses in both the temporal

and the frequency domain, we consider a generalized class of

time–frequency signal representations that was introduced by

Cohen (Cohen, 1966, 1995),

Cðt; !Þ ¼
1

4�2

ZZZ1
�1

dð�!Þ dð�tÞ du �ðu;�tÞ

� �ð�!;�tÞ expði�!t þ i�t!� i�!uÞ

¼
1

4�2

ZZZ1
�1

dð�!Þ dð�tÞ du e��ðu;�!Þ
� �ð�!;�tÞ expði�!t þ i�t!� i�!uÞ; ð23Þ

where �(�!, �t) is a two-dimensional function called kernel

(Claasen & Mecklenbrauker, 1980) and determines the

particular representation in the class.

The Wigner distribution is one of the time–frequency

representations with kernel �(�!, �t) = 1, useful to describe

properties of FEL radiation,

Wðt; !Þ ¼
1

2�

Z1
�1

dð�tÞ �ðt;�tÞ expði!�tÞ

¼

Z1
�1

dð�!Þ e��ð!;�!Þ expð�i�!tÞ: ð24Þ

Any representation of Cohen class can be expressed in terms

of the Wigner distribution,

Cðt; !Þ ¼
1

2�

Z Z1
�1

dð�!Þ dð�tÞ �ð�t;�!ÞWðt ��t; !��!Þ

�
1

2�
�ð�t;�!Þ � �Wðt ��t; !��!Þ; ð25Þ

where

�ðt; !Þ ¼
1

2�

Z Z1
�1

dð�!Þ dð�tÞ�ð�t;�!Þ expð�i�!t þ i�t!Þ

ð26Þ

is just a different representation of Cohen kernel via its two-

dimensional Fourier transform. The symbol ** denotes a two-

dimensional convolution operator.

The spectrogram is another and much more known Cohen

class function that facilitates time–frequency analysis,

Sðt; !Þ ¼
��� 1ffiffiffiffiffiffi

2�
p

Z1
�1

d� Eð�Þ hð� � tÞ expði!�Þ
���2* +
: ð27Þ

It requires introduction of a window function h(t) in the time

and frequency domain,

Hð!Þ ¼
1ffiffiffiffiffiffi
2�
p

Z1
�1

dt hðtÞ expði!�Þ: ð28Þ

The kernel function of the spectrogram is more complicated,

�ð�!;�tÞ ¼

Z1
�1

du hðu��t=2Þ h�ðuþ�t=2Þ

� expði�!uÞ: ð29Þ

From equations (25) and (26) it follows that the spectrogram

of the signal f can be obtained by convolving the Wigner

distribution Wf of that signal with the Wigner distribution Wh

of the spectrogram window function h,

Sf ðt; !Þ ¼ Wf ðt; !Þ � �Whð�t; !Þ; ð30Þ

in other words the spectrogram is, in a way, a ‘smeared’ version

of the Wigner distribution. In contrast to a Wigner distribu-

tion, a spectrogram is non-negative everywhere, but it fails to

yield radiation and spectral powers via its marginal distribu-

tions, as they are also ‘smeared’ by being convolved with

window functions,

Z1
�1

Sðt; !Þ dð!Þ¼


IðtÞ
�
� jhð�tÞj2;

1

2�

Z1
�1

Sðt; !Þ dðtÞ¼

eIIð!Þ� � jHð!Þj2:

ð31Þ

Marginal distributions of the Wigner function (projections on

time and frequency domains) are the radiation power and

spectral power, respectively,



IðtÞ
�
¼

Z1
�1

Wðt; !Þ d!;


eIIð!Þ� ¼ Z1
�1

Wðt; !Þ dt:

ð32Þ

Its first conditional moments of time and frequency are the

instantaneous frequency and group delay,

h!it ¼
1


IðtÞ
� Z1
�1

!Wðt; !Þ d!;

h t i! ¼
1
eIIð!Þ�

Z1
�1

tWðt; !Þ dt:

ð33Þ

The conditional spreads of the Wigner distribution – local

averages in frequency and time – can also be introduced as

instantaneous bandwidth �! | t and group duration �t |!,
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�2
!jt ¼ h!

2
it � h!i

2
t ¼

1

IðtÞ

 � Z1

�1

!� h!itð Þ
2
Wðt; !Þ d!;

ð34Þ

�2
tj! ¼ ht

2
i! � hti

2
! ¼

1
eIIð!Þ�
Z1
�1

t � hti!ð Þ
2
Wðt; !Þ dt;

alas, they may become negative, and hence cannot always be

properly interpreted if no ensemble averaging was carried out

(Cohen, 1995, p. 120).

A Wigner distribution of a single chirped SASE pulse with

marginal distributions, first and second moments is illustrated

in Fig. 10. The manifestation of the Wigner distribution

interference terms is also visible as spots around the pulse

without marginal distributions.

For comparison, Wigner distributions of the same pulse

without chirp (left subfigure) and a coherent pulse with a

Gaussian profile and identical chirp (right subfigure) are

provided in Fig. 11.

It is worth noting that the instantaneous bandwidth of

the SASE radiation is basically the FEL amplifier bandwidth

determined by the electron beam properties and undulator

parameters. It relates to the coherence time – temporal spike

duration – at saturation as

�t ’

ffiffiffi
�
p

�!jt
’

ffiffiffi
�
p

�h!it
: ð35Þ

As discussed by Krinsky & Huang (2003), in the presence of

the frequency chirp u = �!/�t in a sufficiently long pulse, the

group duration is related to the instantaneous bandwidth as

�tj! ¼ �!jt=u; ð36Þ

so the spectral coherence range, and hence the spectrum spike

width at certain frequency, is determined by the effective

duration of the pulse with given frequency components,
�! ’

ffiffiffi
�
p

�tj!

: ð37Þ

One can see that only a group duration, not the entire pulse

duration, is imprinted in SASE spectra and can be extracted

by analysis of the spectral correlation function, unless addi-

tional information on the pulse chirp is available.

APPENDIX B
Stationarity, ergodicity and SASE radiation

The generation of SASE pulses starts the shot noise in the

electron beam and yields quasi-monochromatic radiation

(Saldin et al., 2010). From a mathematical standpoint, the

electric field in the pulse can be described as a random process.

Let us consider a random (complex scalar) process a. We

denote with ka(t) the kth realization of the process, which is a

function of the time t. If one fixes t = tm, a(tm) is a random

variable, and ka(tm) one of its realizations, in our case a

complex number. We introduce the ensemble average of the

process a as
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Figure 10
Time–frequency analysis terminology illustrated on a single-shot Wigner
distribution of a modeled SASE pulse with negative frequency chirp u.
The Wigner distribution for a bandwidth-limited pulse of Gaussian shape
is provided in the inset.

Figure 11
Single-shot Wigner distributions for, otherwise temporally coherent,
Gaussian pulse with identical chirp and the same SASE pulse as in Fig. 10
without frequency chirp.



aðtÞ

 �

�
1

N

XN

k¼ 1

kaðtÞ; ð38Þ

where the limit for a large number of samples N�!1 is

usually taken. We define the time average of the kth realiza-

tion of a(t) over the finite time interval T as

kaðtÞ
� 	

T
�

1

T

ZtþT=2

t�T=2

kaðt 0Þ dt 0: ð39Þ

The full time-average of ka is defined in a natural way as

ka ¼ lim
T!1

kaðtÞ
� 	

T
: ð40Þ

The process a is fully determined whenever we give the joint

probability distributions

pa;m � pa;mða1; . . . am; t1; . . . tmÞ ð41Þ

for all integer values m. For any given m, pa,m is the probability

density of finding, upon measurement of a generic realization,

the complex values a1, . . . , am at times t1, . . . , tm, respectively.

This specification allows calculating joint moments. For

example, for the case for m = 1, which gives the ensemble

average, one has

aðtÞ

 �

�
1

N

XN

k¼ 1

kaðtÞ ¼

Z
dt1 pa;1 a1; t1ð Þ a1; ð42Þ

while one of the joint moments for m = 2 gives the first-order

temporal correlation function

aðt1Þ a
�ðt2Þ


 �
¼

Z
dt1 dt2 pa;2 a1; a2; t1; t2ð Þ a1a�2 : ð43Þ

In the following we find it useful to describe the times t1, . . . , tm
as �tt þ �t1; . . . ; �tt þ �tm, that is in terms of a common time �tt and

dispacements �t1, . . . , �tm, and changing likewise the integra-

tion variables in the various joint moments. This means that, in

general, pa;m = pa;mða1 . . . am; �tt þ �t1; . . . ; �tt þ �tm). Note that

here we introduced one extra degree of freedom in the defi-

nitions that can be used to adjust notations. For example, for

m = 2 we have t1 = �tt þ �t1, t2 = �tt þ �t2 and we can decide to set

�t1 = 0, �t2 = �t, or �t1 = ��t/2, �t2 = �t/2, a choice to be made

depending on notational convenience. In this section we will

set �t1� 0 so that pa;m = pa;mða1; . . . ; am;�tt; �tt þ �t2; . . . ; �tt þ �tmÞ.

We recall that stochastic processes can be separated into

several broad classes (Mandel & Wolf, 1995; Goodman,

2000). A strict-sense stationary random process is defined

by the requirement that any joint probability distribution

does not depend on �tt. This means that pa;m =

pa;mða1; . . . ; am; 0; �t2; . . . ; �tmÞ = pa;mða1 . . . am; �tt; �tt þ �t2; . . . ;
�tt þ �tmÞ for any value of m. In a more narrowly defined sense,

we can require stationarity only up to the jth order, requiring

that only the joint moments up to m = j are independent of �tt.
In the case j = 2, the process is called wide-sense stationary, and

the moments hað �tt Þi and hað �tt Þ a�ð �tt þ�tÞi are independent of
�tt. It is also straightforward to define a subclass of strict-sense

stationary processes, known as ergodic, requiring that any

average calculated statistically over the ensemble must be

equal to the same average calculated over any fixed kth

realization in time. For example, for m = 2,

hað �tt Þi ¼ ka;

hað �tt Þ a�ð �tt þ�tÞi ¼ kað �tt Þk a�ð �tt þ�tÞ;

hað �tt Þ að �tt þ�tÞi ¼ kað �tt Þk að �tt þ�tÞ:

ð44Þ

From these definitions it follows that any radiation field

described by a stationary random process has no beginning

nor end, which strictly speaking is not physical. To fix this

issue, we can introduce the concept of quasi-stationarity (in

strict or wide sense) as well as of quasi-ergodicity by relaxing

the condition of independence from �tt to a ‘slow’ dependence.

The definition of the heuristic term ‘slow’ can be made more

precise in terms of derivatives of probability density functions.

Given pa;m = pa;mða1; . . . ; am; �tt; �tt þ �t2; . . . ; �tt þ �tmÞ we require

that

@pa;m

@�tt

���� ���� 	 @pa;m

@ð�tjÞ

�����
����� for j ¼ 2; . . . ;m: ð45Þ

Since here we are particularly interested in the case m = 2, the

condition above codifies a slowly varying dependence on �tt
compared with the coherence time of the pulse, related to

‘how fast’ pa,m changes with respect to �t2 = �t. An important

property of quasi-ergodic processes is that their ensemble-

averaged temporal correlation function can factorize in factors

depending separately on �t and �tt, with a slow dependence on
�tt with respect to �t and the coherence time of the pulse.

Similarly, the Wigner distribution can be factorized in factors

depending on ! and �tt, i.e. hað �tt Þ a�ð �tt þ�tÞi = f ð �tt Þ gð�tÞ. The

Wigner distribution is therefore non-negative (Flandrin,

1986), which is extremely useful for a time–frequency analysis

(Janssen & Claasen, 1985), because it allows one to interpret it

as a positive probability distribution in a classical phase-space.

Strictly speaking, SASE FEL radiation in terms of its

electric field as a function of time in the time domain or

as a function of frequency in the frequency domain can be

categorized within the hierarchy discussed above as a non-

stationary process.6 However, SASE FEL radiation exhibits

an important property that distinguishes it from fully random

non-stationary processes. Since ensemble-averaged radiation

intensity, coherence and instantaneous frequency depend on

the electron beam properties (beam current, emittance,

average electron energy within coherence time, etc.) and since

the electron beam in FELs is usually reproducible on a shot-

to-shot basis within the ensemble of data, the only random

process involved in the generation of the SASE pulse is the

intrinsic shot noise in the electron beam. This means that the

various statistical averages of radiation quantities, and in

particular the Wigner distribution, represent the properties of

a typical radiation pulse upon convergence over any chosen

subset of the entire ensemble. For instance, Wigner distribu-
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6 Although the recurring generation of SASE radiation in FEL multiple times
per second is a non-stationary process, it should not be confused with the
periodic non-stationary process discussed by Ogura (1971) and Gardner &
Franks (1975).



tions, averaged over the events 1 to k and that averaged over

the events k + 1 to 2k will be the same at large k. The situation

is illustrated in Fig. 12 (lower left plot), which depicts the case

of a SASE pulse duration comparable with the coherence

time. The temporal correlation function (and the Wigner

function) can no longer be factorized, in factors depending on

�t and �tt separately, but at variance with Fig. 12 (upper left

plot) the dependence on �tt is independent of the subset of the

ensemble taken when performing statistical averages. Then, in

the limit for a large number of longitudinal statistically inde-

pendent modes, and of a slower and slower variation of the

electron beam parameters over the number of these modes,

the process becomes quasi-ergodic according to our previous

definition.

With examples from Flandrin (1986) in mind, we find

empirically that the ensemble-averaged Wigner distribution of

SASE FEL radiation pulses converges towards non-negative

values (for an increasing number of realizations in ensemble)

even when the Wigner distribution is not separable and not

delineated in the time–frequency representation plane. This

convergence is illustrated in Figs. 13 and 14 where we present

Wigner distributions of SASE FEL pulses, simulated with

GENESIS code (Reiche, 1999) and of their imitation, modeled

with an algorithm presented by Pfeifer et al. (2010). In both

cases the radiation has statistical properties of a Gaussian

random process (Mandel & Wolf, 1995, Section 3.1.4).

Postprocessing is carried out using the OCELOT package

(Ocelot, 2020).

APPENDIX C
ROSA applicability and robustness

In the derivation of the ROSA algorithm, we made certain

assumptions about the radiation properties. Below we will

discuss how the deviation of the pulse parameters in the

ensemble affects the reconstruction results.

(i) Generally, accelerator diagnostics should be used to filter

drifts and jitters of the radiation properties that are not related

to the SASE process. Otherwise, long-range spectral correla-

tions beyond the spectral spike width will appear and manifest
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Figure 12
Illustration of statistical processes arranged according to whether their
average depends on the choice of realization subset or the shift of time.

Figure 13
Colormap representations of the Wigner distribution of simulated SASE
FEL radiation with their marginal distributions when averaged over an
ensemble of 1 (upper left subfigure), 10 (upper right), 100 (lower left) and
1000 (lower right) statistically independent realizations. Note the
significant non-linear frequency chirp in the pulse, visible upon ensemble
averaging.

Figure 14
Wigner distribution of imitated SASE FEL radiation for two ‘flat-top’
pulses with different frequencies (left subfigures) and for a continuous
pulse with instantaneous frequency varying in time sinusoidally (right
subfigures). The distributions averaged over an ensemble of one and
10 000 statistically independent realizations are presented on the top and
middle subfigures, respectively. The amplitude of the cross terms is
reduced significantly upon averaging over an ensemble. The bottom
subfigures illustrate the single-shot spectrograms – the result of Wigner
distribution convolution with that of a window function, provided in
the inset.



themselves as a constant pedestal under the non-normalized

second-order correlation function je��ð!;�!Þj2. This pedestal

upon Fourier transform will yield a pronounced peak at

R(t = 0,!), as depicted in Fig. 15(c). However, by subtracting

the pedestal in je��ð!;�!Þj2, one can recover a jitter-free

reconstruction, see Fig. 15(d).

(ii) Significant electron energy jitter will cause jitter of the

spectrum position. If it is not accounted for, the reconstruction

R(t,!) will be effectively smeared along the ! direction, as

illustrated in Fig. 16.

(iii) The resolution of the spectrometer should be sufficient

to visualize the pulse structure on the time scales of interest.

Otherwise an underestimation of the group duration will take

place, as illustrated in Fig. 17. Empirically we find that, in

order to study pulses with group durations of �t|! , the reso-

lution of the spectrometer in eV should ideally be better than

1.5/�t|! [fs] FWHM. Decrease in the transverse coherence of

the radiation pulse will have a similar effect, as it also affects

fluctuations of the radiation power (Saldin et al., 2010). The

effect of limited coherence in a plane orthogonal to the

dispersive direction can be mitigated by reducing the size of

the spectrometer image integration region.

(iv) The spectrometer output should be representative of

the actual spectrum and not be affected, for instance, by the

spatial chirp of the SASE radiation (i.e. the head of the elec-

tron beam emits in a different direction than the tail). If such a

chirp is present, it can be diagnosed by introducing apertures

upstream of the spectrometer.

Owing to the properties of Gaussian statistics [see equation

(9)], the value of the normalized second-order correlation

function defined in equation (5),egg2ð!;�!Þ, at �! = 0 should

be ideally equal to 2 (see, for example, Saldin et al., 2010).

However, in the presence of additional radiation fluctua-

tions or their suppression due to poor spatial coherence or

insufficient resolving power of the monochromator, this value

may be higher or lower, respectively.

Lutman et al. (2012) suggested to treat the value ofegg2ð!;�! ¼ 0Þ as a quality factor of the potential reconstruc-

tion at a given frequency. In Fig. 18 we show how this value is

affected upon introducing various detrimental effects.

APPENDIX D
Analogy with the Wiener–Khinchin theorem

One can see that the ROSA evaluation formula

Rðt; !Þ ¼

Z1
�1

dð�!Þ e��ð!;�!Þ��� ���2expð�i�!tÞ

is very similar to the formulation of the Wiener–Khinchin

theorem
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Figure 16
Spectrogram autocorrelation function upon adding the electron energy
jitter corresponding to jitter of radiation spectra with r.m.s. of (a) 0.5 eV
and (b) 1 eV.

Figure 15
Spectrogram autocorrelation function upon adding the pulse energy jitter
of (a) 0%, (b) 50%, (c) 100% and (d) 100% after pedestal subtraction in
the correlation function. Hereinafter, colored lines in the top subplots
show the corresponding line-offs of the reconstruction at different photon
energies.

Figure 17
Spectrogram autocorrelation function upon simulating limited spectro-
meter resolution imitated by convolving spectra with Gaussian instru-
mental function of (a) 0.03 eV, (b) 0.07 eV, (c) 0.2 eV and (d) 0.5 eV
FWHM bandwidth.



heIIð!Þi ¼ 1

2�

Z1
�1

dt �ð�tÞ expði!tÞ:

This theorem states that the statistical autocorrelation func-

tion of a stationary random process in the time domain and the

ensemble-averaged spectral density, i.e. power spectrum, of

that process forms a Fourier transform pair. The Wiener–

Khinchin theorem plays a central role in Fourier-transform

spectroscopy and allows one to calculate the radiation spectral

density after directly measuring the amplitude autocorrelation

function of the radiation in the time domain.

In contrast, we calculate the square of the statistical auto-

correlation function of a non-stationary process in the

frequency domain and carry out the Fourier transform to the

time domain in order to obtain the reconstruction function

R(t,!).

Should the considered process be quasistationary, the

function R would be factorizable, and the autocorrelation of

its ensemble-averaged power profile could be reconstructed

with equation (21). The latter is simply the combination of the

autocorrelation theorem and the Wiener–Khinchin theorem

applied in the opposite domain.

In Fourier-transform spectroscopy the time autocorrelation

function � is obtained by carrying an average over time, as the

investigated process is assumed to be ergodic. This averaging

naturally leads to the loss of the dependence of the function �
on time, so one obtains the statistical autocorrelation function

of time delay �(�t) over which the Fourier transform is later

performed.

In our case, the frequency autocorrelation functione��ð!;�!Þ is calculated via averaging over an ensemble of

single-shot spectra. Such averaging is justified by the statistical

properties of the SASE radiation, as discussed in Appendix B.

The dependence on both central frequency ! and frequency

difference �! remains, yielding additional information upon

the Fourier transform over �!.
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