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Increases in X-ray brightness from synchrotron light sources lead to a

requirement for higher frame rates from hybrid pixel array detectors (HPADs),

while also favoring charge integration over photon counting. However, transfer

of the full uncompressed data will begin to constrain detector design, as well as

limit the achievable continuous frame rate. Here a data compression scheme

that is easy to implement in a HPAD’s application-specific integrated circuit

(ASIC) is described, and how different degrees of compression affect image

quality in ptychography, a commonly employed coherent imaging method, is

examined. Using adaptive encoding quantization, it is shown in simulations that

one can digitize signals up to 16383 photons per pixel (corresponding to 14 bits

of information) using only 8 or 9 bits for data transfer, with negligible effect on

the reconstructed image.

1. Introduction

The brightness of synchrotron light sources for X-ray experi-

ments has been increasing dramatically over the past decades,

with diffraction-limited storage rings beginning to deliver

the next advance (Eriksson et al., 2014). Many light source

experiments require hybrid pixel array detectors (HPADs),

where a semiconductor sensor is paired with an application-

specific integrated circuit (ASIC) to record a two-dimensional

intensity distribution. These HPADs can be used for direct

image recording when sufficient geometric image magnifica-

tion is used (Vagovič et al., 2013; Blackhall et al., 2014), but

they are more commonly used to record far-field diffraction

intensities in crystallography, in photon correlation spectro-

scopy, and in coherent diffraction imaging methods such

as ptychography.

When an X-ray photon of energy E is absorbed in an

HPAD’s sensor, an electron–hole separation charge q = E=W

is generated, where W = 3.65 eV in the case of a silicon sensor

(Fraser et al., 1994). In a photon-counting detector, this charge

is collected and a photon is counted by the ASIC when this

charge exceeds a threshold value which is some fraction of q.

However, it takes a finite time to collect this charge due to the

transport properties of the sensor, leading to a ‘dead-time’

tdead before another photon can be successfully detected. For

this reason, photon-detecting HPADs usually have a per-pixel

count rate limit of about 106 photons s�1 (Trueb et al., 2012).

This is begining to limit their application with increasingly

bright X-ray sources, where many photons arrive within

specific time intervals due to the electron bunch structure

in the storage ring. In contrast, charge-integrating detectors

become favored as X-ray brightness increases because they do
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not have an intrinsic limit to photon arrival rate, even in

the case of X-ray free-electron lasers (XFELs) where all the

photons might arrive within 20 fs. In these detectors, a total

charge Q = nq is collected from n photons during an acqui-

sition time tframe, leading to a voltage V = Q=C over a collec-

tion capacitance C. This voltage then leads to an analog

detection unit (ADU) of ADU = aV, where a indicates the

calibration of an analog-to-digital converter (ADC). Thus,

in the end, the digitized signal per acquisition time tframe is

given by

ADU ¼ aV ¼ a
Q

C
¼ n

aE

WC
: ð1Þ

In the following, we will assume that aE=ðWCÞ = 1 for

simplification.

In a charge-integrating HPAD, one must periodically inte-

grate the collected charge Q and either store that information

on the ASIC or transfer it off the detector immediately

(Graafsma et al., 2016). Some HPADs developed for XFEL

applications include per-pixel capacitors on the ASIC to store

the charge Q for up to eight frames at a burst frame rate up to

10 MHz (Philipp et al., 2016), or 352 frames at a burst frame

rate of 6.5 MHz (Henrich et al., 2011), followed by digitization

of the charge on each capacitor and subsequent digital transfer

of the detected frames. However, the maximum continuous

frame rate in these detectors is no higher than 16 kHz

(Allahgholi et al., 2019), or 20 kHz as anticipated by near-term

extension of the ePix detectors (Blaj et al., 2016). The common

bottleneck limiting frame rate in charge-integrating HPADs

is data bandwidth (Graafsma et al., 2016), and it can limit

bandwidth in photon-counting detectors as well. Some

detectors such as the EIGER can be configured to store data

in different bit depths (Dinapoli et al., 2011). At low incident

fluence into all detector pixels, one can switch to a mode with

a lower bit depth to increase the frame rate. However, this

does not solve the problem at high fluence, or for situations

where some pixels (for example, near the center of coherent

diffraction patterns) see high fluence while others do not.

Another way to reduce data bandwidth requirements is to

design the ASIC with per-pixel analog-to-digital conversion

followed by lossy compression. Immediate digitization also

has the advantage of reducing signal distortion, analog noise

addition, and interference between pixels. However, one must

then consider how lossy compression affects the information

obtained from an experiment. This is what we consider for the

case of X-ray ptychographic imaging.

2. X-ray ptychography

Ptychography is an imaging method where a spatially limited

coherent beam (the probe) illuminates a series of overlapping

positions on an extended specimen, with far-field diffraction

patterns recorded at each probe position (Hoppe, 1969a,b).

An iterative algorithm (Faulkner & Rodenburg, 2004) is then

used to recover the phase in the set of diffraction patterns, and

reconstruct the magnitude and phase of the exit wave leaving

the specimen with a spatial resolution limited not by the size of

the probe beam but by the largest diffraction angle at which

significant scattering is recorded and phased. Following its

first demonstration in X-ray imaging (Rodenburg et al., 2007),

X-ray ptychography has been adopted widely, achieving sub-

10 nm spatial resolution (Shapiro et al., 2014) and being used

for 3D imaging via ptychographic tomography (Dierolf et

al., 2010a). Reconstruction algorithms have been extended

(Thibault & Menzel, 2013) to allow the probe to be scanned

rapidly across the specimen (Pelz et al., 2014). However, the

frame rate of currently available X-ray HPADs sets a limit to

high-throughput imaging demonstrations (Deng et al., 2019),

so that further advances in throughput will require frame rates

well above what is currently available (Jacobsen et al., 2017).

It is desirable to limit the photon fluence (cumulative

number of photons incident per area on the specimen) both to

speed up imaging time and also to minimize the X-ray radia-

tion dose deposited in the specimen. At expected signals of N

photons per detector pixel, one will have fluctuations between

different measurements of the same intensity due to Poisson

statistics with a standard deviation of
ffiffiffiffi
N
p

. The signal-to-noise

ratio is then expected to be proportional to N=
ffiffiffiffi
N
p

=
ffiffiffiffi
N
p

. A

number of studies have addressed the performance of iterative

phase retrieval algorithms at these low photon exposures

(Huang et al., 2009; Schropp & Schroer, 2010; Godard et al.,

2012; Jahn et al., 2017; Hagemann & Salditt, 2017; Du et al.,

2020). These studies have generally shown that the achievable

spatial resolution is consistent with what one would expect

based on the fluence, and the specimen’s intrinsic contrast. In

addition, no scattering-angle-limiting and inefficient optics are

placed between the specimen and the detector in ptycho-

graphy, again minimizing the radiation dose associated with

imaging at a given spatial resolution and specimen contrast.

3. Ptychography with lossy compressed data

Our goal is to understand how varying degrees of lossy

data compression affect the quality of ptychographic image

reconstructions. While our work is motivated by an interest

in incorporating lossy data compression on the ASIC of an

HPAD, lossy data compression has been demonstrated in

X-ray ptychography for two different purposes: decreasing

the disk storage space of a dataset (Loetgering et al., 2017),

and increasing the number of diffraction patterns (detector

frames) that can be processed within the memory limit of a

graphical processing unit (GPU) (Wakonig et al., 2020). In the

first example of decreasing disk storage space, two methods

were tested: the use of singular value decomposition

compression (SVDC) on the set of obtained diffraction

patterns, and storing sums from non-contiguous pixels in an

approach called constrained pixel sum compression (CPSC).

These approaches showed a slight loss of spatial resolution

when lossy SVDC was used, and a larger decrease in spatial

resolution when CPSC was used (Loetgering et al., 2017).

In the second case, the software package PtychoShelves

(Wakonig et al., 2020) uses a scheme where the actual value Ni

for the signal at pixel i is encoded via a quantization step (QS)

into a compressed value Mi of
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Mi ¼ round

ffiffiffiffiffi
Ni

p

QS

� �
; ð2Þ

so as to use the Gaussian scaling that approximates Poisson

statistics. With QS = 0.5, this means that Ni = 16320 is stored as

Mi = 255, compressing nearly 14 bits of raw signal dynamic

range into an 8 bit integer. One can then go from the encoded

value Mi back to a decoded value N 0i using

N 0i ¼ roundðMi QSÞ2; ð3Þ

which does not exactly reproduce the results of Fig. 10 of

Wakonig et al. (2020), though the results of that figure and of

equation (3) are both within
ffiffiffiffiffi
Ni

p
of the correct value Ni so

that they both reproduce the signal within one standard

deviation of the Poisson distribution. To test the effects

of lossy compression, they simulated the generation of a

ptychographic dataset with Poisson-distributed signal-depen-

dent noise, compressed it with varying values of QS, and

evaluated the resulting reconstructed image using two metrics.

The first was the signal-to-noise ratio calculated using the

ground truth object; this gave a signal-to-noise ratio that

stayed within 5% of the uncompressed value with QS � 0.5,

and within 20% of the uncompressed value with QS� 1.0. The

second was the achieved spatial resolution of the recon-

structed image. They calculated the Fourier ring correlation

(FRC) as a function of scattering angle to judge the spatial

resolution based on a half-bit FRC threshold criterion (van

Heel & Schatz, 2005). They found essentially no change in

the spatial resolution of the reconstructed image with values

of QS � 1.9.

We wished to consider lossy compression schemes that can

be implemented on a per-pixel basis. By doing so, one reduces

the volume of data that must be channeled per pixel to the

data output region of the ASIC in an HPAD, both increasing

the aggregate data bandwidth of the ASIC and also reducing

wiring demands on the ASIC layout. Even if one uses further

compression downstream of the individual pixel level within

the ASIC, or off-ASIC compression such as in a field-

programmable gate array (FPGA), compression at the origin

of per-pixel data will increase the

throughput of such subsequent data

handling elements (Hammer et al.,

2020). While the lossy compression

scheme of equation (2) can be written

with a simple mathematical formula, it is

less straightforward to implement on a

per-pixel basis in an ASIC due to the

use of square root and division opera-

tions. [One example (Suresh et al., 2013)

of an on-chip implementation of a

floating point square root calculation

involves an area of 118 mm2 in a 65 nm

node process, which is comparable with

the entire area of one pixel in many

HPADs and thus clearly impractical to

implement on a per-pixel basis.] The

method of lossy SVDC is even more

difficult to implement on the ASIC, in part because it requires

access to the entire dataset before compression can take place.

The constrained pixel sum compression (CPSC) method is

more amenable to implementation on a HPAD ASIC, but it

showed a more significant degradation in spatial resolution.

We therefore consider an alternative lossy compression

scheme that recognizes the intrinsic signal-dependent Poisson

error as equation (2) does, but which is easier to incorporate in

simple per-pixel ASIC circuitry. It involves three steps that are

easy to carry out in integer mathematics: (i) comparison with a

2integer boundary value to determine an integer range value r,

(ii) division by a 2integer number Dr which is a bitwise shift

unique to each count region as shown in Fig. 1, and (iii) an

addition of a 2integer offset number Fr. The formula for lossy

encoding an actual count Ni to an encoded value Mi is

Mi ¼ floor
Ni

Dr

; 1

� �
þ Fr ð4Þ

where the floorðx; 1Þ function truncates any non-integer result

of the division of x, as is the case with division implemented

as a bitwise shift. The formula for decoding Mi to a lossy

recovered value N 0i is

N 0i ¼ Mi � Frð ÞDr ð5Þ

where multiplication by Dr can again be done using a bitwise

shift (though since this decoding will be done on the computer

that processes the data, rather than on the detector ASIC that

encodes the data, this multiplication can alternatively be done

as a floating point operation). This encoding logic is expected

to occupy a 25 mm� 25 mm space for each pixel with pixel size

of around 100 mm in 65 nm technology (Hammer et al., 2020).

An example of an implementation of this approach is shown

in Table 1, where the values of Dr and Fr used are those of

scheme (a) shown in Fig. 1. As can be seen, this produces gaps

in the sequence of Mi, but it allows a 14 bit integer (214 � 1 =

16383) to be stored within a 9 bit integer (29 � 1 = 511) with

an error that never exceeds one standard deviation.

In order to test the effects of increasing degrees of lossy

compression in ptychographic image reconstruction, we show
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Figure 1
Three different lossy compression schemes (a), (b), and (c) which all use the approach of
equation (4) though with different values of Dr and Fr. Scheme (a) is also detailed in Table 1.



in Fig. 1 the above scheme (a), but also schemes (b) and (c)

which provide increasing degrees of lossy data compression

through larger values of Dr. We also show in Fig. 2 the

decoded values N 0i for photon numbers Ni for our lossy

compression schemes (a), (b), and (c), and also for the scheme

of equations (2) and (3) with QS = 0.5. As can be seen, for

the original counts up to 64 counts, all the encoding methods

except for scheme (c) deliver decoded values N 0i that are

within
ffiffiffiffiffi
Ni

p
of Ni (that is, within one standard deviation of the

original value Ni). With scheme (c), some decoded values N 0i
are slightly more than one standard deviation away from the

original value Ni .

4. Effect of lossy compression on ptychographic
imaging

As noted in Section 3 above, the effects

of the lossy ptychographic data

compression scheme of equations (2)

and (3) on ptychographic image quality

have already been studied (Wakonig et

al., 2020), showing that values of QS �

0.5 produce almost no observable

difference in image correlation, or in

spatial resolution as measured by the

1/2 bit threshold of the FRC. Here we

wish to carry out a similar test of the

effects of the lossy compression method

of equations (4) and (5) with para-

meters for schemes (a), (b), and (c) as

indicated by Fig. 1. In order to do this,

we will use as the true object a two-

dimensional phantom that has been

designed to resemble a biological cell,

and a Gaussian illumination spot (which

approximates the focal spot produced

by various types of X-ray nanofocusing optics) as shown in

Fig. 3. This phantom was developed as part of a comparison of

the fluence requirements of in-line Fresnel holography versus

far-field coherent diffraction imaging (Hagemann & Salditt,

2017), and the same phantom has been used in a more recent

comparison of the fluence requirements of both far-field and

near-field ptychography along with in-line Fresnel holography

(Du et al., 2020). Because X-ray phase is advanced rather than

retarded in materials (Larsson et al., 1924; Jacobsen, 2020), the

original phantom (Hagemann & Salditt, 2017) was modified

by taking its complex conjugate (Du et al., 2020). Within the
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Figure 2
Decoded photon count values N 0i as a function of original photon counts
Ni for various lossy encoding schemes. Schemes (a), (b), and (c) are the
main methods we test below, with all three schemes using equations (4)
and (5) with values of Dr as shown in Table 1. We also show a lossy
encoding scheme used by Wakonig et al. (2020) which uses equations (2)
and (3) with QS = 0.5, though the Wakonig scheme is not easily
implemented in per-pixel ASIC circuitry due to its use of non-integer
square root and division operations. All methods except for scheme (c)
produce decoded values N 0i that are within one standard deviation

ffiffiffiffiffi
Ni

p

of the original values Ni (indicated by the blue shaded area) for Ni up
to 64 counts, using the Poisson distribution with a mean equal to each
value of Ni.

Figure 3
Phantom cell object (a) and limited-area coherent illumination spot [(b), the ‘probe function’] used
for our simulations. The 325� 325 pixel phantom cell is the same pure-phase object used in
previous studies of the effect of changing photon fluence in different X-ray microscopy methods
(Hagemann & Salditt, 2017; Du et al., 2020). The probe function’s intensity is shown at the same
scale here, but it is in fact a 72� 72 pixel array which is scanned across the phantom, with the
boundaries of the probe array indicated by a green box. Within-‘cell’ and out-of-‘cell’ regions used
in Fig. 4 are indicated by the yellow and red boxes, respectively.

Table 1
Lossy encoding scheme for representing a photon count Ni in an encoded
value Mi using equation (4), and obtaining the decoded value N 0i using
equation (5).

The values for Dr and Fr used here are for scheme (a) shown in Fig. 1. The
error Ni �N 0i is always less than the standard deviation

ffiffiffiffiffi
Ni

p
of the Poisson

distribution, as shown in the final column. This lossy encoding scheme is
particularly easy to implement for integer operations in per-pixel ASIC
hardware.

Range Ni Dr Fr Mi N 0i Ni �N 0i ðNi �N 0i Þ=
ffiffiffiffiffi
Ni

p

1
0

1 0
0 0 0 0.00

15 15 15 0 0.00

2
16

4 16
20 16 0 0.00

63 31 60 3 0.38

3
64

8 32
40 64 0 0.00

255 63 248 7 0.44

4
256

16 64
80 256 0 0.00

1023 127 1008 15 0.47

5
1024

32 128
160 1024 0 0.00

4095 255 4064 31 0.48

6
4096

64 256
320 4096 0 0.00

16383 511 16320 63 0.49



48.2% of the pixels that comprise the phantom ‘cell’ in the

entire array, the optical modulation on the incident illumina-

tion imparts a mean phase of �’’ = 0.643 rad, a single-pixel

variance of �’ = 0.037 rad, and a bound of 0 to 1 rad (this

object phase contrast is representative of what one might have

in soft X-ray imaging; the contrast is usually lower in hard

X-ray imaging). Object variations with �’ = 0.037 happen over

length scales of a single pixel, while photon statistics also

produce variations at the single pixel level. Therefore one can

ask that the object’s phase variations become greater than or

equal to noise fluctuations by requiring

SNR ¼
�’’

�’
¼

0:643

0:037
¼ 17:4 ð6Þ

in this case. Prior studies (Du et al., 2020) have shown that one

can then estimate the required fluence from

nph ¼
SNR2

½2ð �’’Þ2�
¼

1

2ð�2
’Þ
¼ 360 photons pixel�1

ð7Þ

for this phantom’s parameters. This is in fact observed in FRC

crossing curves in simulation studies (using the exact same

phantom) of near-field holography [Fig. 4 of Hagemann &

Salditt (2017]), and both near-field holography and far-field

ptychography [Fig. 6 of Du et al. (2020)].

In order to understand the effects of lossy compression in

far-field ptychography at various fluences nph, we followed the

same approach used in a previous comparison of the fluence

dependence of a variety of coherent X-ray imaging methods

(Du et al., 2020). We assumed a finite coherent illumination

spot (the probe function) with a Gaussian distribution in both

magnitude and phase, using a standard deviation of 6 pixels

(FWHM’ 14 pixels) and a phase that varied from 0 to 0.5 rad.

While many researchers use spiral probe scans to avoid grid

artifacts (Thibault et al., 2009; Dierolf et al., 2010b), we have

modeled the use of rectangular scans which are better suited

to constant-velocity continuous scanning (Pelz et al., 2014;

Deng et al., 2015; Huang et al., 2015), and which do not display

artifacts if sufficient probe overlap is used (Bunk et al., 2008;

Huang et al., 2014). The shift between probe positions was set

to 5 pixels to provide a very high degree of overlap, which is of

particular importance at low fluence levels (Du et al., 2020).

(Even so, a slight grid artifact is present which affects some

FRC values as noted in Fig. 7.) This led to a square scan grid

with 66� 68 probe positions, with the probe embedded in a

72� 72 pixel array. Therefore at each probe position, the

appropriate 72� 72 pixel subregion of the phantom was

extracted as shown in Fig. 3, the phase modulation of the

phantom subregion was applied, and a Fourier transform was

taken to calculate the far-field diffraction intensity. We then

used a random number generator with Poisson statistics to

introduce noise into the diffraction pattern recorded at each

probe position, with this noise based on the integrated fluence

(incident photons per pixel in sample space instead of detector

space) from all probe positions touching upon a single pixel.

We could then choose to apply one of our encoding schemes to

the set of diffraction patterns, and thus evaluate ptychographic

imaging as a function of fluence for data without loss, or with

our lossy compression schemes (a), (b), or (c). We show in

Fig. 4 a set of diffraction patterns created in this way, over

a wide range of fluences, and with no

encoding versus lossy compression

scheme (a).

Having obtained sets of simulated

ptychographic scan data, we then

carried out ptychographic image

reconstruction using an approach based

on automatic differentiation to calculate

the gradient of the loss function using

Autograd. Autograd is a Python

package which differentiates standard

Python, Numpy and Scipy code

(Maclaurin et al., 2015). The same

automatic differentiation approach was

used in our previous publication (Du et

al., 2020), which instead used Tensor-

Flow as the automatic differentiation

engine, but employed the same forward

model and optimization algorithm.

In brief, we used a least squares

(LSQ) cost function to measure the

difference between the present guess

fk of the detected intensities based on

a guess of the object, versus the

‘measured’ intensities Ik of the diffrac-

tion patterns at each probe position k.

Automatic differentiation was then used

research papers

296 Panpan Huang et al. � Fast digital lossy compression J. Synchrotron Rad. (2021). 28, 292–300

Figure 4
Example diffraction patterns calculated for a single exposure of the phantom cell of Fig. 3(a), with
Poisson noise corresponding to an integrated fluence nph (photons per pixel) from the set of all
probe positions that illuminate a single pixel of the phantom. The same intensity scale in photons
per pixel in the diffraction pattern is used in all cases. The single diffraction patterns (a)–(e) are for
the probe centered on the position of the yellow box in Fig. 3(a), while diffraction pattern ( f ) is for
the probe centered outside the phantom ‘cell’ at the position of the red box in Fig. 3(a). This figure
shows how little signal is recorded at high spatial frequencies (large radii from the diffraction
pattern center) from phantom cell features, so that the preservation of low level signals in our lossy
encoding schemes is especially important.



to guide the adjustment of the object so as to minimize the

difference
P

k j
ffiffiffiffi
fk

p
�

ffiffiffiffi
Ik

p
j
2.

The LSQ cost function is frequently used for the optimi-

zation strategy. In fact, the commonly used algorithm ePIE

(Maiden & Rodenburg, 2009) is a special form of maximum

likelihood algorithms using either

LSQ or Poisson cost functions

(Godard et al., 2012). While recon-

struction with a Poisson cost function

can give sharper edge boundaries, it

can also introduce fringe-like artifacts

around the edges of sharp features,

and the formation of fringes is sensi-

tive to initial guess. Using a Poisson

cost function also has less determi-

nistic converging behavior than using

a LSQ cost function (Du et al., 2020).

Moreover, the LSQ cost function

was shown to have better numerical

robustness in the standard deviation

of the estimation (Godard et al.,

2012). Therefore, for our purposes

of testing the detrimental effect of

lossy compression on recorded

ptychographic intensities, we used

the LSQ noise model for all recon-

structions.

5. Numerical experiments

Using the simulated data sets and

reconstruction method outlined

above, we obtained reconstructed

ptychographic images over a wide

range of fluences nph ranging from 0.8

to 7855.8 photons per pixel assuming

a beam energy of 5 keV, and with

no encoding or the lossy encoding

schemes (a), (b), and (c). (At the very

lowest fluences, the maximum signal in

any given pixel is quite low so one

could use fixed 8 bit data depth with

no need for compression, but we wish

to demonstrate a lossy compression

method that will work at the higher

fluence levels required for high fidelity

imaging of low contrast features.) As

can be seen in Fig. 5, the use of lossy

encoding scheme (a) (described in

Table 1 and Fig. 1) leads to little or no

reduction in image quality, even at

very low fluences. However, by the

time one reaches the more aggressive

compression found in lossy scheme

(c), there is a noticeable affect on

image quality. In order to quantify this,

we used two metrics. The first involves defining a finite support

region S within all pixels j that contains the cell-like features in

the phantom. We then calculated the within-support mean

squared error (SMSE) of the reconstructed phase of the

object using
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Figure 5
Reconstructed ptychographic images of the phantom cell of Fig. 3 obtained at photon fluences nph

from 0.8 to 7855.8 photons pixel�1. The images in successive columns are from a simulated dataset
with no encoding (left), and then with loss encoding schemes (a), (b), and (c) in the subsequent
columns. These images were obtained using a least-squares cost function, rather than a Poisson noise
cost function, which leads to a smoothed appearance at low fluences (Du et al., 2020). Use of the lossy
encoding scheme (a) has almost no effect on reconstructed image quality, while the increasing degree
of loss provided in schemes (b) and especially (c) lead to lower quality reconstructed images at very
low fluence.



SMSE ¼
1P
ð j 2 SÞ

X
j2 S

��’ðground truthÞ � ’ðreconstructedÞ
��2:
ð8Þ

The resulting SMSE values for the images obtained using the

non-encoded ptychographic data set, as well as the lossy

encoded data, are shown in Fig. 6. As can be seen, there is very

little change in the SMSE versus fluence when using lossy

encoding schemes (a) and (b), while the more aggressive lossy

encoding scheme (c) shows a significant increase in the error

at all fluence values.

Another common metric for image evaluation is the Fourier

ring correlation (FRC), which measures the correlation in

phase of two noisy images as a function of spatial resolution

(that is, as a function of spatial frequency u in the Fourier

transform representation F of an image) (Saxton & Baume-

ister, 1982; van Heel, 1987). The maximum spatial frequency

umax corresponds to the Nyquist limit and is given by

umax ¼
1

2�p

; ð9Þ

where �p is the pixel size; the normalized spatial frequency

u0 of

u0 ¼
u

umax

ð10Þ

with a range of 0 to 1 is used in Figs. 7 and 8. The FRC is

calculated from F1 and the complex conjugate F �2 as

FRC1;2ðuiÞ ¼

P
juj ¼ ui

F1ðuÞF
�

2 ðuÞP
juj ¼ ui

F 2
1 ðuÞ

P
juj ¼ ui

F 2
2 ðuÞ

h i1=2
: ð11Þ

As noted above, an FRC-like metric involving one noisy image

and the ground truth image was used to measure the perfor-

mance of the lossy encoding-decoding scheme of equations (2)

and (3) as QS was varied (Wakonig et al., 2020). Except where

noted, we used instead two noisy images from two separately

generated Poisson-noise-included datasets, leading to image

Fourier transforms F1 and F2 so that one can use equation (11)

to obtain the FRC [the FRC and the FRC-like metric invol-

ving the ground truth image give similar trends over changes

in fluence (Du et al., 2020)]. At low spatial frequency u, two

independent reconstructed images with low fluence will have

high correlation due to the same rough outline of the feature

existing even for poor-resolution images. Since one needs

more fluence to see finer features in coherent X-ray imaging

(Huang et al., 2009; Schropp & Schroer, 2010; Godard et al.,

2012; Jahn et al., 2017; Hagemann & Salditt, 2017; Du et al.,

2020), it is common to use the crossing between the FRC and

a 1/2 bit threshold criterion (van Heel & Schatz, 2005) as a

measure of the achieved spatial resolution in an image. For the

1/2 bit threshold, we calculated the FRC between two full

images instead of two half images as described by van Heel &

Schatz, (2005). The derivation of the 1/2 bit threshold formula

used in this work is included in the supporting information. We

show here in Fig. 8 this 1/2 bit FRC crossing point as a function

of fluence for images reconstructed from the non-encoded

data, and also from images reconstructed from data with lossy

compression schemes (a), (b), and (c). As one approaches the

critical fluence of 360 photons pixel�1 estimated from equa-

tion (7), the FRC crossing point nears 1 (meaning the image

is reconstructed at the resolution of the pixel size) for the

unencoded data, and also for lossy compression schemes (a)

and (b). Again, one sees essentially no change in a metric of

reconstructed image quality with lossy encoding schemes (a)

and (b), but as with the SMSE error one does see a significant

degradation when using lossy encoding scheme (c).

6. Conclusion

Compression of ptychographic datasets is important not only

for decreasing the amount of storage space they require on

disk (Loetgering et al., 2017) or in GPU memory (Wakonig

et al., 2020) but it can also be used to decrease the band-

width required for streaming high frame rate data from a

hybrid pixel array detector (HPAD) on a limited-bandwidth

communication channel. Compression can be provided in a

FPGA attached to an ASIC, but this comes at the cost of

higher power consumption (Amara et al., 2006) and further-

more it does not offer simplification in data transfer wiring

within the ASIC as noted in Section 3. We have therefore

described lossy compression schemes that involve simple bit

shifts and additions [equations (4) and (5)], so that they can

be implemented on already-digitized data on a per-pixel basis

even given the limited circuitry area available per pixel on

a HPAD application-specific integrated circuit (ASIC). By

keeping the compression loss to a value below one standard

deviation of the Poisson distribution, we achieved a reduction

of the data size to 64% with scheme (a) and 57% with scheme

(b). With both of these schemes, the images reconstructed
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Figure 6
Error in the reconstructed ptychographic image as a function of fluence,
for both the original ptychographic dataset and for data with the lossy
encoding schemes (a), (b), and (c) applied. Shown here is the within-
support mean-squared error (SMSE) calculated using equation (8),
where the support S corresponds to the set of pixels in the phantom
(Fig. 3) that contain ‘cell’-like features. As can be seen, it is only when one
uses the more aggressive lossy encoding scheme (c) that one obtains a
noticable increase in the SMSE error, and this happens at all fluences.
Also indicated is the estimate of equation (7) for the critical fluence of
360 photons pixel�1.



from simulated ptychographic data over a wide range of

photon fluences show no degradation in reconstructed image

quality as measured by a standard mean squared error

(SMSE), and no degradation in the spatial resolution as esti-

mated using Fourier ring correlation (FRC).

This provides a potential pathway for increasing the usable

frame rate of HPADs as will be required for scaling ptycho-

graphy up to imaging larger objects, and thus exploiting the

high penetrating power of X rays.
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Figure 7
Fourier ring correlation (FRC) curves for images reconstructed from simulated ptychography
datasets with Poisson noise included. For each line color, the associated fluence nph in photons per
pixel is indicated. The horizontal axis is shown as a fraction of the normalized spatial frequency u0 of
equation (10). Each curve is labeled with the fluence of averaged incident photons per pixel. Also
shown on the plot is the 1/2-bit threshold curve, of which the crossing spatial frequency with the
FRC curve is commonly used to define the achieved spatial resolution of the reconstructed image.
The dependence of crossing in spatial frequency on fluence is shown in Fig. 8. These curves are
shown for the case of detector intensities recorded as-is (with no encoding) at upper left, and then
for the lossy compression schemes (a), (b), and (c) in successive panels. The FRC is normally
calculated from two separate instances of noisy data (van Heel, 1987) which is the case labeled
‘independent noise’ for schemes (a), (b), and (c), but we also show the case of comparison of a
reconstruction from noisy data compared with the true object in the cases labeled ‘ground truth’ for
schemes (b) and (c). This is done because there is some spurious correlation with a scan grid artifact
visible in the rise of the ‘independent noise’ FRC curves at high spatial frequency for schemes (b)
and (c).
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Figure 8
Values of the crossing point between the FRC curves of Fig. 7 and the 1/2-
bit threshold are shown here to indicate the achieved spatial resolution of
the reconstructed image. The spatial resolution shown on the vertical axis
is represented as the fraction of the Nyquist spatial frequency limit, or
normalized spatial frequency u0 of equation (10). As one approaches the
critical fluence of 360 photons pixel�1 as estimated using equation (7), the
FRC crossing from images obtained from the unencoded data approaches
u0 = 1, meaning the achieved resolution is the pixel size of the image.
Lossy compression schemes (a) and (b) produce no decrease in achieved
resolution, while scheme (c) produces a noticeable decrease in resolution.
As in Fig. 7, the results are shown for the FRC calculated from
comparisons between two independent noisy datasets, or one noisy
dataset against ground truth.
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