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A procedure to build the optical conductivity tensor that describes the full

magneto-optical response of the system from experimental measurements

is presented. Applied to the Fe L2,3-edge of a 38.85 nm Fe3O4 /SrTiO3 (001)

thin-film, it is shown that the computed polarization dependence using the

conductivity tensor is in excellent agreement with that experimentally

measured. Furthermore, the magnetic field angular dependence is discussed

using a set of fundamental spectra expanded on spherical harmonics. It is shown

that the convergence of this expansion depends on the details of the ground

state of the system in question and in particular on the valence-state spin–orbit

coupling. While a cubic expansion up to the third order explains the angular-

dependent X-ray magnetic linear dichroism of Fe3+ well, higher-order terms are

required for Fe2+ when the orbital moment is not quenched.

1. Introduction

The determination of the electronic and magnetic structure of

engineered magnetic nanostructures is essential to tailor their

properties for technological applications such as information

storage, spin transport and sensing technology. These devices

often rely on magnetic thin-films and nanostructures

comprising multiple layers, such as for instance transition

metal-oxides magnetic tunnel junctions and exchange biased

systems. X-ray magnetic dichroism spectroscopy is a powerful

tool that can provide element- and site-specific magnetic

information in heteromagnetic nanostructures (Kuiper et al.,

1993; Nunez Regueiro et al., 1995; Alders et al., 1998; Scholl

et al., 2000; Hillebrecht et al., 2001; Haverkort et al., 2004;

van der Laan, 2013; Luo et al., 2019). X-ray magnetic circular

dichroism (XMCD) can be used to determine the spin and

orbital magnetic moments using sum rules (Carra et al., 1993)

while X-ray magnetic linear dichroism (XMLD) can be used

to determine the site symmetry, anisotropic magnetic

moments and spin–orbit interaction (Lüning et al., 2003;

Csiszar et al., 2005; Arenholz et al., 2006; Finazzi et al., 2006;

van der Laan et al., 2011; Chen et al., 1992, 2010; Iga et al.,

2004). However, using dichroism experiments for magneto-

metry is far from being straightforward because it requires an

understanding of the spectral shape and magnitude of the

dichroism signal as well as its dependence on the relative

orientation of the X-ray polarization, the exchange field and

the crystallographic axes.

The aim of this work is to provide a general method to

construct and analyse dichroism effects in dipole transitions

such as at the Fe L2,3-edge in magnetite (Fe3O4). We illustrate
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the procedure to build the conductivity tensor from a few well

chosen experimental measurements describing all possible

dichroism effects at a single magnetic field orientation.

Furthermore, the angular dependence of the magnetic field is

discussed using a set of fundamental spectra expanded using

spherical harmonics which can describe the full magneto-

optical response of the system (Haverkort et al., 2010). Such

expansions have been used previously to explain the angular

dependence of XMLD (Arenholz et al., 2006, 2007; van der

Laan et al., 2008, 2011), yet the new aspect we provide in this

work is a thorough inspection of the convergence of the

expansion using a comprehensive set of XMLD data measured

on Fe3O4 in combination with theoretical calculations. Fe3O4

serves as an adequate model system: it is a ferrimagnetic

mixed-valence strongly correlated system containing two

different Fe sites where Fe3+ ions reside in tetrahedral (Td)

coordinated intersites (A sites), while both Fe2+ and Fe3+ ions

are in octahedral (Oh) coordinated intersites (B sites). This

provides us with an opportunity to study the effect of the

electronic structure on the quality of the expansion between

the orbital singlet Fe3+ and the orbital triplet Fe2+ ions.

2. Methods

2.1. Experimental

The Fe3O4 thin-film was grown on a conductive 0.1% Nb-

doped SrTiO3 (001) TiO2-terminated substrate using pulsed

laser deposition as reported by Hamed et al. (2019). The

film thickness and surface roughness were concluded to be

38.85 nm and 0.4 nm, respectively, from X-ray reflectivity

measurements (Fig. 10 of Appendix A). The Verwey transition

was observed at 114.97 � 0.29 K from the magnetization

versus temperature measurements in zero field cooling mode

with 500 Oe applied field (Fig. 11 of Appendix A). Hysteresis

measurements were also performed along the [1,0,0] direction

to inspect the saturation of the thin-film below and above the

Verwey transition (Fig. 11 of Appendix A). The largest coer-

civity is observed for the lowest temperature (Hc = 0.1 T) and

an external magnetic field of �0.25 T is required to saturate

the in-plane magnetization (see Fig. 12 of Appendix A). On

the contrary, the magnetization is not saturated along the

[0,0,1] direction with a field of H = 2 T as shown by the XMCD

measurement shown in (Fig. 13 of Appendix A).

X-ray absorption spectroscopy (XAS) measurements were

carried out on beamline I06 of Diamond Light Source, UK.

The beam spot at the sample position was estimated to be

�200 mm � 100 mm. The polarization of the beam can be

controlled using an Apple-II type undulator to produce

linearly and circularly polarized X-rays. A vector magnet set

to 1 T was used to saturate the magnetization to (nearly) any

arbitrary direction. All measurements were performed at

T = 200 K in a normal-incidence configuration, i.e. with the

incoming beam impinging at an angle of 90� with respect to

the sample surface. The energy resolution was estimated to

be �200 meV full width at half-maximum (FWHM). The

measurements were performed in total electron yield mode.

All experimental spectra were first normalized to the incident

photon flux. The spectra were then fitted using a model

consisting of two error functions to take into account the L2,3-

edge jumps. In addition, a set of Gaussian functions were used

to fit the multiplet features of the spectra (refer to Appendix B

for more details). The L2,3-edge jumps were subtracted

from the spectra and the spectra were renormalized to the

spectral area.

2.2. Computational

The data treatment and the Kramers–Kronig transforma-

tion were performed using Python. Crystal field multiplet

calculations were performed using the quantum many-body

program Quanty (Haverkort et al., 2012). The Hamiltonian we

use is of the form

H ¼ He�e þHSO þHCF þHexch: ð1Þ

The electron–electron Hamiltonian (He�e) is of the form

He�e ¼
X

k

fk F k þ
X

k

gk G k; ð2Þ

where F k ( fk) and G k (gk) are the Slater–Condon parameter

for the radial (angular operators) part of the direct and

exchange Coulomb interactions, respectively. The radial inte-

grals are obtained from atomic Hartree–Fock calculation

scaled to 70% and 80% for valence and valence-core inter-

actions, respectively, to take into account interatomic

screening and mixing effects. This is in line with works in the

literature such as those by Arenholz et al. (2006) and Pattrick

et al. (2002). This reduction is related to two effects: (i) the

80% reduction is to correct the Hartree–Fock calculations

such that they agree with atomic data, as shown by Cowan

(1981) and many others; (ii) the additional reduction to 70% is

to take into account the effects of charge transfer; in other

words, the nephelauxetic effects.

The spin–orbit Hamiltonian (HSO) is of the form

HSO ¼ �
X

i

li � si; ð3Þ

where li and si are the one electron orbital and spin operators,

respectively, and the sum over i is over all electrons. The

prefactor � is an atom-dependent constant (which is to a good

approximation material independent) and hence we used here

tabulated data for this with � = 0.052 eV for 3d orbitals and

� = 8.20 eV for 2p orbitals.

The crystal field Hamiltonian (HCF) is of the form

HCF ¼
X4

k¼ 0

Xk

m¼�k

Ak;m Ck;m �; �ð Þ; ð4Þ

where Ck, m(�,�) are the angular crystal field operators

expanded on renormalized spherical harmonics and Ak, m are

proportional to the distortion parameters used in crystal field

theory, 10Dq, Ds and Dt . In cubic symmetry we consider only

10Dq which we found to be 1.25 eV and 0.5 eV for the B and A

sites, respectively, by fitting to the XAS and XMCD spectra.

The optimized parameters used for the calculations can be

found in Tables 4, 5 and 6. Details of the ground state for the

three Fe ions in Fe3O4 are shown in Appendix C. We note that
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we have not taken into account charge transfer effects expli-

citly in our model. The mixing of iron and oxygen orbitals

gives rise to charge transfer effects in core level spectro-

scopies. It has been shown that neutral experiments on rela-

tively ionic systems map very accurately to the crystal field

multiplet model [refer to de Groot & Kotani (2008) for

example]. This is the basis of crystal field theory, where the

hybridization is effectively taken care of by the reduction of

the Slater integrals from their atomic values, i.e. an extra

reduction with respect to the 80% reduction of the Hartree–

Fock values.

Finally, the magnetic exchange Hamiltonian is given as

Hexch ¼ Jexch n � Sð Þ; ð5Þ

where S is the spin operator, n is a unit vector giving the

direction of the magnetization and Jexch is the magnitude of

the mean-field exchange interaction which we use as 90 meV

in our calculation. This value is based on previous 2p3d RIXS

measurements that showed that the spin-flip excitation is

observed at this energy [see, for example, Huang et al. (2017)

and Elnaggar et al. (2019a,b)].

3. Results and discussion

3.1. Construction of the conductivity tensor

The general XAS cross-section can be expressed by equa-

tion (6) where � is the polarization vector, Im is the imaginary

part of the equation and � is the conductivity tensor describing

the material properties (Haverkort et al., 2010),

XASDipole �ð Þ / �Im �	 � � � �½ 
: ð6Þ

The conductivity tensor is a 3� 3 matrix for a dipole transition

as shown in equation (7). The matrix elements of the

conductivity tensor are defined in equation (8) where  is the

ground state wavefunction, Tx(y) = �x(y) �rx(y) is the dipole

transition operator, H is the Hamiltonian (taking into account

the core-hole effect) and � is the Lorentzian broadening given

by the core-hole lifetime [L3 = 200 meVand L2 = 500 meV half

width at half-maximum (HWHM) (de Groot, 2005); L2 has a

larger lifetime broadening due to the Coster–Kronig Auger

decay],

� ¼
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

0
@

1
A; ð7Þ

�xy ¼  T yy
1

!�H þ i ð�=2Þ
Tx

����
���� 

� �
: ð8Þ

In the most general case, nine independent measurements

are required to fully reconstruct the conductivity tensor.

However, the crystal symmetry can simplify the conductivity

tensor by dictating the equivalence between matrix elements

or cancelling out some of the matrix elements. For a cubic

crystal system with the magnetic field aligned parallel to the

high symmetry [1,0,0] direction, only five of the nine matrix

elements are non-zero (three diagonal elements: �xx, �yy, �zz;

and two off-diagonal elements: �yz and �zy). The cubic crystal

field implies that the x, y and z directions are equivalent by

symmetry; however, if the external magnetic field is aligned to

the x axis (and consequently the magnetization), it breaks the

equivalency. For this reason, �xx will be different from �zz and

�yy . In addition, the magnetization along x induces off-diag-

onal terms �yz (�zy) leading to a scenario where an electric

field in the y(z) direction can produce an excitation in the z(y)

direction. The off-diagonal terms cannot be directly measured;

however, they can be reconstructed from linear combinations

of XAS measurements. We first focus on reconstructing the

terms �xx, �yy, �xy and �yx ; hence four independent XAS

measurements were performed for this purpose as shown

in Table 1.

The response function is a complex quantity and one needs

to compute the real part of the function. The real and the

imaginary parts of the response function are related to each

other through the Kramers–Kronig relation, which allows the

computation of the real part from the XAS measurements [see

Figs. 1(b) and 1(c)]. Linear combinations of these measure-

ments can now be created according to Table 1 to give the

matrix elements of the conductivity tensor. The four matrix

elements (�xx, �yy, �xy and �yx) are shown in Fig. 1(d). One

notices that �xx, �yy are different which results in a significant

XMLD [see Fig. 1(e)]. The off-diagonal terms �xy and �yx are

about 50 times smaller than the diagonal terms and are

roughly equal. These symmetric off-diagonal contributions are

possibly due to the presence of small non-cubic distortion in

the thin-film. In contrast to the XMLD, the XMCD is negli-

gible as can be seen in Fig. 1( f).

The same procedure can be used to reconstruct the

conductivity tensor with the magnetic field aligned to the

[0,0,1] direction from four XAS measurements. These matrix

elements are shown in Fig. 2. A striking difference can be

observed in comparison with Fig. 1(d): the off-diagonal terms

�xy and �yx are nearly an order of magnitude stronger and

are antisymmetric where �xy ’ ��yx . The off-diagonal term

differences seen are likely due to small misalignments in the

orientation of the magnetization in particular given that the

[0,0,1] direction is a magnetically hard direction and does

not saturate with 1 T (see Fig. 13 of Appendix A) in combi-

nation with the presence of small non-cubic crystal distortion

in the thin-film as we showed in earlier work (Elnaggar et al.,

2020). The antisymmetric off-diagonal elements result in a
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Table 1
Experimentally measured XAS spectra and the linear combinations
required to construct �xx, �yy, �xy and �yx matrix elements of the
conductivity tensor.

Measured Constructed

�LH jj [1, 0, 0] �xx = XASLH

�L30 jj ½
ffiffiffi
3
p
=2;�1=2; 0
 �yy = XASCL + XASCR � XASLH

�CL jj ½I=
ffiffiffi
2
p
;�I=

ffiffiffi
2
p
; 0
 �xy = 1

6 ½2
ffiffiffi
3
p

XASLH � 4
ffiffiffi
3
p

XASL30

+ ð
ffiffiffi
3
p
� 3IÞXASCR + ð

ffiffiffi
3
p
þ 3IÞXASCL]

�CL jj ½I=
ffiffiffi
2
p
; I=

ffiffiffi
2
p
; 0
 �yx = 1

6 ½2
ffiffiffi
3
p

XASLH � 4
ffiffiffi
3
p

XASL30

+ ð
ffiffiffi
3
p
þ 3IÞXASCR + ð

ffiffiffi
3
p
� 3IÞXASCL]



significant XMCD as seen in Fig. 2(c).

On the other hand, the XMLD signal

is negligible because �xx ’ �yy [refer to

Fig. 2(b)].

The full conductivity tensor can be

created by merging together the matrix

elements obtained with B || [1,0,0] and B ||

[0,0,1] as shown in Fig. 3. This procedure

assumes that the crystal field is cubic,

which is an acceptable assumption given

that the off-diagonal matrix elements

related to the non-cubic crystal field are

very small. With the full conductivity

tensor at hand, we can compute XAS for

any arbitrary polarization using equation

(6). As such, we consider the polariza-

tion dependence as it is rotated from

[1,0,0] to [0,1,0] in Fig. 4. The computed

isotropic XAS and the polarization

dependence at E = 706.4 eV (red),

707.4 eV (green), 708.4 eV (magenta)

and 709.4 eV (blue) are shown in

Figs. 4(a) and 4(b), respectively. The

measured polarization dependences at

these energies are shown in the bottom

row of Fig. 4(b) and agree very well with

the computation using the full conduc-

tivity tensor.

3.2. Magnetic field dependence

The conductivity tensor shown in

Fig. 3 gives the response function of

the system at a certain magnetic field

direction. It is of interest to find the full

magneto-optical response of the system

as it provides information about the

anisotropic magnetic spin–orbit inter-

action and magnetic moments (van der

Laan, 1998; Dhesi et al., 2001, 2002).

Symmetry operations of the crystal can

be used to relate the conductivity tensor

with different magnetic field directions.

For example, in a cubic crystal system

the conductivity tensors with the

magnetic field along x, y and z transform

into each other through a 90� rotation.

Similar symmetry arguments can be

used to relate the conductivity tensor as a function of the

magnetic field for different crystal symmetries. Haverkort et al.

showed that the conductivity tensor can be expressed as a sum

of linear independent spectra multiplied by functions

depending on the local magnetization direction as given in

equation (9) (Haverkort et al., 2010),

� �; �ð Þ ¼
X1
k¼0

Xk

m¼�k

�k;m
xx �k;m

xy �k;m
xz

�k;m
yx �k;m

yy �k;m
yz

�k;m
zx �k;m

zy �k;m
zz

0
@

1
AYk;m �; �ð Þ: ð9Þ

Here � and � define the direction of the local moment with

� being the polar angle, and � being the azimuthal angle.

Yk, m(�, �) is a spherical harmonic function and �i, j is the i, j

component of the conductivity tensor on a basis of linear

polarized light in the coordinate system of the crystal. This

expression allows one to describe the full, magnetic field

directional dependent, magneto-optical response of a system

by using only a few linear independent fundamental spectral

functions. This expression may be simplified for certain crystal

systems as we will discuss in the following.
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Figure 2
(a) Matrix elements of the conductivity tensor constructed for the Fe L2,3-edge in Fe3O4 with
B || [0,0,1]. The XMLD and XMCD measurements in this configuration are shown in panels (b) and
(c), respectively.

Figure 1
(a) Schematic of the scattering geometry. (b) Fe L2,3 XAS measurements in Fe3O4 with four
linearly independent incident polarizations as described in Table 1 with the magnetic field (B) kept
parallel to [1,0,0]. (c) The real part of the response function computed by applying a Kramers–
Kronig transformation on the XAS measurements in (b). (d) Matrix elements of the conductivity
tensor created from linear combinations of the experimental measurements while the XMLD and
XMCD measurements are shown in panels (e) and ( f ), respectively.



3.2.1. Spherical field expansion. The crystal field splitting

can in some systems be small (in comparison with other

interactions such as spin–orbit coupling in rare-earth

compounds) and the crystal symmetry can be considered to be

nearly spherical. This approximation implies that the spectral

shape modification is solely determined by the relative

orientation between the magnetization and the polarization.

Three fundamental spectra (�(0), �(1) and �(2)) connected to

the spherical harmonics Y0, 0(�,�), Y1, 0(�,�) and Y2, 0(�,�) are

required to describe the conductivity tensor with an arbitrary

magnetization direction [equation (10)],

� xyz½ 
 ¼

� 0ð Þ þ x2 � 1
3

� �
� 2ð Þ �z� 1ð Þ þ xy� 2ð Þ y� 1ð Þ þ xz� 2ð Þ

z� 1ð Þ þ xy� 2ð Þ � 0ð Þ þ y2 � 1
3

� �
� 2ð Þ �x� 1ð Þ þ yz� 2ð Þ

�y� 1ð Þ þ xz� 2ð Þ x� 1ð Þ þ yz� 2ð Þ � 0ð Þ þ z2 � 1
3

� �
� 2ð Þ

0
B@

1
CA:

ð10Þ

The three fundamental spectra of the spherical expansion,

�(0), �(1) and �(2), in Fe3O4 are shown in Fig. 5(a) and can

be used to compute XAS spectra for any orientation of the

magnetization. To evaluate the quality of the expansion, we

start by comparing the measured and the computed magnetic

field angular dependence of XMLD [IXMLD = I(�) � I(90�)]

with linear horizontal polarization where the magnetic field is

rotated from [1,0,0] to [0,0,1] [see Fig. 5(b)]. The expansion

reproduces the measured angular dependence well and only

minor discrepancies in the absolute intensities are observed.

The angular dependence in this case is given by equation (11)

where the two fundamental spectra �(0) and �(2) come into

play,

ILH �ð Þ ¼ �
0ð Þ
þ

1

3
� cos2 �ð Þ

� 	
�ð2Þ: ð11Þ

A more interesting case can be observed when the magnetic

field angular dependence is measured with the polarization

rotated 30� clockwise from the [1,0,0] direction { i.e. � ||

[cos(30�),� sin(30�), 0]} as shown in Fig. 5(c). Contrary to

the results with linear horizontally polarized light, a strong

deviation from spherical symmetry is now observed. The

expected angular dependence from the spherical field

expansion should follow equation (12); however, the spherical

field expansion completely breaks down when the polarization

is aligned to a low symmetry direction. This is not a surprising

result for Fe3O4 as its crystal structure is cubic and the crystal

field splitting between the t2g and eg orbitals parametrized

through 10Dq is �1 eV for Fe in Fe3O4 while the spin–orbit

coupling is �0.05 eV and the mean field exchange interaction

is �0.09 eV. These values suggest that the crystal field cannot

be neglected, and a spherical field expansion consequently

cannot describe the magneto-optical response of Fe in Fe3O4

well,

IL30 �ð Þ ¼ �
0ð Þ
þ

1

6
þ

cos 2�ð Þ

4
�

ffiffiffi
3
p

sin 2�ð Þ

4

� 	
�ð2Þ: ð12Þ

3.2.2. Cubic field expansion. The local symmetry of the Fe

in Fe3O4 is nearly cubic (Bragg, 1915), and therefore a more

realistic treatment would be to perform a cubic field expan-

sion. In this case, distinctly different measurements can be

taken, for example along the fourfold and the threefold

symmetry axes, and the fundamental spectra of order k branch

according to their symmetry representations in the cubic point

group. This is shown in equation (13) where �(2) branches to

� 2ð Þ
eg

for diagonal elements and � 2ð Þ
t2g

for the off-diagonal

elements [see Fig. 6(a)]. Furthermore, higher-order k terms

such as � 3ð Þ
t1u

become important (Haverkort et al., 2010),
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Figure 3
Fe L2,3 full conductivity tensor constructed for B || [1,0,0] in Fe3O4 .

Figure 4
Fe L3-edge in Fe3O4. (a) Isotropic XAS constructed from the conductivity
tensor. (b) Polarization dependence at E = 706.4 eV (red), 707.4 eV
(green), 708.4 eV (magenta) and 709.4 eV (blue) where the polarization
is rotated from [1,0,0] to [0,1,0]. The top row is computed from the
conductivity tensor and the bottom row is experimentally measured.
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�½xyz
 ¼

�ð0Þa1g
þ ðx2 � 1

3Þ�
ð2Þ
eg

�z�ð1Þt1u
þ xy�ð2Þt2g

� zðz2 � 3
5Þ�
ð3Þ
t1u

y�ð1Þt1u
þ xz�ð2Þt2g

þ yðy2 � 3
5Þ�
ð3Þ
t1u

z�ð1Þt1u
þ xy�ð2Þt2g

þ zðz2 � 3
5Þ�
ð3Þ
t1u

�ð0Þa1g
þ ðy2 � 1

3Þ�
ð2Þ
eg

�x�ð1Þt1u
þ yz�ð2Þt2g

� xðx2 � 3
5Þ�
ð3Þ
t1u

�y�ð1Þt1u
þ xz�ð2Þt2g

� yðy2 � 3
5Þ�
ð3Þ
t1u

x�ð1Þt1u
þ yz�ð2Þt2g

þ xðx2 � 3
5Þ�
ð3Þ
t1u

�ð0Þa1g
þ ðz2 � 1

3Þ�
ð2Þ
eg

0
B@

1
CA ð13Þ

A comparison between the measured and computed magnetic

field angular dependence of XMLD with linear horizontal

polarization can be seen in Fig. 6(b). The agreement between

the measurements and the computed field dependence for the

spherical and cubic field expansions are of similar quality. The

field dependence in this case is given by equation (14) which is

of the same form as the spherical field expansion [compare

equation (14) with equation (11)] and the fundamental spectra

involved are very similar [compare Fig. 6(a) with Fig. 5(a)],

ILH �ð Þ ¼ �
0ð Þ

a1g
þ

1

3
� cos2 �ð Þ

� 	
�ð2Þeg
: ð14Þ

However, contrary to the spherical expansion results, an

excellent agreement between the cubic field expansion and

the magnetic field angular dependence performed with

rotated polarization is now observed in Fig. 6(c). The reason

for this improvement is the branching of the �(2) fundamental

spectrum into � 2ð Þ
eg

and � 2ð Þ
t2g

which is probed when the polar-

ization is aligned to a low symmetry direction bringing off-

diagonal elements into play. The field dependence for the 30�

rotated polarization is given by equation (15) which highlights

the role of the � 2ð Þ
t2g

fundamental spectrum. Another important

conclusion is that it is essential to measure XAS with the

polarization aligned to a low symmetry direction to sensitively

probe the crystal symmetry,

IL30ð�Þ ¼ �
ð0Þ
a1g
þ

1

6
þ

cosð2�Þ

4

� 	
�ð2Þeg
�

ffiffiffi
3
p

sinð2�Þ

4

� 	
�ð2Þt2g
: ð15Þ

3.2.3. Convergence of the field expansion. In symmetries

lower than spherical, the expansion of the spin (or the

magnetic field) direction on spherical harmonics does not

truncate at finite k. There is thus, in principle, an infinite

number of linearly independent fundamental spectra. Not all

of them are important and most of them will be of very low

intensity. We have included in our previous analysis terms

up to k = 3. The cubic field expansion showed a satisfactory

agreement with the experimental data and only small discre-

pancies were showed. Here we investigate theoretically the

origin of these discrepancies and the convergence of the field

expansion. The quality of an expansion on the spin (or

magnetic field direction) is foreseen to depend on the details

of the ground state. This is because the magnetization direc-

tion depends on both the orbital and spin moments and hence

whether the valence orbital moment is quenched or not will

affect the efficiency of the expansion. Fe3O4 contains both

Figure 5
(a) The fundamental spectra �(0), �(1) and �(2) of Fe3O4 obtained from a spherical field expansion. (b) Fe L2,3 XMLD with linear horizontal polarization
(LH) where the XMLD signal is defined as: XMLD = XAS(�) � XAS(90�) and � is the angle of the magnetic field. The measured (Exp.) and the
calculated (Calc.) result from the spherical field expansion are shown in the left and right panels, respectively. (c) Fe L2,3 XMLD measured with linear
polarization rotated 30� from the [1,0,0] (labelled L30) where the XMLD signal is defined as: XMLD = XAS(�) � XAS(60�).



types of ions, Fe3+ and Fe2+, providing

us with an excellent opportunity to test

the effect of the ground state for the two

cases. We approach this by calculating

the field dependence of XMLD in two

ways:

(1) Performing a new full XMLD

calculation for every magnetic field

orientation.

(2) Computing once the conductivity

tensor in equation (13) and then

generating the field dependence of

XMLD from the cubic fundamental

spectra.

The first method is exact and involves

no approximations. On the other hand,

the accuracy of the second method

depends on the order of the expansion

used in the calculation. Let us first

consider the magnetic field (B) angular

dependence probed with the linear

polarized X-rays aligned to [1,0,0]

where B is rotated about [0,0,1] at � =

0�. The XMLD signal [computed as

XMLD = XAS(�)�XAS(90�)] for Fe3+

and Fe2+ in Oh symmetry is shown in

Figs. 7(a) and 7(b), respectively. The

exact calculations (solid lines) and the

cubic field expansion (dashed lines)

match well which can initially suggest

that the series expanded up to k = 3

is sufficient to describe XMLD in 3d

transition metal oxides. Similar conclu-

sions were reached by Arenholz et al.

(2006, 2007) and van der Laan et al.

(2008, 2011). However, a difference

between the convergence of the series

for both ions can be seen when the

polarization is aligned parallel to

[cos(30�),�sin(30�),0] [Figs. 7(c) and

7(d)]. Only minor discrepancies are

observed for Fe3+ while a larger

disagreement is observed for Fe2+.

The reason behind the mismatch

observed lies in the ground state of Fe2+.

In the absence of a magnetic/exchange

field, the ground state of the Fe2+ ion in

Oh symmetry is 5T2g composed of 15-

fold degenerate states. This degeneracy

is split by exchange and spin–orbit

interactions leading to a ground state

characterized by the spin and orbital

momenta projections sz = 1.971 (�0.01)

and lz = 0.98 (�0.20). On the other

hand, the ground state of Fe3+ is char-

acterized by the spin and orbital

projections sz = 2.498 (�0.001) and lz =
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Figure 6
(a) Branching of the fundamental spectra �(0) and �(2) into � 0ð Þ

a1g
, � 0ð Þ

eg
and � 0ð Þ

t2g
of Fe3O4 using a cubic

expansion. (b) Fe L2,3 XMLD with linear horizontal polarization (labelled LH) where the XMLD
signal is defined as: XMLD = XAS(�) � XAS(90�) and � is the angle of the magnetic field. The
measured (Exp.) and the calculated (Calc.) result from the cubic field expansion are shown in the
left and right panels, respectively. (c) Fe L2,3 XMLD measured with linear polarization rotated 30�

from the [1,0,0] (labelled L30) where the XMLD signal is defined as XMLD = XAS(�)�XAS(60�).

Figure 7
Computed L2,3 XMLD: (a) and (b) with linear polarization || [1,0,0] (labelled LH) for Fe3+ and Fe2+

in Oh symmetry, respectively. The XMLD is defined as: XMLD = XAS(�) � XAS(90�) where � is
the angle of the magnetic field. The solid lines show XMLD computed individually for every
magnetic field orientation while the dashed lines are computed using the cubic field expansion.
Panels (c) and (d) are the results with linear polarization rotated 30� from the [1,0,0] (labelled L30)
where the XMLD is defined as: XMLD = XAS(�) � XAS(60�).



0.001 (�0.001). These values are obtained using the wave-

function calculated by solving equation (1). The reported

errors are obtained from the errors in the distortion para-

meters that are obtained by fitting the XMCD signal using

our calculations. We note that the ground state of Fe3+ in Td

symmetry is almost identical to that in Oh symmetry and

therefore we focus here on the Oh sites (refer to the

Appendix C for more details). As the magnetic field is rotated,

the spin moment follows the field for the Fe3+ as shown in

Fig. 8(a). In the case of Fe2+, however, the coupling between

the orbital and spin momenta results in a scenario where

neither the spin nor the orbital moments follow the rotation of

the magnetic field [see Fig. 8(b)] due to the magnetocrystalline

anisotropy (Alders et al., 2001). The spin moment can be phase

shifted from the direction of the magnetic field with �0.5�

while the orbital moment can lag �4� in some directions. This

causes the series to converge slower and hence higher orders

of k are required. This is further confirmed by the calculation

in Fig. 9(a) where the valence spin–orbit coupling is artificially

switched off for Fe2+. Now the cubic field expansion repro-

duces the XMLD exquisitely well and no phase shift is

observed [Fig. 9(b)].

4. Conclusions

In conclusion, we illustrated the procedure to build the

conductivity tensor from experimental measurements which

describes the full magneto-optical response of the system.

Applied to the Fe L2,3-edge of a 38.85 nm Fe3O4 /SrTiO3 (001)

thin-film, we showed that the convergence of the cubic

expansion depends on the details of the ground state. The key

aspect that affects the convergence of the expansion in this

work is the valence state spin–orbit interaction. While the

cubic expansion explains the angular dependence of the

XMLD of Fe3+ with terms up to the third order, higher-order

terms are required for Fe2+. This conclusion is expected to

apply for other systems where the valence orbital moments

are not quenched.

APPENDIX A
Sample characterization

A1. X-ray reflectivity measurement

The Fe3O4 (001)/SrTiO3 film thickness, interface and

surface roughness were examined by X-ray reflectivity using a

Philips XPert MRD with Cu K� radiation (see Fig. 10). The

film thickness was concluded to be �38.85 nm. The surface

roughness was concluded to be �0.4 nm on average.

A2. Magnetic measurement

Bulk magnetic properties of the Fe3O4 (001)/SrTiO3 thin-

film were investigated using a quantum design dynacool

physical properties measurement system. Magnetic moment

versus temperature was measured in zero-field cooling mode

with 500 Oe applied field [Fig. 11(a)]. A clear peak can be

observed at T = 114.97 � 0.29 K in the derivative signal (the

Verwey transition) confirming the good stoichiometry and

quality of the thin-film. A comparison between the derivative

signal between the thin-film used for this work and a single

crystal of the same orientation is shown in Fig. 11(b). The

Verwey transition is significantly broader for the thin-film

(FWHM = 13.03 � 0.71 K, centre = 114.97 � 0.29 K) in
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Figure 8
The angle between the spin/orbital (red/blue) moment and the magnetic
field as a function of the magnetic field rotation angle for (a) Fe3+ in Oh

symmetry and (b) Fe2+ in Oh symmetry. The magnetic field is rotated
about the [0,0,1] starting from the [1,0,0] direction.

Figure 9
Calculations for Fe2+ in Oh symmetry with fully quenched spin–orbit
coupling. (a) L2,3 XMLD with linear polarization rotated 30� from the
[1,0,0] (labelled L30). The XMLD signal is defined as: XMLD = XAS(�)
� XAS(60�) where � is the angle of the magnetic field. The solid lines
show XMLD computed individually for every magnetic field orientation
while the dashed lines are computed using the cubic field expansion
[equation (15)]. (b) The angle between the spin moment and the magnetic
field as a function of the magnetic field rotation angle.

Figure 10
XRR measurement performed on the Fe3O4 (001)/SrTiO3 thin-film.



comparison with the single crystal (FWHM = 1.40 � 0.01 K,

centre = 127.08� 0.01 K). This could be related to defects and

domain formations in the thin-film which is typical for growth

on SrTiO3.

Hysteresis loop measurements were also performed along

the [1,0,0] axis to inspect the saturation of the film below and

above the Verwey transition parallel to the in-plane [1,0,0]

direction (Fig. 12). The largest coercivity is observed for the

lowest temperature (Hc = 0.1 T) and an external magnetic field

of 0.25 T is required to saturate the in-plane magnetization.

On the contrary, the magnetization is not saturated along the

[0,0,1] direction with a field of Hc = 2 T as shown by the

XMCD signal shown in Fig. 13.

APPENDIX B
Data treatment

In order to compare the XAS results measured at different

magnetic field orientations it is necessary to normalize the

spectra. The edge jumps (L3 and L2) were fitted by two error

functions positioned at 708.8 eV and 721.5 eV, respectively

[refer to the grey dashed line in Fig. 14(a)]. The multiplet

features of the spectra were fitted by a set of Gaussian func-

tions. Six Gaussian functions were used to fit the L3 part of the

spectra [red peaks in Fig. 14(a)] and four to fit the L2 [blue

peaks in Fig. 14(a)]. Only the amplitude of the functions was

allowed to float between the data while the energy positions

and widths were kept constant between all the data. Table 2

(Table 3) shows the centre and width of the Gaussian peaks

used for the L3 (L2) edge. We normalized the spectra by

setting the L2 edge jump to unity. The L2,3 edge jumps were

subtracted from the data as shown in Fig. 14(b). Finally, the

spectra were normalized to the spectral area.

APPENDIX C
Ground state of Fe ions in Fe3O4

C1. Fe2+ in octahedral symmetry

The high spin Fe2+ ion in octahedral symmetry 15-fold 5T2g

state [shown in Fig. 15(a)] is split by exchange interaction

[90 meV applied according to equation (5)] which lowers the

degeneracies leading to a triplet ground state as illustrated in
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Figure 11
Zero-field cooled magnetization measurement (a) for the Fe3O4 (001)/
SrTiO3 thin-film. (b) Comparison between the derivative of the
magnetization measurement for the Fe3O4 (001)/SrTiO3 thin-film in blue
and a single crystal of Fe3O4 (001) in red. Gaussian fits of the peaks for
two samples are shown in filled colours.

Figure 12
Magnetization loops measurement performed on the Fe3O4 (001)/SrTiO3

thin-film along the [1,0,0] axis. Five temperatures were investigated,
namely T = 5 K, 50 K, 100 K, 150 K and 300 K.

Figure 13
Magnetization of the Fe3O4 (001)/SrTiO3 thin-film measured at 200 K by
recording the intensity of the XMCD at 709.5 eV as a function of the
external magnetic field along the [0,0,1] direction.

Figure 14
(a) Fitting of the XAS signal of the Fe3O4 (001)/SrTiO3 thin-film. (b)
Background removal.



Fig. 15(b). The spin–orbit coupling finally lifts all the degen-

eracies as shown in Fig. 15(c). The ground state is 99.8% pure

in terms of crystal field configuration and has an occupation

|(t2g)3.9997(eg)2.0003
i and is 97.21% composed of the state

characterized by mz = �2 and lz = �1. We point out that the

first and second excited states are �22 and 53 meV higher in

energy than the ground state which leads to a Boltzmann

occupation of �75.8%, 20.6% and 3.6% of the ground, first

and second excited states, respectively, at 200 K. These have

been included in the calculation of the spectra. All the para-

meters used in the multipet calculations of Fe2+ XAS are

reported in Table 4.

C2. Fe3+ in octahedral and tetrahedral symmetry

The ground states of Fe3+ in Oh and Td symmetries are

almost identical with sz = 2.499 and lz = 0.001. Indeed, the 6A1

splits to the doublet E2 and quartet G states; however, this

splitting can be neglected (the splitting is less than 0.1 meV

and is thermally populated). This is illustrated in Figs. 16 and

17 where the 6A1(g) state [panel (a)] is split mainly due to

exchange interaction [panel (b)] while spin–orbit coupling has

negligible effect [panel (c)] for Fe3+ in both Td and Oh

symmetries. We point out that the first excited state is

�90 meV higher in energy than the ground state which leads

to a Boltzmann occupation of �99.6% and 0.4% of the

ground and first excited state, respectively, at 200 K. We

therefore only used the ground state in the calculation of the

spectra. All the parameters used in the multipet calculations

of Fe3+ Oh and Td XAS are reported in Tables 5 and 6,

respectively.
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Table 2
Gaussian peak centre and width used for fitting the L3-edge.

Peak Centre (eV) HWFM (eV)

1 706.424 0.643
2 707.637 0.561
3 708.631 0.793
4 710.097 1.115
5 712.131 1.252
6 715.302 2.447

Table 3
Gaussian peak centre and width used for fitting the L2-edge.

Peak Centre (eV) HWFM (eV)

1 719.122 0.527
2 720.908 0.963
3 722.880 1.343
4 724.852 1.422

Table 4
Parameters used for the XAS calculation of the Fe2+ Oh ion.

Parameter

Initial
state
(eV)

Final
state
(eV) Comment

10Dq 1.25 1.25 Similar to the values reported by Pattrick
et al. (2002) and Arenholz et al. (2006)
for Fe3O4. This crystal field parameter
reproduces well XAS, XMCD and
XMLD measurements in Fe3O4.

F 2
dd 7.676 8.245 Atomic Hartree–Fock calculation scaled

to 70% to take interatomic screening
and mixing. This is in line with the
literature such as the work by Pattrick
et al. (2002) and Arenholz et al. (2006).

F 4
dd 4.771 5.129

F 2
pd – 5.434 Atomic Hartree–Fock calculation scaled

to 80%. This is in accordance to the
literature such as Pattrick et al. (2002)
and Arenholz et al. (2006).

G1
pd – 3.208

G3
pd – 2.274

�d 0.052 0.052 Atomic value which is a reasonable
approximation as the spin–orbit
coupling is nearly an atomic quantity
that is material independent.

�p – 8.2

Jexch 0.09 0.09 This value is based on previous 2p3d
RIXS measurements that showed that
the spin-flip excitation is observed at
this energy [see, for example Huang et
al. (2017) and Elnaggar et al. (2019a,b)].

Lifetime
broadening
(HWHM)

L3: 0.2, L2: 0.5 The lifetime broadening for the L3 used is
0.2 eV and for L2 is 0.5 eV.

Figure 15
Energy diagrams illustrating the splitting of the ground state of a d 6 Fe2+ ion. (a) As a function of the octahedral crystal field 10Dq parameter with the
spin–orbit coupling (�) and magnetic exchange interaction (Jexch) set to zero. (b) As a function of Jexch with 10Dq = 1.25 eV and � = 0. (c) As a function of
� with Jexch = 90 meV and 10Dq = 1.25 eV.
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Table 6
Parameters used for the XAS calculation of the Fe3+ Td ion.

Parameter

Initial
state
(eV)

Final
state
(eV) Comment

10Dq �0.5 �0.5 Similar to the values reported by Pattrick
et al. (2002), Liu et al. (2017) and
Arenholz et al. (2006) for Fe3O4. This
crystal field parameter reproduces well
XAS, XMCD and XMLD measure-
ments in Fe3O4. We note that this is the
total crystal field parameter as used in
the crystal field multiplet model, i.e.
including the effective effects of charge
transfer.

F 2
dd 8.429 8.972 Atomic Hartree–Fock calculation scaled

to 70% to take interatomic screening
and mixing. This is in line with the
literature such as the work by Pattrick
et al. (2002) and Arenholz et al. (2006).

F 4
dd 5.274 5.616

F 2
pd – 5.956 Atomic Hartree–Fock calculation scaled

to 80%. This is in accordance with the
literature such as Pattrick et al. (2002)
and Arenholz et al. (2006).

G 1
pd – 4.450

G 3
pd – 2.532

�d 0.052 0.052 Atomic value which is a reasonable
approximation as the spin–orbit
coupling is nearly an atomic quantity
that is material independent.

�p – 8.2

Jexch �0.09 �0.09 This value is based on previous 2p3d
RIXS measurements that showed that
the spin-flip excitation is observed at
this energy [see, for example, Huang et
al. (2017); Elnaggar et al. (2019a,b)].

Lifetime
broadening
(HWHM)

L3: 0.2, L2: 0.5 The lifetime broadening for the L3 used is
0.2 eV and for L2 is 0.5 eV.
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