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Compton scattering is generally neglected in diffraction experiments because

the incoherent radiation it generates does not give rise to interference effects

and therefore is negligible at Bragg peaks. However, as the scattering volume

is reduced, the difference between the Rayleigh (coherent) and Compton

(incoherent) contributions at Bragg peaks diminishes and the incoherent part

may become substantial. The consequences can be significant for coherent

diffraction imaging at high scattering angles: the incoherent radiation produces

background that smears out the secondary interference fringes, affecting thus

the achievable resolution of the technique. Here, a criterion that relates the

object shape and the resolution is introduced. The Compton contribution for

several object shapes is quantified, and it is shown that the maximum achievable

resolution along different directions has a strong dependence on the crystal

shape and size.

1. Introduction

In the last decade, the use of the coherence properties of

X-rays produced at third-generation synchrotron radiation

sources has markedly increased. Techniques exploiting

coherence have been developed and employed in different

ways to study the morphology and strain of materials using

inverse microscopy approaches, or the dynamics, using photon

correlation spectroscopy (Nugent, 2010). For these techniques,

markedly for inverse microscopy, coherence propagation and

preservation are very important issues, as they can affect in

a strong way the inversion’s outcome. Partial coherence, as

widely discussed in the literature (Sinha et al., 1998; White-

head et al., 2009; Nugent, 2010), washes out interference

effects and thus compromises the inversion process or the

achievable spatial resolution. For this reason, the use of

coherence preserving optics is especially important (Paganin,

2006). The propagation of the X-ray beam through optical

components of hard X-ray beamlines and the apparent loss

of coherence sometimes observed has also been discussed

(Vartanyants & Robinson, 2003; Nugent et al., 2003). It has

been argued that, in the absence of vibrations or instabilities,

the coherence properties of the radiation cannot be degraded

during the propagation through optical components (Nugent

et al., 2003). This is justified in terms of conservation of the

phase space and considers that the experimental X-ray system

is closed, without external influences (Nugent, 2010). Finally,

special attention has also been given to the characterization of

the incoming wavefront to disentangle the contributions of

the incoming wavefield and the sample scattering function

(Kewish et al., 2010; Schropp et al., 2010; Mastropietro et al.,

2011; Björling et al., 2020). However, even in the absence
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of external influences or vibrations, the coherence may be

degraded via the interaction with the sample through quantum

effects such as Compton scattering, in which the incoming

photon transfers part of the momentum and energy to elec-

trons. The Compton scattered photons lose their phase rela-

tionship with the incoming photons.

Notwithstanding, Compton scattering can often be ignored.

In conventional X-ray crystallography, the angles and inten-

sities of the beams diffracted by a crystal are measured. Due

to the periodic arrangement of the atoms or molecules within

the crystal into a space lattice, diffraction only occurs at very

specific directions, for which the spherical wavelets scattered

by each lattice point interfere constructively. These directions

are determined by Bragg’s law. For a crystal with N lattice

points illuminated with a monochromatic X-ray beam, at those

points satisfying Bragg’s law, in the kinematical approximation

the maximum intensity is proportional to the square of the

total number of lattice points, i.e. Icoh / N 2 (James, 1965). We

include the subscript ‘coh’ to stress that interference effects

can only arise from the coherently scattered photons

(Rayleigh scattering). The contribution due to Compton

scattering, being incoherent, only contributes as Iinc / N and

the ratio of the incoherent/coherent contribution scales as 1/N.

Already for small crystals with few thousands lattice points,

the incoherent contribution is insignificant with respect to

the coherent part. This is why Compton scattering is usually

neglected in X-ray diffraction experiments on single crystals,

even if the total scattering cross section of Compton scattering

can already be of the same order of magnitude as that of

Rayleigh (i.e. elastic) scattering for low-Z elements in the

10–20 keV range.

In Bragg coherent diffraction imaging (BCDI) and Bragg

ptychography the intensity distributions at, and around, Bragg

peaks, that is, the intensity at the Bragg positions as well as the

secondary (or subsidiary) interference fringes, are employed

to obtain a high-spatial-resolution image of the diffracting

crystal with high strain sensitivity (Stagl et al., 2014). These

subsidiary maxima are much weaker than the principal –

Bragg – maximum and their extent (i.e. number of visible or

measurable fringes) limits the achievable spatial resolution.

Compton scattering, as a process that increases the back-

ground and reduces the fringe visibility, may lessen the

maximum resolution that can be obtained in the reconstruc-

tions because it affects the signal-to-noise ratio, as we shall

discuss below. This is particularly important when the signal is

weak, which is generally the case of BCDI experiments. With

the increased coherent flux provided by modern sources,

BCDI has great potential for the study of smaller particles. In

the case of catalytic or electrochemical reactions (Richard et

al., 2017; Rochet et al., 2019; Björling et al., 2019), particle sizes

in the 1–10 nm range useful for industrially relevant reactions

(Campbell et al., 2016) can be studied. The relative intensity

between the Bragg peaks and the secondary maxima depends

on the particle size; thus, the relative effect of Compton

scattering will be more important for small particles.

Furthermore, in electrochemistry experiments, high energies

can be beneficial to penetrate through the electrolyte. The

increased brilliance of the fourth-generation synchrotron

radiation sources, i.e. the diffraction-limited storage rings

(DLSRs), may generate a 100-fold increment in coherent flux

and consequently facilitate experiments that require both high

energies and large coherent flux. However, increasing the

energy has the side effect of enhancing the Compton scat-

tering, which scales with the energy (see Section 2.1). It is

therefore of interest to evaluate the Compton scattering

component and estimate its effect on a coherent diffraction

experiment, especially on the signal-to-noise ratio.

In this article, we discuss the relevance of Compton scat-

tering in BCDI experiments and quantify it. We start from the

fundamentals (Section 2): we first review the coherent and

incoherent scattering by an electron (Section 2.1) and an atom

(Section 2.2) and generalize it for a small crystal (Section 2.3).

In Section 3 we analyse how the presence of a background

affects the interference fringes and we obtain a criterion that

relates the shape function of the scattering object and the

differential cross sections of coherent and incoherent scat-

tering. Some practical examples are examined in Section 4. We

discuss in Section 5 some of the implications of our results and

we end with the conclusions (Section 6).

2. Coherent and incoherent scattering

We first review the basic formulas of the X-ray scattering

theory for an electron and an atom and use them to assess

the incoherent and coherent contributions scattered by a

small crystal.

2.1. Scattering by an electron

In 1923, Compton interpreted the shift in wavelength that

had been observed when X-rays are scattered by atoms in

terms of particle-like collisions between an incoming photon

and the atom’s electrons (Compton, 1923). A few years later,

Klein and Nishina developed a quantum-mechanical model

and obtained the cross section of the Compton scattering

process for a free electron (Klein & Nishina, 1929). For

linearly polarized incoming radiation – which is the most

relevant case for synchrotron-based experiments, as synchro-

tron radiation is mostly polarized in the plane of motion of

the electrons in the storage ring – the Klein–Nishina (KN)

formula reads (Klein & Nishina, 1929; Evans, 1958)

de�KN

d�

� �
pol

¼
r 2

0

2

E 0

E

� �2
E

E 0
þ

E 0

E
� 2 sin2 � cos2 �

� �
: ð1Þ

Here, ðde�KN=d�Þpol is the differential KN cross section of an

incoming linearly polarized photon scattered per electron into

the differential solid angle d� in the direction defined by the

angles � and �, and summed over all possible polarizations of

the scattered photon. � is the scattering angle, i.e. the angle

between the wavevectors of the incident and scattered radia-

tion, which defines the scattering plane (note that here we

follow the convention used in the scattering community rather

than the one used in diffraction, where the scattering angle is

� = 2�). � is the angle between the electric field vector of the
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incoming radiation and the scattering plane. r0 and " = E/mec2

are the classical electron radius and the photon energy in units

of the electron rest-mass (me) energy, respectively. The KN

cross section describes the Compton interaction, which is

inelastic: part of the incoming photon energy (E) is transferred

to the electron and the Compton scattered photons have lower

energy (E 0). The Compton equation relates E and E 0,

E 0 ¼
E

1þ ðE=mec2Þ 1� cos �ð Þ
: ð2Þ

Using equation (2), the KN differential cross section can be

expressed as a function of the incoming photon energy (E)

only,

de�KN

d�

� �
pol

¼
r 2

0

2

1

½1þ " 1� cos �ð Þ�
2

� �

� 2 1� sin2 � cos2 �
� �

þ
"2 1� cos �ð Þ

2

1þ " 1� cos �ð Þ

� 	
; ð3Þ

where " = E=½1þ ðE=mec2Þ�. For X-ray energies E ’ 10–

100 keV the energy of the incoming photons cannot be

neglected. However, as mec2 = 0.511 MeV, the approximation

E � mec2 can be used to expand equation (3) into a

Maclaurin series of ". Retaining only the first-order term in ",

de�KN

d�

� �
pol

’
r 2

0

2
2 1� sin2 � cos2 �
� �

� 2" 1� cos �ð Þ

 �

: ð4Þ

The term proportional to " in the square brackets of equation

(4) embodies the inelastic scattering contribution to the KN

scattering cross section and is proportional to the energy of

the incoming photons. The left term, independent of ",
accounts for the elastic scattering. Equation (4) distinctly

shows that the differential scattering cross section is smaller

than what would be expected from purely elastic scattering

and that for higher energies the total cross section diminishes

while the inelastic contribution increases with respect to the

elastic part.

The KN differential cross section for unpolarized incoming

radiation is obtained from equation (3) considering an

incoming beam with two linearly polarized components, each

one carrying half of the total intensity,

de�KN

d�

� �
unpol

¼
1

2

"
de�KN

d�

� �
pol

����
�¼k

þ
de�KN

d�

� �
pol

����
�¼?

#
: ð5Þ

This yields

de�KN

d�

� �
unpol

¼
r 2

0

2

1

½1þ " 1� cos �ð Þ�
2

� �

� 1þ cos2 � þ
"2 1� cos �ð Þ

2

1þ " 1� cos �ð Þ

� �
: ð6Þ

The same result is obtained from equation (3) averaging over

all possible � directions:
R �

0 cos2 � d�=� = 1/2.

The Thomson scattering cross section is the low-energy

limit of the KN cross section of a free electron and it is

obtained when the energy of the incoming photons E is much

smaller than the electron rest energy mec2 and can be ignored,

de�T

d�

� �
pol

¼ lim
"! 0

de�KN

d�

� �
pol

¼
r 2

0

2
2 1� sin2 � cos2 �
� �

: ð7Þ

In particular, for unpolarized incoming radiation,

de�T

d�

� �
unpol

¼ lim
"! 0

de�KN

d�

� �
unpol

¼
r 2

0

2
1þ cos2 �
� �

: ð8Þ

In the following sections, we drop the pol/unpol subscript

from the KN and Thomson differential cross sections, with the

implicit assumption that the adequate formulas are used for

each case.

2.2. Scattering by an atom

In the case of atoms, the momentum and binding energies

of the electrons have to be taken into account to calculate

the scattering cross section. The atomic cross section can be

written as a sum of two terms (Veigele et al., 1966): (1) a term

accounting for coherent scattering (Rayleigh scattering) in

which after the scattering process the atom is left in its initial

state and no energy is absorbed; (2) a term accounting for

incoherent scattering (Compton scattering), in which energy

as well as momentum is transferred and the phase relationship

between the incoming and scattered radiation is also lost,

d�

d�

� �
at

¼
d�

d�

� �
at;coh

þ
d�

d�

� �
at;inc

¼
de�T

d�

� �
f q;Zð Þ
�� ��2þ de�KN

d�

� �
s q;Zð Þ: ð9Þ

The coherent term is proportional to the differential Thomson

scattering cross section for a free electron, ðde�T=d�Þ [equa-

tion (7)] – which is independent of the energy – and the square

of the atomic form factor f(q, Z). The incoherent term is

proportional to the differential KN scattering cross section,

ðde�KN=d�Þ [equation (3)] and the incoherent scattering

function s(q, Z). The limits of these functions for small and

large q momentum transfer values are: f(0, Z) = Z, f(1, Z) =

0, s(0, Z) = 0 and s(1, Z) = Z (Veigele et al., 1966; Hubbell

et al., 1975). Here we use lower-case letters f and s for the

coherent and incoherent atomic form factors, respectively, to

avoid confusion with the crystal structure factor introduced

in Section 2.3. The most usual convention in the literature

discussing the atomic form factors is to use upper-case letters

F and S (Veigele et al., 1966). Tabulated values of f(q, Z),

s(q, Z) and ðd�=d�Þat calculated using different models can

be found in the literature (Hubbell et al., 1975). Programs to

calculate the cross sections are also available (Fernandez et al.,

2011). We have used the SAP program (Fernandez et al., 2011)

to calculate the atomic form factor and the incoherent

scattering functions of carbon and palladium at 12.4 and

30 keV and obtain the Rayleigh and Compton scattering cross

sections. The differential cross sections are shown in Fig. 1 and

the ratios of Compton to Rayleigh scattering in Fig. 2. In the
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case of carbon, for scattering angles smaller than 45�, the

Rayleigh differential cross section dominates. However,

above �45� the inelastic scattering becomes more important

than the elastic.

2.3. Scattering by a small crystal

The total intensity scattered by a crystal will have contri-

butions due to incoherent and coherent scattering, Itot = Iinc +

Icoh. In the same way as done for the scattering by an atom, the

total scattered intensity by the crystal can be divided into a

coherent and an incoherent part,

I ¼ I0��
d�

d�

� �crystal

inc

þ
d�

d�

� �crystal

coh

( )
: ð10Þ

The coherent part will be proportional to the Thomson scat-

tering cross section and will depend on the relative positions

of the scatterers and their number. The incoherent part will be

proportional to the KN cross section and will only depend

on the total number and type of scatterers (i.e. not on their

position). These coherent and incoherent terms are derived in

Sections 2.3.1 and 2.3.2, respectively.

2.3.1. Coherent scattering. The (coherent) scattering by a

small crystal was first treated by von Laue (1936) and shortly

after by Patterson (1939) and Ewald (1940). The electronic

density of an infinite crystal can be expressed as the convo-

lution of the electronic density of the unit cell, �0(r), and an

infinite three-dimensional lattice,

�1 rð Þ ¼ �0 rð Þ 	 L1 rð Þ

¼ �0 rð Þ 	
X1

u;v;w¼�1

� r� Ru;v;w � uu;v;w

� �
; ð11Þ

with Ru, v, w = ua + vb + wc, where a, b, c are the vectors

defining the unit lattice, u; v;w 2 Z are integer numbers

and the vectors uu;v;w account for small distortions of the

lattice from their ideal positions. In equation (11), it has been

assumed that the lattice distortions do not affect the unit cell;

that is, the effect of the distortions is to displace the unit cells

as a rigid body, which is the so-called Takagi approximation

(Takagi, 1969; Pietsch et al., 2004). This assumption does not

change the main conclusions of our study and simplifies the

analysis. The more general case of small distorted crystals with

several atoms in the unit cell is treated by Krivoglaz (1996)

and is also discussed by Vartanyants & Robinson (2001).

For an infinite crystal illuminated with a plane monochro-

matic wave, the wavefield or complex amplitude scattered in

the far field, and considering that the Born first approximation

is valid, is proportional to the Fourier transform (FT; F ) of its

electronic density,
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Figure 1
Differential (with respect to solid angle) cross sections at energies E =
12.4 keV (solid lines) and E = 30 keV (dotted lines): coherent (blue),
incoherent (red), total (black) scattering. Carbon (top), palladium
(bottom). For clarity, the palladium differential cross sections are plotted
using two Y-axes, as the difference between the coherent and incoherent
cross sections is large.

Figure 2
Ratio between the differential incoherent and coherent scattering cross
sections for carbon (left) and palladium (right) at energies E = 12.4 keV
(solid) and E = 30 keV (dotted).



A1 qð Þ ¼ F �1 rð Þ

 �

¼

Z þ1
�1

�1 rð Þ exp iq 
 rð Þ dr: ð12Þ

In this study, we can adopt the first Born approximation

because we shall consider small crystallites for which multiple

scattering is negligible. The finite size of a crystal with shape �
is considered by introducing a shape function ��(r) that fulfils

�� rð Þ ¼
r; r 2 �;
0; r 62 �:

�
ð13Þ

That is, ��(r) equals 1 if the position vector is inside the crystal

and 0 if it lies outside it. The electronic density of the finite

crystal is expressed as

�� rð Þ ¼ �1 rð Þ�� rð Þ; ð14Þ

and, using the convolution theorem, its Fourier transform is

A� qð Þ ¼ A1 qð Þ 	�� qð Þ; ð15Þ

where * denotes the convolution operation and

A1 qð Þ ¼ F �1 rð Þ

 �

¼ F0 qð Þ
X
u;v;w

exp iq 
 Ru;v;w þ uu;v;w

� �
 �
; ð16Þ

in which F0(q) is the scattering amplitude of the unit cell or

structure factor,

F0 qð Þ ¼

Z
cell

�0 exp iq 
 rð Þ dr ¼
XNc

j¼ 1

fj qð Þ exp iq 
 rj

� �
: ð17Þ

The integration extends only to the unit cell, and in the case of

a unit cell composed of Nc individual atoms it can be replaced

by a summation, fj (q) being the coherent atomic scattering

factor of the atom at position rj in the unit cell and with the

summation index j extending over all the atoms in the unit cell.

The summation term in equation (16) is over the lattice points.

In equation (15), ��ðqÞ = Ff��ðrÞg is the FT of the shape

function,

�� qð Þ ¼

Z
�� rð Þ exp iq 
 rð Þ dr: ð18Þ

In the absence of lattice distortions, all uu;v;w = 0 and equation

(15) can be written in terms of the Dirac delta function

(Giacovazzo et al., 1992),

A� qð Þ ¼
F0 qð Þ

Vcell

X
h;k;l

� q�Qh;k;l

� �
	�� qð Þ; ð19Þ

with h; k; l 2 Z and Qh,k,l = ha* + kb* + lc* being the generic

vector of the reciprocal space and

a	; b	; c	ð Þ ¼
2�ðb� cÞ

a 
 b� cð Þ
;

2�ðc� aÞ

a 
 b� cð Þ
;

2�ða� bÞ

a 
 b� cð Þ

� �
:

Vcell = a 
(b � c) is the volume of the lattice unit cell.

Thus, the scattering amplitude A�(q) is a function which

consists of the repetition of the FT of the shape function at

every reciprocal lattice node, weighed by the structure factor

F0(q). As the shape function �� is real-valued, its FT, ��, is

centro-symmetrical about each reciprocal lattice point

(Ewald, 1940).

Finally, the diffracted intensity will be proportional to the

square of the scattered amplitude A�(q), and, neglecting small

cross terms, it can be written approximately as

I qð Þ / A� qð Þ
�� ��2 ’ F0 qð Þ

�� ��
Vcell

� �2 X
h;k;l

�� q�Qh;k;l

� ��� ��2: ð20Þ

Close to a particular reciprocal space point q = QHKL þ q0,

with q0 small,

A� qð Þ
�� ��2 ’ FHKL

�� ��
Vcell

� �2

�� q0ð Þ
�� ��2: ð21Þ

FHKL is the structure factor for the reflection (H, K, L). The

coherent differential cross section is thus

d�

d�

� �crystal

coh

¼ A� qð Þ
�� ��2 de�T

d�

� �

’
FHKL

�� ��
Vcell

� �2

�� q0ð Þ
�� ��2 de�T

d�

� �
: ð22Þ

The (coherent) atomic form factor in equation (9) enters into

equation (22) through the structure amplitude of the unit cell,

|FHKL| in equation (21). The maximum of �� q0ð Þ occurs when

q0 = 0 and is equal to the volume of the whole crystal:

�max
� ð0

0Þ = Vtot. The total volume is the integration of the shape

function Vtot =
R

V ��ðrÞ dV. Equation (22) can be written in

terms of a normalized FT shape function, ~��� = ��=Vtot,

d�

d�

� �crystal

coh

’
Vtot

Vcell

� �2

FHKL

�� ��2 ~��� q0ð Þ
�� ��2 de�T

d�

� �

¼ N 2
L FHKL

�� ��2 ~��� q0ð Þ
�� ��2 de�T

d�

� �
; ð23Þ

where

NL ¼
Vtot

Vcell

� �
ð24Þ

is the total number of unit cells or lattice points in the crystal.

2.3.2. Incoherently scattered intensity. The intensity scat-

tered incoherently by a crystal will only depend on the number

of scatterers and their incoherent scattering function Sj(q, Z).

If the unit cell contains Nc atoms, the crystal incoherent

scattering function is

d�

d�

� �crystal

inc

¼
Vtot

Vcell

de�KN

d�

� �XNc

j

Sj q;Zð Þ

¼ NL

de�KN

d�

� �XNc

j

sj q;Zð Þ: ð25Þ

2.4. Total scattering

Using equations (23) and (25), and in analogy with equation

(9) for the atomic differential cross section, we write the

differential cross section of a small crystal as
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d�

d�

� �
crystal

¼
de�T

d�

� �
Fcrystal q;Z;NL; ~���

� ��� ��2
þ

de�KN

d�

� �
Scrystal q;Z;NLð Þ; ð26Þ

with

Fcrystal q;Z;NL; ~���

� ��� ��2¼ N 2
L FHKL

�� ��2 ~��� q0ð Þ
�� ��2 ð27Þ

and

Scrystal q;Z;NLð Þ ¼ NL

XNc

j

sj q;Zð Þ: ð28Þ

In the coherent scattering term of a crystal (Fcrystal), the

structure factor FHKL is analogous to the atomic form factor

for the atomic case and dependence on the atomic positions

is through the crystal structure factor. It also depends on the

number of lattice points and the crystal shape. The incoherent

term also depends on the total number of scatterers but it does

not depend on the crystal shape or the atomic positions.

3. Interference fringes, background and resolution

3.1. General considerations

In coherent diffraction imaging (CDI), the real-space shape

function of an object can be retrieved from its diffraction

pattern using iterative phase retrieval algorithms (Miao et al.,

1999). Bragg CDI exploits the diffraction patterns around

Bragg peaks and can provide extra information about the

strain field in a crystal (Robinson et al., 2001; Vartanyants &

Robinson, 2001). For samples not prone to radiation damage,

the spatial resolution that can be achieved depends crucially

on �qmax, the extent in reciprocal space of the diffraction

pattern that is measured. The best achievable spatial resolu-

tion is �r’ 2�/�qmax (Stagl et al., 2014). But to be measurable,

the interference fringes must be above the noise level. The

contrast of the fringes (i.e. their sharpness or distinctness) is

often quantified by their visibility, defined as (Born & Wolf,

1999)

V ¼
Imax � Imin

Imax þ Imin

: ð29Þ

It is in general difficult to predict the visibility of the fringe

patterns that will be obtained in an experiment (Yan et al.,

2016) and analytical formulas exist for simple cases only. In the

presence of a background signal, Imin > 0 and the fringe visi-

bility is degraded. A visibility reduction of 50% already occurs

when the signal between the fringes, Imin, is Imin= (1/3)Imax.

It has already been shown that a reduction in contrast due

to partial coherence affects the reconstruction algorithms

(Vartanyants & Robinson, 2001). If the background is high,

the fringes may eventually disappear under the noise level.

This is what will ultimately limit the maximum the achievable

resolution (Stagl et al., 2014). We will use the signal-to-noise

ratio instead of the visibility as a criterion to evaluate when

the fringes are below the noise level and obtain the resolution

limit.

3.2. Noise: a simple model

We examine the simplest case where the total intensity is

the sum of three terms: (a) the interference fringes, arising

from the coherent scattering (Icoh); (b) the featureless back-

ground due to Compton scattering (Iinc); (c) a noise term (@):

Itot ¼ Icoh þ Iinc þ @: ð30Þ

We consider that the total intensity is low and that the noise

obeys Poisson statistics. This is justified since we are examining

weak interference fringes and signals. The standard deviation

of the Poisson noise is (Icoh + Iinc)
1/2 (Hughes & Hase, 2009). In

our model, the background due to Compton scattering affects

principally the noise level – in the absence of noise, and with a

constant background, the coherent contribution could still be

extracted by removing the baseline (background) contribu-

tion. The signal-to-noise ratio (SNR) is defined as the ratio

between the mean value and standard deviation of the signal

(Russo, 2018),

SNRcoh ¼
Icoh

� �
Icoh þ Iinc

� �� �1=2
; ð31Þ

where we have included the subscript ‘coh’ to indicate that we

are considering the ratio of coherently scattered intensity to

the total noise. The angular brackets denote the mean value.

In the following, we consider that the coherent and incoherent

contributions are constant and we remove the angular

brackets for notation simplicity. The purely coherent contri-

bution is above the noise level (SNRcoh � 1) if Icoh � (Icoh +

Ibck)1/2. Using equations (10), (23) and (25), the inequality can

be written as

de�T

d�

� �
Fcrystal

�� ��2�
"

de�T

d�

� �
Fcrystal

�� ��2þ de�KN

d�

� �
Scrystal

#1=2

;

ð32Þ

or, equivalently,

N 2
L FHKL

�� ��2 ~��� �qq0ð Þ
�� ��2 Tþ NLK

PNc

j sj

N 4
L FHKL

�� ��4 ~��� q0ð Þ
�� ��4 T2

� 1: ð33Þ

K and T are the KN [equation (3)] and Thomson [equation

(7)] differential cross sections, respectively. In a small region

of the reciprocal space, the incoherent and coherent scattering

functions of the crystal can be considered to be constant, as

well as the KN and Thomson differential scattering cross

sections. The possible values of the number of unit cells and

the normalized shape function lie within the intervals NL 2

[1,1) and ~���ðq
0Þ 2 ½0; 1�, respectively. As the denominator in

equation (33) goes as N 4
L , the inequality will always be fulfilled

for large enough NL, that is, for large enough crystals. For a

crystal, the best achievable resolution depends on the FT of

its shape function. Notably, the ultimate resolution may be

different along different q directions because the normalized

shape function j ~���ðq
0Þj hinges on q0.
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3.3. Analytical solution for the number of unit cells

It is possible to obtain an analytical expression to compute

NL, the number of unit cells that a crystal should have, so that

an nth secondary maximum of the normalized shape function

(i.e. the nth interference fringe) is above the noise level and

hence can be measured. For that, we rewrite equation (33) as a

cubic function of NL and we calculate its roots. From equation

(33), we write

N 3
L FHKL

�� ��4 ~��� q0ð Þ
�� ��4 T2

�NL FHKL

�� ��2 ~��� q0ð Þ
�� ��2 T
�K

XNc

j

sj ¼ 0; ð34Þ

which can be rearranged to obtain a cubic equation of the

form

x 3 þ pxþ q ¼ 0 ð35Þ

with the following identities,

p ¼ �
1

FHKL

�� ��2 ~��� q0ð Þ
�� ��2 T ;

q ¼ �
K
PNc

j sj

FHKL

�� ��4 ~��� q0ð Þ
�� ��4 T2

;

x ¼ NL:

ð36Þ

The general solution of an equation of the type of equation

(35) is given by the Tartaglia-Cardano’s formula (Aleksandrov

et al., 1999),

NL ¼ �
q

2
þ

q

2

� �2

þ
p

3

� �3
� 	1=2

( )1=3

þ �
q

2
�

q

2

� �2

þ
p

3

� �3
� 	1=2

( )1=3

: ð37Þ

To obtain the number of unit cells that are necessary to be

above the noise level, for a given secondary maximum, one

needs to introduce in equation (37) the value of the shape

function at the secondary maximum, i.e. maxfnthgj
~���ðq

0Þj.

Equation (37) can also be employed to determine, for a given

value of the normalized shape function, when the signal starts

to be below the noise level, independent of whether it is a

secondary maximum or not. Note, however, that the identities

for p and q in equation (36) are undefined when j ~���ðq
0Þj = 0.

3.4. Analytical solution for the magnitude of the shape
function

For completeness, we also give the solution for the magni-

tude of the shape function, although it is of less practical

interest. Similar arguments can be used to obtain an analytical

expression for j ~���ðq
0Þj as a function of NL. Equation (34) is a

quartic polynomial on j ~���j, but, by setting x2 = j ~���j, one

obtains a quadratic equation whose solution is

~��� q0ð Þ
�� ��2¼
NL FHKL

�� ��2 Tþ h NL FHKL

�� ��2 T� �2

þ 4N 3
L FHKL

�� ��4T2
K
PNc

j sj

i1=2

2N 3
L FHKL

�� ��4 T2

ð38Þ

for which we have selected the positive root of the general

solution of a quadratic equation because j ~���ðq
0Þj

2 must be

positive.

4. Practical examples

We discuss the influence of Compton scattering for some

simple cases that are often encountered in diffraction

experiments and have analytical solutions. We use the result of

equation (37) and analyse in detail the case of a crystal with

rectangular shape. Based on that result, we comment on the

case of a cylindrical crystal, a regular lattice and a crystal of

any shape. We consider a vertical scattering geometry and that

in all cases the crystals are illuminated with a beam having a

coherence length larger than the crystal dimensions.

4.1. Rectangular crystal

For a crystal with rectangular shape, with sides 2	x, 2	y, 2	z

along the directions x, y, z, respectively, the interference

fringes are given by a function of the form (Patterson, 1939;

Krivoglaz, 1996)

~�� qx; qy; qz

� ��� ��2¼ sin qx	x

qx	x

� �2 sin qy	y

qy	y

� �2
sin qz	z

qz	z

� �2

: ð39Þ

The function ðsin xÞ=x is called the ‘sinus cardinal’ or ‘sinc’

function and it fulfils limx!0 sinc = 1. The sinc2 function has

subsidiary maxima whenever x = �/2. Due to the product of

the sinc2 functions along the x, y, z directions (that we name

here in the following [100], [110] and [111], respectively),

those maxima off the principal axes (i.e. two or more of x, y or

z are non-zero) quickly become much weaker. Equation (37)

gives the number of unit cells (NL) that are necessary so that

the secondary maxima along the different directions are above

the noise level. The results are given in Table 1 and shown

graphically in Fig. 3. The values have been calculated using

the differential scattering cross sections for a 45� scattering

angle for carbon and palladium, at two energies: E = 12.4

and 30.0 keV. These particular chemical elements have been

chosen for the numerical calculations because carbon is often

used as a matrix element where crystallites are embedded, and

palladium is an archetypal component of catalytic particles, for

which Bragg CDI has already been employed (Ulvestad et al.,

2017). A scattering angle of 45� has been chosen because at

12.4 keV the coherent and incoherent cross sections are

roughly equal for carbon and so that the values obtained can

serve as an estimate.

The total number of unit cells can be converted into crystal

volume using equation (24). Heuristic calculations can be

made considering a cubic unit cell of side a and a cubic crystal

of side 	, for which Vtot = 	3 yields a lateral side 	 = aðNLÞ
1=3, in
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unit-cell lengths: as a rule of thumb, the lateral size goes as the

cubic root of the total number of unit cells times the unit-cell

length. For example, taking the data in Table 1 corresponding

to Pd at 12.4 keV and a’ 0.2 nm, the fifth maximum along the

[100] direction is above the noise if 	 > 0.8 nm, along [110] if

	 > 9.4 nm, and along [111] if 	 > 98.2 nm. Thus, the maxima

along some directions are above the noise level only for rather

large crystals. As mentioned above, the maximum achievable

resolution along the different directions

has a strong dependence on the crystal

shape and size.

4.2. Cylindrical crystal

For a cylinder-shaped crystal that has

the cylinder long axis along the Z-

direction and the circumference of

radius r on the XY plane, the intensity

interference fringes are given by the

function

~�� qr; qz

� ��� ��2 ¼ 2J1 qr rð Þ

qr r

� 	2
sin qz z

qz z

� 	2

:

ð40Þ

J1(x) is a Bessel function of first kind

and first order. In the z = 0 plane,

equation (40) yields an Airy diffraction

pattern [i.e. the diffraction pattern

expected from a circular aperture (Born

& Wolf, 1999)]. The subsidiary maxima

of an Airy pattern are also much weaker

than the principal maximum (Fig. 4 and

Table 2). The third subsidiary maximum

already is �2 � 10�3 weaker than the

principal maximum. Compared with the

sinc function discussed in Section 4.1,

the secondary maxima of the Airy

function are also weaker, and thus larger crystals are needed

to access the secondary maxima.

4.3. Regular lattice

In the derivation of the formulas of Section 2.3.1, there is an

implicit assumption: the crystal size is much larger than the

lattice spacing. For a small crystal, this approximation breaks,

and it is better suited to use directly a sum of the lattice points
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Figure 3
Number of lattice points needed, for a secondary maximum, to be above the noise level versus secondary maximum order. The values have been
calculated using the differential scattering cross sections for a 45� scattering angle, for the corresponding energy. [100], [110] and [111] denote three
directions (see text for details).

Table 1
Number of lattice points (NL) that are required for the nth secondary maxima along the [100], [110]
and [111] directions to be above the noise level.

The calculations have been performed for two energies (E = 12.4 and 30.0 keV) and using the differential
scattering cross sections for 45� scattering angle, for carbon (C) and palladium (Pd).

NL

[100] [110] [111]

Maximum
order C Pd C Pd C Pd

Energy = 12.4 keV
1 7 0 2.100 � 101 1.000 � 100 6.400 � 101 3.000 � 100

2 107 5 6.285 � 103 2.960 � 102 3.894 � 105 1.812 � 104

3 403 20 9.522 � 104 4.440 � 103 2.316 � 107 1.077 � 106

4 977 47 5.721 � 105 2.662 � 104 3.417 � 108 1.588 � 107

5 1898 90 2.185 � 106 1.016 � 105 2.552 � 109 1.186 � 108

6 3230 153 6.370 � 106 2.961 � 105 1.271 � 1010 5.906 � 108

7 5030 237 1.552 � 107 7.217 � 105 4.836 � 1010 2.247 � 109

8 7355 346 3.330 � 107 1.548 � 106 1.519 � 1011 7.061 � 109

9 10257 481 6.492 � 107 3.017 � 106 4.135 � 1011 1.922 � 1010

10 13786 646 1.175 � 108 5.460 � 106 1.007 � 1012 4.679 � 1010

Energy = 30.0 keV
1 14 1 4.300 � 101 3.000 � 100 1.360 � 102 8.000 � 100

2 227 13 1.368 � 104 7.540 � 102 8.502 � 105 4.664 � 104

3 869 49 2.078 � 105 1.141 � 104 5.059 � 107 2.774 � 106

4 2116 117 1.249 � 106 6.853 � 104 7.465 � 108 4.093 � 107

5 4121 228 4.772 � 106 2.617 � 105 5.574 � 109 3.056 � 108

6 7022 387 1.391 � 107 7.630 � 105 2.776 � 1010 1.522 � 109

7 10947 603 3.391 � 107 1.859 � 106 1.056 � 1011 5.792 � 109

8 16018 882 7.274 � 107 3.989 � 106 3.319 � 1011 1.820 � 1010

9 22348 1230 1.418 � 108 7.775 � 106 9.033 � 1011 4.953 � 1010

10 30047 1653 2.566 � 108 1.407 � 107 2.199 � 1012 1.206 � 1011



instead of a FT transform of the crystal shape. The (coherent)

scattering amplitude of the crystal is proportional to functions

of the form

f xð Þ ¼
sin NL x

sin x

� �2

: ð41Þ

But because j sin xj � 1, the rectangular parallelepipedal

crystal case of Section 4.1 can be considered as the limiting

case of the regular lattice sum.

4.4. Crystal of any shape

Arbitrary shapes can be approximated by considering

polygonal shape functions instead. Analytical formulas for

arbitrary polygonal shape functions are derived in the litera-

ture (Lee & Mittra, 1983; Saga, 1987; Chu & Huang, 1989;

McInturff & Simon, 1991). The reader is referred to those

references, and especially to Chu & Huang (1989), where a

rather simple and easily computable formula is reported.

Following the procedure depicted in Section 4.1, it is possible

to estimate the maximum resolution that can be achieved

for a given polygonal shape. However, there is not a general

method and the calculations have to be done for each case.

5. Discussion

It has already been discussed in the literature how noise

affects the phase retrieval methods and the strategies that can

be adopted to minimize its impact on the inversion schemes

(Vartanyants & Robinson, 2001; Godard et al., 2012). Our

study is focused on determining whether Compton scattering

affects the resolution. We have shown that is indeed the case:

Compton scattering degrades the visibility of the interference

fringes and can even make them disappear under the noise if

the inequality in equation (33) is satisfied. The limit dictated

by the inequality is, obviously, dependent on the noise model

we have used in equation (30) (i.e. just counting statistics or

Poisson noise). Our noise model is similar to the Rose model

and seems justified for low counting statistics (Burguess, 1999),

which is most often the case in BCDI experiments. We have

also ignored the origin of the noise; terms arising from

detection noise or stray background could be included. A

different noise model would yield a different inequality. But,

in any case, Compton scattering imposes a resolution limit on

the BCDI technique. In principle, using detectors with suffi-

cient energy resolution, one could discriminate between the

coherently scattered (elastic) contribution and the Compton

(inelastic) scattered part. We note, however, that, even for

25 keV at 180�, the shift in energy is less than 10%. The energy

resolution of the hybrid pixel detectors – nowadays the most

common detectors used in BCDI – is not enough to set the

coherent and incoherent contributions apart (Ballabriga et

al., 2016). Interestingly, a new technique – scanning Compton

X-ray microscopy – that uses the coherently and incoherently

scattered photons has been proposed. Potentially, it can

provide images with better resolution than those obtained

with other coherent imaging techniques, and exposing the

samples to a lower X-ray dose (Villanueva-Perez et al., 2018).

We have used a signal-to-noise value of SNR = 1 to set

the inequality equation (33) and decide when the diffraction

fringes can no longer be discerned. Based on that, a value

for the maximum resolution attainable can be established.

The criterion SNR = 1 is very low; generally, higher values of

the SNR value are needed to detect a signal coming from an

object in a noisy and homogeneous background (Russo, 2018).

Rose estimated that the SNR had to be above �5 – see

Burguess (1999) for a detailed discussion and the original

references. Roughly, such value implies that the total number

of unit cells within the crystal should be 25 times larger, or,

approximately, that the lateral size of the crystals must be �3

times larger than the values calculated with equation (37). We

mention that the Rose criterion has also been considered to

assess the limits in resolution in X-ray diffraction microscopy

due to X-ray radiation damage (Howells et al., 2009).

We have also shown how, in the presence of noise, the

maximum achievable resolution depends upon the crystal

shape and the reciprocal space directions probed; this has not

been (to our knowledge) brought up before. A direct conse-

quence is that to study small crystallites embedded in an

amorphous matrix one should select the matrix material

sensibly and also use a beam size that is close to the crystallite
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Table 2
First ten subsidiary maxima of the ½2J1ðxÞ=x�2 function.

Maximum
order x ½2J1ðxÞ=x�2

1 5.14 1.750 � 10�2

2 8.42 4.158 � 10�3

3 11.62 1.601 � 10�3

4 14.80 7.794 � 10�4

5 17.96 4.370 � 10�4

6 21.12 2.693 � 10�4

7 24.27 1.776 � 10�4

8 27.42 1.232 � 10�4

9 30.57 8.896 � 10�5

10 33.72 6.633 � 10�5

Figure 4
First subsidiary maxima of the Airy function y = ½2J1ðxÞ=x�2 (black solid)
and the y = ½sinðxÞ=x�2 function (blue dotted). For both functions, the
value of the principal maximum at x = 0 is equal to 1.



size in order to reduce the Compton scattering, even in Bragg

geometry at high angles. It is also of special importance for the

reconstruction of objects in 3D. To obtain a full data set, one

needs to measure 3D data in reciprocal space, generally done

by rotating the sample around specific axes and recording

rocking scans (Stagl et al., 2014). In projections along the non-

principal directions, the maximum achievable resolution may

be smaller because the secondary maxima are much weaker.

For strained crystals, the situation may be worse because the

diffraction pattern about Bragg peaks is not symmetric: strain

within the crystal (i.e. uu;v;w 6¼ 0) yields an asymmetric

contribution to the scattering amplitude around each reci-

procal lattice point (Robinson et al., 2001; Krivoglaz, 1996).

An effect of strain is that in most cases it will smear the

interference oscillations arising from coherent scattering. The

ratio between maxima and minima may decrease, and the

coherent signal will be closer to the background level: the

weakest oscillations may vanish, making it more difficult to

obtain quantitative information about the strain from the data.

Compton scattering differentiates from random noise, in the

sense that it is inherent to the sample composition and the

scattering geometry. From the point of view of phase retrieval,

this does not make any difference. The option of a careful

estimation of the Compton contribution to subtract from

the data should, in our opinion, be considered with great

prudence. More effective could be the reduction of the source

of noise by judicious experimental choices.

It is interesting to mention that in small crystals with large

unit cells (for example, some protein crystals or metal-organic

frameworks), as pointed out by Ewald (1940), the internal

crystalline structure can enhance the interference fringes

arising from the shape. Essentially, if the unit cell is very large,

the reciprocal space Bragg points due to the inner crystalline

structure are very close. However, the Compton scattering

remains constant as it is incoherent and therefore independent

of the crystalline structure. This enhancement could even-

tually be beneficial for studies on small crystals with large unit

cells. We note nevertheless that if overlap of shape functions

centred at adjacent reciprocal space points occur, using a CDI-

type strategy may be difficult or impossible, because it will be

difficult to set apart the shape function.

How relevant are our findings in practice? We examine two

recent works on BCDI to ascertain it, focusing only on the

aspects that are pertinent for our comparison. Ulvestad et al.

obtained 3D imaging results on Pd nanocrystals during the

hydriding phase transformation (Ulvestad et al., 2017). The

BCDI experiment was carried out using 9 keV X-rays, at

2� = 33�. The smallest particles they studied had an effective

length (i.e. l ’ volume1/3) of l ’ 180 nm. Their images show

secondary oscillations up to 17 secondary maxima and prob-

ably more could be measured with longer exposure times. If

these particles are considered, in a very coarse approximation,

as small spheres, the FT shape function would be proportional

to the square of the f(r) = 3[sin(ql)/(ql)2
� cos(ql)/(ql)2]

function, where l denotes the radius of the sphere. This

function is connected with the Bessel functions [see Vembu

(1961) for details]. It is very compelling that, compared with

the case of the rectangular crystal depicted in Section 4.1

for which crossed multiplicative terms decrease the signal

diffracted along non-principal directions, a spherical particle

yields a less marked intensity decrease along any direction

except when compared with the directions perpendicular to

the rectangle faces. One can conclude that for spherical or

spheroidal particles, Compton scattering, and by extension

any noise in general, will have a smaller influence on the

spatial resolution that could be achieved. These considerations

apply chiefly to non-strained crystals. A more detailed study

would be required to quantify to which extent they are also

valid (or not) for strained crystals. With respect to the work of

Ulvestad et al., the beam energy, scattering angle and crystal

size are more favourable than those used to obtain the values

in Table 1. Evaluating equation (37), the number of unit cells

that are required for the 20th secondary maximum to be

visible is �16 nm, a size substantially smaller than the crystals

studied by Ulvestad et al.. Thus, unless very small particles are

studied, for most of the studies that are performed at rather

low energies (�8 keV), we do not anticipate that Compton

scattering will lessen the resolution noticeably.

The second work we comment on is a recent single-shot 3D

CDI experiment in which core-shell cubic Au/Pd nanoparticles

have been imaged (Pryor et al., 2018). The experiment was

done in forward scattering geometry using 6 keV X-rays, and

therefore Compton scattering is completely negligible. One of

the ultimate aims of such experiments is to characterize the

internal structure and quantify the stress relaxation mechan-

isms. Large-scale molecular dynamics calculations have

been employed to simulate the core-shell Au/Pd particles

(Nathanson et al., 2018). It is predicted that strain in the

palladium shell is larger on the faces than at the edges and

corners. There is an interest in determining these differences

as they may influence the optical and electrochemical prop-

erties of the core-shell particles. However, to measure the

strain one has to resort to, for example, BCDI, and measure

the diffracted signal at larger scattering angles. Moreover,

directions different to the principal ones (i.e. perpendicular to

the cube faces) must be examined too to probe the strain at

edges and corners. As discussed in Section 4.1, along the non-

principal directions the effect of Compton scattering will be

more noticeable because the coherently scattered signal is

much weaker. This is also evident in the images reported

by Pryor et al. According to our calculations (Table 1 and

Section 4.1), at 12.4 keVand 2� = 45� scattering angle, the fifth

secondary maximum along the [111] direction of a palladium

cystallite would already be compromised for sizes smaller than

�98 nm. Hence, Compton scattering may bar these studies

and limit their resolution. But, notwithstanding the unavoid-

able Compton scattering, clever approaches, such as the super-

resolution 3D CDI technique employed by Pryor et al. (2018),

may push the ultimate resolution well beyond the limit of a

‘classic’ approach. Our results are circumscribed to the stan-

dard BCDI approach and are not directly applicable to

super-resolution approaches, although they may also be

relevant to those methods too, but it is difficult to evaluate

to what extent.
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A final note regarding partial coherence and Compton

scattering: the effect of the incoherent contribution of

Compton scattering from the sample is different from that

arising from an incoming partially coherent beam. In the

latter case, the incoming wavefield can be characterized by

measuring directly the incoming beam. That information

can be taken into account in the phase retrieval algorithms

(Mastropietro et al., 2011; Björling et al., 2020). However, the

loss of coherence due to Compton scattering from the sample

and which will be observed on the total scattering signal

cannot be easily input into a phase retrieval strategy without

having some prior knowledge about the sample.

6. Conclusions

Compton scattering may limit the resolution of BCDI by

reducing the visibility of the interference fringes. Certainly, its

influence will be greater when the Compton scattering cross

section is larger: for higher energies and for systems with

low-Z elements. It will also be more important for small

crystals. Its relative importance can be estimated using a

criterion that relates the signal-to-noise ratio, the crystal size

(or number of lattice points) and the shape function [equation

(33)]. Notably, the resolution will be limited for those direc-

tions where the shape function interference fringes are fainter.
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