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A more general analytical theory of X-ray beam propagation through

compound refractive lenses (CRLs) than the earlier study by Kohn [(2003).

JETP, 97, 204–215] is presented. The problem of nanofocusing with CRLs is

examined in detail. For a CRL with a relatively large aperture the focusing

efficiency is limited by the radiation absorption in the lens material. The

aperture does not affect the focusing process and it is replaced by the effective

aperture. The X-ray transverse beam size at the focus is then by a factor of � =

�/� times smaller than the transverse beam size just behind the CRL. Here,

� and � are the real and imaginary parts of the CRL material refractive index

n = 1 � � + i�. In this instance, to improve focusing efficiency, it is advantageous

to decrease the CRL aperture and increase the photon energy E. However, with

increasing photon energy, the material absorption decreases, which results in the

CRL aperture impact on the transverse beam size. The latter leads to the fact

that with a proper CRL length the beam size is independent of both the aperture

and photon energy but depends only on the CRL material electron density and is

approximately equal to wc = �/(8�)1/2, where � denotes the radiation wavelength,

as predicted by Bergemann et al. [(2003). Phys. Rev. Lett, 91, 204801].

1. Introduction

The complex refractive index for hard X-rays with photon

energies from 5 to 100 keV may be written as n = 1 � � + i�
where � = �0 + �1. The first term �0 is defined by classical

Thomson scattering and can be expressed as

�0 ¼
�2r0

2�
N; r0 ¼

e2

mc2
; ð1Þ

where � = hc/E is the wavelength of X-ray radiation, h is the

Planck constant, c is the speed of light, E is the photon energy,

e and m are the electron charge and mass, and N is the number

of electrons per material unit volume.

The parameters �1 and � are defined by photoelectric

absorption and Compton scattering, which are described by

the quantum mechanical theory. There are other processes

which give a very small contribution and can be neglected in

our task. We note that �0 � �1. Therefore, for rough estima-

tions it is sufficient to consider only �0 . It is straightforward to

verify that � has a very small value compared with unity. For

instance, for silicon and � = 0.1 nm we have � ’ 3 � 10�6

(Kohn, 2015). For this reason, X-ray focusing with refractive

optics had been considered impossible for nearly 100 years

after the discovery of X-ray radiation.

The situation changed by the mid-1990s when new radiation

sources arrived; these included third-generation synchrotron

light sources (e.g. ESRF, APS, SPring-8) and free-electron
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lasers. Fourth-generation synchrotron facilities are also

emerging nowadays. Such sources may produce X-ray beams

with very small lateral sizes, and thus even refractive lenses

with relatively small effective apertures may be beneficial.

Additionally, compound refractive lenses (CRLs) have

become widespread. CRLs are composed of elements with a

parabolic profile of the radius of curvature R at the apex,

which should be as large as possible to simplify their fabri-

cation process. Refraction is enhanced by using the large

number of elements placed close together in a row along the

beam path. This concept was initially implemented by Snigirev

et al. (1996) for the one-dimensional lens fabricated as the set

of cylindrical holes in aluminium and has become widespread

later. Two-dimensional lenses with parabolic shape appeared

in the work by Lengeler et al. (1999).

A method of microstructuring (microfabrication) tech-

nology on a silicon surface, which is widely applied in the

computer industry, has been developed since 2001 for manu-

facturing one-dimensional planar lenses (Grigoriev et al., 2001;

Schroer et al., 2003). Microstructuring technology makes it

possible to produce CRLs with relatively small curvature

radius and aperture, and thus with small size along the beam

path. It is these lenses that are currently capable of focusing

X-rays to nanometre dimensions. Fig. 1 presents the main

parameters of the CRL individual elements in the coordinate

plane (x, z), where z stands for the optical axis. Here, A is the

aperture, R is the curvature radius of the parabolic profile at

the apex, and d is the thickness of the thin layer of material

between two parabolic surfaces (minimal thickness).

The length of the individual lens elements along the z-axis

is defined as p = d + A2/4R. In the general case, the CRL can

be composed of up to several hundred individual elements. In

this paper, three examples of CRLs are considered with the

following parameters in micrometres: A = 50, R = 6.25, p = 102

for the first example; A = 30, R = 3.75, p = 62 for the second;

A = 10, R = 1.25, p = 22 for the third. The minimal element

thickness d = 2 is equal for all three examples of CRLs.

The first CRLs example have been used, inter alia, in the

studies on the bi-lens (Snigirev et al., 2009) and six-lens

(Snigirev et al., 2014) interferometers. The second CRLs have

been used to build up a 30-lens interferometer (Lyubomirskiy

et al., 2016). There are no published experimental results for

the third CRLs, but the lenses have been fabricated and exist.

Fig. 2 shows these three examples with their accurate relative

sizes.

The question of the limit to the beam focusing effect using

CRLs requires the development of an adequate theory

capable of making rapid assessments with controlled accuracy.

The present paper analyses different theory approximations

and the degree of their accuracy. The major outcome of

the work is the prediction of the minimal spot size of the

focused beam.

We note that in the paper by Schroer & Lengeler (2005) the

adiabatically focusing CRL was proposed and theoretically

evaluated. However, such CRLs have not been manufactured

so far. We think that adiabatical CRLs will not be used in the

future for many reasons. That is why we do not analyze these

CRLs in this paper. Instead, we will consider cascade CRLs in

the following publications.

The next section considers various approximations of the

theory and analyses their accuracy by means of calculating

ray trajectories using geometrical optic laws (ray-tracing

approach). High precision of the examined approximations is

demonstrated. In the third section, the analytical theory of a

continuously refractive lens without considering its aperture is

presented. The fourth section describes an iterative calcula-

tion method and the theory refinement for the case when the

CRL aperture influences the result of beam focusing.

2. Ray trajectories and main approximations of
the theory

As shown in Fig. 1, planar lenses focus radiation in the plane

(x, z), and, since X-ray refraction is weak, the paraxial

approximation can be used with high accuracy. In this case, the

surface of the constant wave phase ’ is very close to the

direction normal to the beam traveling direction, which we

consider as the z-axis. The angle � between the radiation ray

and the axis z can be described using the simple formula

� ¼ K�1 d’

dx
; K ¼

2�

�
; ð2Þ

where x denotes the coordinate along the direction normal to

the z-axis. It is then straightforward to calculate the angle

change at the air–material and material–air interfaces. For a

lens with constant material density, the x-dependence of the

phase shift inside the lens is equal to �’ = �K��z, where �z

is the ray path inside the lens material.
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Figure 1
Parameters of one element of an X-ray compound refractive lens.

Figure 2
Individual CRL elements with accurate relative sizes of the three
examples of CRLs covered in the paper.



For the first air–material interface, we consider �z as the

distance from this interface to the lens center along the z-axis

as �z = x2/2R. We have the same dependence for the second

material–air interface. Therefore, the angle change on each

interface is the same and can be expressed as

�� ¼ ��
x

R
: ð3Þ

Figure 3 illustrates the discussed situation for the individual

lens element by the red line. The specific calculation of the ray

trajectory in the lens element can be carried out using the

formulas presented below.

Consider a beam with the parameters z0 = �p/2, x0, �0 at

the lens entrance. The coordinates of the point where the ray

enters the lens material are z1 = z0 + zr , x1 = x0 + zr�0 , where

zr ¼ B2
� 4AC

� �1=2
�B

h i
=2A: ð4Þ

Here,

A ¼ �2
0=2R; B ¼ 1þ x0�0=R; C ¼ z0 þ d=2þ x2

0=2R:

ð5Þ

Note that A > 0, B > 0 but C < 0. At this point the angle

defining the ray direction changes to have the value �1 =

�0 � x1�/R.

The coordinates of the second point, where the beam exits

the material, are z2 = z1 + zr , x2 = x1 + zr�1 , where

zr ¼ B� B2
� 4AC

� �1=2
h i

=2A: ð6Þ

Here,

A ¼ �2
1=2R; B ¼ 1� x1�1=R; C ¼ d=2þ x2

1=2R� z1:

ð7Þ

Note that now A > 0, B > 0, C > 0 and the ray direction angle

changes to �2 = �1� x2�/R. At the lens end (just behind the one

CRL element) we have z3 = p/2, x3 = x2 + (z3 � z2)�2, �3 = �2.

Equations (4)–(7) allow the accurate calculation of ray

trajectories in the individual CRL element. Fig. 3 (red line)

shows the case of the first example of the considered CRLs

(p = 102 mm), �0 = 0 and � = 0.02. The � value is very large

compared with the actual values of order 10�6. For a better

view the vertical size in the figure was twice increased. If there

are other elements along the optical axis, the calculation can

be repeated with the new boundary conditions equal to the

beam parameters at the end of the previous element. Such

calculation can be easily carried out for the ray trajectories in

all the CRL elements. This approach is similar to the ray-

tracing calculations which were used for the CRL by Proto-

popov & Valiev (1998) and then by many authors. For

example, one can look for the well known program SHADOW

(Sanchez del Rio et al., 2011). Nevertheless, the general

solution of the Maxwell equations for the CRL with the

parabolic profile appears to be rather complicated.

However, it is not necessary to look for the exact solution to

the problem, since simpler approximations can be used due

to a very small value of �. In this paper, we consider two

approximations, which are the opposite extreme cases. These

approximations are used in more accurate wave-propagating

calculations.

We can call the first case the phase-contrast imaging

approximation where the thickness of the object is small and

neglected. One takes into account the complex phase shift

only. This approximation can also be called the compressed

lens approximation, because we assume that the thickness of

the single element is zero, and the element is described as the

straight line perpendicular to the z-axis with z = 0. Never-

theless, the X-ray wave phase shift upon crossing this line is

the same as for the real individual element, i.e. �’ =�K�x2/R.

Such an approach was used in the theory of photonic crystal

imaging (Kohn et al., 2014; Kohn, 2018). It is similar to the

multi-slice method used in the theory of transmission electron

microscopy.

Thus, in this approximation for the individual element, the

radiation ray changes direction only at a single point with the

coordinates x1 = x0 + �0 p/2, z1 = 0. The angle between the ray

and the optical axis changes to �1 = �0� 2x1�/R, and at the end

of the element we have x2 = x1 + �1p/2, z2 = p/2, �2 = �1. The

final result can be expressed as

x2 ¼ x0 1�
�p

R

� �
þ �0 p: ð8Þ

The ray trajectory in the single lens element for this case is

presented in Fig. 3 by the blue line. Both the red and the blue

lines are given for the same parameters. One can see that, if

the parameter � has a very large value compared with the real

situation, the blue trajectory may vary from the red one.

However, the difference becomes very small for the actual

values of �.
We define the second case as the continuous refraction

approximation or the distributed lens approximation. Now we

consider the lens as the medium of the constant density along

the z axis. However, in this case, the material density depends

on the x coordinate in such a way that the phase shift is also

equal to the correct value �’ = �K�x2/R. It is easy to verify

that in this approximation we have ’ = ’0�K�(x2/pR)(z� z0)

for any point in the lens material. It should be noted that

the real lens has a constant density, and only the material

thickness varies along the x-axis, while in the continuous

refraction approximation the density changes, but the lens

thickness is constant.
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Figure 3
Trajectories of X-rays for the accurate solution of the problem (red line)
and in the approximation of compressed lenses (blue line).



This case was considered by Kohn (2002, 2003), where an

analytical solution for the wave equation was obtained. In the

second approximation, the ray trajectory is a smooth curve for

which we can write

dx

dz
¼ �ðzÞ;

d�

dz
¼ �

x

L 2
c

; Lc ¼
pR

2�

� �1=2

: ð9Þ

The parameter Lc was introduced in the theory presented by

Kohn (2002, 2003) where its physical meaning was discussed.

The solution to x(z) can be expressed in analytical form

xðzÞ ¼ x0 cos z=Lcð Þ þ �0Lc sin z=Lcð Þ: ð10Þ

Here, the z-coordinate starts at the entrance of the elementary

lens. The expression for angle �(z) can be found by differ-

entiating (10) over z. Interestingly, equation (10) gives the

same value as in the case of the phase contrast approximation

for the x coordinate at the end of the lens (z = p), provided

that p� Lc. However, it should be noted that the condition

p� Lc is met only for the small values of �.
For a stack of elementary lenses forming a CRL, the exact

calculation of ray trajectories, as well as the calculation in the

phase-contrast approximation, is an iterative procedure. As

for the continuous refraction approximation, equation (10)

immediately gives the result for any number of elements when

z = Nl p, where Nl stands for the number of elements in the

CRL. We will consider Nl as a free parameter.

To demonstrate the accuracy of both approximations, we

consider the case where the CRL focuses the beam at its end.

In this case we obtain the maximum change of the trajectories

inside the CRL. We calculate three curves of the ray trajec-

tories: one for the exact trajectory, which takes into consid-

eration refraction at each boundary, and two curves for the

approximations considered above. We choose x0 = xa = A/2,

�0 = 0 as the initial coordinates and choose the number of

lenses Nl that gives the minimal x coordinate greater than

zero. Calculations were made for different photon energies

and for all three examples of CRLs.

It is sufficient to compare the coordinates Xn at the end of

the trajectories, where n = 0 is applied for the case of the exact

calculation, and n = 1, 2 corresponds to the first and second

approximations. The main parameters are the relative differ-

ence in the coordinates "1 = (X1 � X0)/x0 and "2 = (X2 � X0)/

x0 . We consider three values of photon energy: E = 10, 30 and

50 keV. We have obtained that the numbers of CRL elements

Nl are approximately the same for all three examples of CRLs

because they have similar form (see Fig. 2). The specific values

are: Nl = 118, 360 and 602; "1 � 107 = �38, �4.3 and �1.5;

"2 � 107 = 68, 7.4 and 2.7, for the corresponding photon energy

values pointed out above.

From the above results, we can conclude that in the first

approximation the trajectory changes more rapidly, while in

the second one it changes less rapidly compared with the

accurate trajectory. The accurate trajectory lies between the

considered approximations. The difference decreases with

increasing photon energy and it is highest for the lowest

considered energy E = 10 keV. This is because the parameter �
is inversely proportional to the square of photon energy [see

equation (1)]. Nevertheless, the main parameter of accuracy

does not exceed the value 5 � 10�6 even for E = 10 keV.

The calculation results reveal that both approximations

have a sufficiently high degree of accuracy especially for the

high photon energies. It should be mentioned that low-energy

X-ray beam focusing is less efficient due to strong radiation

absorption. It is interesting to note that all three types of

analyzed lenses focus the beam at their end with approxi-

mately the same number of individual elements Nl . Slight

variations occur since the minimal element thickness d does

not change with the decreasing element length p. These minor

changes are, however, not significant.

Thus, we can assume that the considered approximations

are fully applicable for the analysis of the CRLs, presented in

the first chapter. The first approximation for the individual

CRL element is consistent with the commonly known phase-

contrast imaging theory (Snigirev et al., 1995; Argunova &

Kohn, 2019). It neglects the ray path change inside the object

and takes into account only the trajectory angle change

through the total phase shift and absorption. In this instance,

the phase object can be described by means of the transmis-

sion function, independent of the illuminating wavefield.

The second approximation was first considered by Kohn

(2002, 2003) in order to obtain the analytic solution of the

Maxwell equations for a more complex CRL propagator. This

solution was used to derive the simple analytic expressions

that allow estimating the focused beam parameters, which is

useful for an experimental scheme to be easily determined.

The next section discusses this approximation in more detail.

3. Analytical theory of focusing X-rays by the
continuously refractive lens

The analytic solution of the Maxwell equations for the model

of the continuously refractive lens in the two-dimensional case

has been widely discussed in the earlier work (Kohn, 2003).

The following is a brief overview of this theory basic equations

for the one-dimensional focusing of the beam in the (x, z)-

plane. The general solution of the Maxwell equation for the

monochromatic X-ray wave electric field E(x, z) can be

expressed as Eðx; zÞ = expðiKzÞBðx; zÞ. Here, the function

B(x, z) describes the relatively slow transfer of the wavefield

transverse dependence along the z-axis, while the phase factor

oscillates rapidly.

In the paraxial approximation and for the specified CRL

model, function B(x, z) satisfies the following equation,

dB

dz
¼ �iK0B� iK

x2

2z2
c

Bþ
i

2K

d 2B

dx2
; ð11Þ

where the z-coordinate origin is located at the CRL entrance,

and

K0 ¼ K�
d

p
; zc ¼

pR

2�

� �1=2

: ð12Þ

Here, �= �� i�, the parameter � determines the absorption of

the radiation in the lens material. Note that in the given form,
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equation (11) is valid only within the CRL aperture, while

outside of it (i.e. for x > xa = A/2) x is to be replaced with xa .

We focus only on the case of long and highly absorbing

CRLs. Therefore, the function B becomes zero at the aperture

boundary, and the aperture itself has no impact on the result.

The CRL length equals L = Nl p. The general solution of

equation (11) can be written as a convolution,

Bðx;LÞ ¼ C0

Z
dx1 PL x; x1ð ÞB x1; 0ð Þ; ð13Þ

where C0 = expð�iK0LÞ. The CRL propagator Pz(x, x1)

satisfies equation (11) without the first (constant) term at the

right-hand part, and the boundary condition P0(x, x1) =

�(x � x1), where �(x) stands for the Dirac delta function. In

the work by Kohn (2003) this function has been shown to have

an analytic form,

PL x; x1ð Þ ¼
1

ði�zc sLÞ
1=2

exp i�
x2 þ x2

1

� �
cL � 2xx1

�zc sL

� �
ð14Þ

where

cL ¼ cos L=zcð Þ; sL ¼ sin L=zcð Þ: ð15Þ

If the wavefunction B(x, 0) at the CRL entrance is known, we

can obtain the new wavefunction B(x, L) at the end of the

CRL from equation (13).

Now consider a more general problem when the CRL is

illuminated by a point source with the coordinate xo at the

distance ro from the lens entrance. Of interest is the wave

amplitude at the point with the coordinate xi located at the

distance ri from the CRL end. Such a function G(xi , xo) can be

called the CRL image propagator. It is convenient to calculate

the dimensionless intensity as the ratio of the radiation

intensity at the observation point to the intensity of the X-ray

radiation in front of the CRL.

In this case, the image propagator can be expressed as

Gðxi; xoÞ ¼ CnC0

Z
dx dx1 P xi � x; rið Þ

� PL x; x1ð ÞP x1 � xo; roð Þ; ð16Þ

where Cn = (i�ro)1/2, and the Fresnel propagator

Pðx; rÞ ¼
1

ði�rÞ1=2
exp i�

x2

�r

� �
ð17Þ

describes propagation of the radiation in empty space.

Note that the factor C0 does not affect the intensity distri-

bution and has only a supplementary meaning. It merely

reduces the radiation intensity after the lens due to the

radiation absorption in the thin parts of the elementary lenses.

For the sake of simplicity, we will omit this factor and consider

it as equal to unity. For the more accurate calculations, the

absorption can be easily incorporated by the factor Ma =

expð�	dNl Þ, where 	 = 2K� is the X-ray absorption coeffi-

cient of the lens material.

It was demonstrated by Kohn (2003) that the function (16)

also has an analytical solution, which we present here in an

alternative form, namely

Gðxi; xoÞ ¼
ro

rg

� �1=2

exp i�
x2

i Co þ x2
oCi � 2xixo

�rg

� �
ð18Þ

where

Ci;o ¼ cL �
sL

zc

ri;o; rg ¼ ðri þ roÞ cL þ zc �
ri ro

zc

� �
sL: ð19Þ

The dimensionless relative radiation intensity is I(xi, xo) =

|G(xi, xo)|2. It is obvious that for ri = 0, ro = 0 we can find

G(xi, xo) = PL(xi, xo, L) from equation (18). It can also be

shown that the following evident physical relations are satis-

fied,Z
dxo Gðxi; xo; ri; roÞPðxo � xs; rsÞ ¼ Gðxi; xs; ri; ro þ rsÞ;

ð20Þ

Z
dxi Pðxd � xi; rdÞGðxi; xo; ri; roÞ ¼ Gðxd; xo; rd þ ri; roÞ:

ð21Þ

Equation (18) has limited scope and is valid only if the result

does not depend on the CRL aperture, i.e. the full width at

half-maximum (FWHM) of the Gaussian beam at the end of

the CRL is less than half the CRL aperture. If the condition is

not met, the integration cannot be done for infinite limits. It

is demonstrated below that the cases when this condition is

not satisfied do exist. Therefore, the estimation of the CRL

effective aperture size is of great importance.

On modern synchrotron radiation sources and free-electron

lasers, the distance ro is typically large; thus, let us consider the

extreme case ro!1, which corresponds to the incident plane

wave. In this regard, the result does not depend on the coor-

dinate xo and is equal to

IðxiÞ ¼
zc

zi

����
���� exp Im

sL

zi

� �
Kx2

i

� �
; zi ¼ zc cL � ri sL: ð22Þ

The effective aperture Ae of the lens (Kohn, 2017) is defined as

the integral of (22) for any value of ri. Below, we take into

account the fact that � = �=�� 1 and restrict ourselves to the

linear in � approximation. Consequently, zc ’ Lc (1 + i�/2),

sL ’ SL � i�uCL=2; cL ’ CL þ i�uSL=2; ð23Þ

where

u ¼ L=Lc; CL ¼ cos u; SL ¼ sin u: ð24Þ

Integrating with ri = 0 we have

Ae ¼
�FL

2�
L

� �1=2

; FL ¼
Lc

SL

; 
L ¼
1

2
CL þ

u

SL

� �
: ð25Þ

This value is valid for any distance ri .

The focusing condition occurs if ri = rf where rf is the

distance for which the quantity I(0) in equation (22) has the

maximum value. It is easy to verify that the maximum is

achieved when the real part of the parameter zi equals zero.

Linear in � approximation leads to the next equation for the
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focus distance rf = FLCL. At this distance equation (22) will

be as follows,

IðxiÞ ¼
1

�
L

exp �
Kx2

i

�FL
L

� �
: ð26Þ

We define the beam transverse size at the focus wf as the

FWHM of this Gaussian function and obtain

wf ¼ Cwð��FL
LÞ
1=2; Cw ¼ ð2 ln 2=�Þ1=2

¼ 0:664: ð27Þ

In the limit of the thin CRL (u� 1) we apply the approx-

imations CL = 1, SL = u. Then rf becomes equal to f = L2
c=L =

R=ð2Nl�Þ and we obtain from (25) and (27) a well known result

(Kohn, 2003, 2009, 2012, 2017), namely, wf = Cw(��f)1/2,

Ae = CaCw(�f /�)1/2, where Ca = 1/(21/2Cw) = 1.064.

The integral in infinite limits A from the Gaussian function

with maximum value Im and FWHM w is known to be equal:

A = Ca Imw. Let us apply this equation to the case of the focus

distance. We obtain that the maximum value of the intensity

is Im = ��1. On the other hand, the maximum value of the

intensity at the end of the CRL is Im = 1. Let w0 be the FWHM

at the end of the CRL. Then we obtain that wf = �w0 . This

means that if the beam size is defined by the absorption, the

CRL compresses the beam to become of � times smaller size.

Consequently, the parameter � can be called the CRL focusing

efficiency.

Of particular interest is the minimum beam size attainable

with the use of CRLs. From a physical point of view, it is clear

that the minimal size corresponds to such a CRL length for

which the beam is focused at the end of the CRL, i.e. when

ri = 0. This condition is met for L = (�/2)Lc, and in this case

from the general equations we have

wf ¼ 0:589ð��LcÞ
1=2; If ¼ 1:273=�: ð28Þ

Here, If denotes the maximum value of the relative radiation

intensity at the focus. The effective aperture is determined

from the above equations in a standard way,

Ae ¼ Cawf If ¼ 0:798ð�Lc=�Þ
1=2: ð29Þ

Note that 0.589 = ðln 2=2Þ1=2, 0.798 = (2/�)1/2, 1.273 = 4/�.

The resulting equations lead to a few interesting conclu-

sions. First, the beam size at the focus is by a factor of 0.74�
smaller than the effective aperture, even for the extremely

long CRL. Therefore, the beam is compressed more efficiently

for hard X-rays having a shorter wavelength � because � is an

increasing function of �. It is also clear that the CRL length

should be minimal, which can be achieved by reducing the

CRL aperture.

For real CRLs, L = Nl p and it is necessary to choose the

maximum number of elementary lenses Nl = Nm, which gives

the closest value of L less than (�/2)Lc . However, in practice,

the increase in number of elements Nl more than Nm /2 does

not significantly reduce the beam size. This is due to the fact

that the beam is weakly refracted in the vicinity of the optical

(CRL) axis, and the beam converges to the focus even in

empty space. This conclusion follows from the results of our

computer simulations.

Let us consider the CRL length which is twice as small

compared with the above case and equals Lo = (�/4)Lc. Direct

calculation shows that the focal length rf = Lc. Further, we

have

wf ¼ 0:753ð��LcÞ
1=2; If ¼ 1:1=�; Ae ¼ 0:881ð�Lc=�Þ

1=2:

ð30Þ

In comparison with the previous result, the beam size has

increased by a factor of 1.3, the relative intensity has slightly

decreased, and the effective aperture has slightly increased.

The distance from the CRL entrance to the focusing point is

now equal to 1.78Lc compared with the value 1.57Lc for the

CRL focusing the beam at the end. Thus, we have a slight

difference in beam parameters with the twice decreased

number of CRL elements, which is significant from a practical

standpoint (such a CRL has half the cost).

Table 1 lists the results of the accurate calculations made

using general expressions (26)–(28) for the three examples of

CRLs with the specific value of Nl closest to but less than

Nm /2. The second line from the bottom for each energy

represents the applicability of the calculations. The CRL

aperture does not influence the result if Ae < 0.5A. This

condition is met for all three examples of CRLs at low photon

energies and is not fulfilled at high energies, particularly for

the CRLs with the small aperture. When the condition is not

fulfilled, estimations for the focus beam size produce invalid

values. First, in this case, the intensity distribution at the focus

is not described by the Gaussian function, and additional

peaks may appear. As regards the FWHM of the central peak,

it typically exceeds the predictions of expressions (26)–(28)

when the above criterion is not met.

We can rewrite expression (30) for the lateral beam profile

in an alternative form using the expression of Lc via the

aperture A, namely, Lc = Ah/(8�)1/2, where h = [p/(p� d)]1/2
’

1 + 2dR/A2 is the parameter which takes into account the
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Table 1
Calculated values of the beam size at the focus and other parameters for
the CRLs with length L = Lo.

CRL N 1 2 3

E = 10 keV, � = 0.015
Lc (mm) 8.05 4.86 1.67
Nl 61 61 59
Ae (mm) 7.23 5.61 3.29
2Ae /A 0.3 0.4 0.7
wf (nm) 93 72 42

E = 30 keV, � = 0.0018
Lc (mm) 24.4 14.7 5.06
Nl 187 186 180
Ae (mm) 20.7 16.1 9.42
2Ae /A 0.8 1.1 1.9
wf (nm) 32 25 15

E = 50 keV, � = 0.00091
Lc (mm) 40.6 24.6 8.44
Nl 313 310 301
Ae (mm) 29.4 22.9 13.4
2Ae /A 1.2 1.5 2.7
wf (nm) 23 18 10



minimal thickness of the CRL element. It is slightly less than

unity. The new expression is as follows,

wf ¼ 0:753ð�Ah wcÞ
1=2; wc ¼ �=ð8�Þ

1=2: ð31Þ

The parameter wc was introduced as the critical size of the

focused beam by Bergemann et al. (2003), who claimed that it

is impossible to focus the X-ray beam to a size less than wc

using any focusing device. However, it is seen from expression

(31) that such focusing should be possible if we have �A < wc .

The problem is that in this case expression (31) becomes not

applicable because Ae > A/2.

4. Iterative calculation in the phase-contrast imaging
approximation and refinement of the analytical theory

A more complicated calculation of X-ray nanofocusing can be

performed using the iterative method in the first approxima-

tion outlined above, similar to the phase-contrast imaging

approach. In this case, the following calculation scheme is

used. The illuminating radiation is defined by the function

B0(x) = (i�ro)1/2P(x, ro + p/2), which we multiply by the

transmission function of the first CRL element, expressed as

TðxÞ ¼ exp �i�
x2

�f
½1� i��

� �
; f ¼

R

2�
; ð32Þ

if |x | < xa = A/2. For the values of x for which the condition

|x | > xa is satisfied, we have T(x) = T(xa). The latter value

has no impact on focusing and is substantial only for large

distances from the focus. Note that in equation (32) we ignore

the absorption in the thin parts of the CRL once again,

similarly to the continuously refractive lens approximation.

Now we calculate the radiation wavefunction in front of the

second lens element using the following expression,

Bnþ1ðxÞ ¼

Z
dx1 P x� x1; pð ÞTðxÞBnðxÞ; ð33Þ

for n = 0, and then we repeat the calculation for n = 1, . . . ,

Nl � 2, where Nl is the number of CRL elements. For n =

Nl � 1, the calculation using (33) is repeated once again with

the argument p substituted by ri + p/2. The convolution inte-

gral in equation (33) is calculated by applying the Fourier

transform using the fast Fourier transform algorithm (Cooley

& Tukey, 1965) with the data size N = 2m, where m is an

integer.

Figure 4 shows the intensity distributions of the radiation

immediately after the third CRL example for E = 50 keV (last

column of Table 1 for this energy). The calculations were

performed for ro = 50 m using the iterative method discussed

in this section (black line) and under the continuous refraction

approximation using general expression (18) (red line). It

can be seen that the calculated curves are almost identical in

the central area of the graph, where all the rays starting within

the CRL aperture converge, but vary widely outside this

central region.

We can see from this graph that taking into account the

CRL aperture severely limits CRL focusing properties when

absorption is weak, compared with the analytical solution

because the real beam size at the end of the CRL is less than

the effective aperture. If we neglect the aperture, we obtain

an overestimation of the CRL focusing ability. In this case,

under the discussed analytical approximation, the CRL

virtualy focuses the beam outside the real beam size where

it is not possible.

The iterative calculation requires a relatively large amount

of computing time. However, within the central area, it leads

to the same result as the analytical approach. On the other

hand, the transverse beam profile at the end of the CRL can

be easily found by calculating the trajectory corresponding to

the aperture edge using formula (10) that takes into account

the distance to the source.

Equation (10) reveals that in the limit of a very distant

source (�0 = 0) and for L = Lo the transverse beam size A0

at the CRL end due to refraction decreases to the value of

0.707A. Thus, for A = 10 mm, we have A0 = 7.07 mm – the same

result as for the iterative calculation in Fig. 4. Therefore, to

find an analytical solution which takes into account the CRL

aperture, we need to consider the function (18) with ri = 0,

which we denote G0(x, xo), and calculate the integral of type

(21) but within finite limits calculated independently. As a

result, we have a more accurate wavefunction described by

the integral

G1ðxi; xoÞ ¼

ZA0=2

�A0=2

dx P xi � x; rið ÞG0 x; xoð Þ: ð34Þ

The general analytic solution of (34) has no practical benefit

due to its complexity. It is easier to calculate the integral

numerically by applying the double Fourier transform using

the fast Fourier transform algorithm. The following analytic

expression is obtained under the linear in the � approximation

in the extreme case (ro!1) and only for the focus distance

ri = rf , where rf = FLCL .

Under these circumstances, integral (34) does not depend

on xo and can be written as
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Figure 4
Curves of the relative X-ray intensity distribution at the third CRL
example end, E = 50 keV and L = Lo. The black line is for the iterative
calculation. The red line is for the continuous refraction approximation.
The aperture A = 10 mm; the number of elements in the CRL Nl =
L/p = 301.



G1ðxÞ ¼
Pðx; riÞ

C
1=2
L

A0

u0

Zu0

0

du cosðuÞ exp �gu2=u2
0

� �
; ð35Þ

where

u0 ¼
�A0

�ri

x; g ¼
�� 
LA2

0

4�riCL

: ð36Þ

The real-valued integral in (35) can be expressed in terms of

the Fresnel integrals with complex arguments, but this is still

inconvenient. Hence, let us consider limiting cases instead.

When g > 2, the upper limit of the integral can be approxi-

mately substituted by infinity resulting in formula (26) for the

relative intensity I(x) = |G1(x)|. If g < 2, it is convenient to use

the power series expansion of the exponent in terms of the

parameter g. In this situation, all the integrals can be calcu-

lated, and the answer can be expressed as

G1ðxÞ ¼ P x; rið Þ
A0

C
1=2
L

f0 u0ð Þ þ
X1
k¼ 1

ð�gÞ
k

fk u0ð Þ

ð2kþ 1Þ k!

" #
; ð37Þ

where f0ðzÞ = sin z=z; and the other functions are calculated by

means of the following recurrence relation,

fkðzÞ ¼ ð2kþ 1Þ f0ðzÞ � 2k
fk�1ðzÞ � cos z
	 


z2

� �
: ð38Þ

The functions are defined in a way that fk(0) = 1 for all the

values of k.

It should be noted that equation (38) is inconvenient for

the calculations since each new function is estimated with less

accuracy. Therefore, completely inaccurate values may be

obtained with its repetitive use.

At the same time, equation (38) allows us to obtain the

power series for all functions fk(z) having now a relatively

simple form,

fkðzÞ ¼ 1þ
X1
n¼ 1

ð2kþ 1Þð�z2Þ
n

ð2kþ 2nþ 1Þð2nÞ!
: ð39Þ

The best numerical computation procedure is to choose the

maximum value of the index k, for example m. Function fm(z)

is then obtained using power series (39), and the functions

having k < m can be calculated by the following recurrence

relation,

fk�1ðzÞ ¼ cosðzÞ þ
z2

2k
f0ðzÞ �

fkðzÞ

2kþ 1

� �
: ð40Þ

This formula provides accurate results for all the values of k,

including k = 0, and it is usually enough to have m = 10 for all

the values of the parameter g in formula (37).

Fig. 5 shows the intensity profile at the focus calculated for

E = 50 keV by applying the method described in this section

for the third CRL example having the number of elements

Nl = 301. The black curve corresponds to the real situation,

when g = 0.209, and within the limits of the graph resolution

matches the curve calculated under the iterative method based

on formulas (32) and (33). The red curve is calculated for the

case with no absorption when g = 0 and represents the analytic

solution.

Comparing the curves, we can deduce that weak absorption

slightly reduces the intensity but has almost no effect on the

curve FWHM, which for zero absorption is determined as

follows,

wf ¼ 0:886
�rf

A0

: ð41Þ

This equation is valid for any photon energy E and is virtually

the same as the one for the thin lens, except that for the long

CRL the distance rf is measured from its end and can be small.

Another difference is that, instead of the aperture size, the

transverse beam size A0 at the end of the CRL is used, which is

smaller than the aperture. Both parameters, rf and A0 , are

calculated analytically.

For the same CRL parameters as in Fig. 5 (� = 0.0248 nm,

rf = 0.845 cm, A0 = 7.07 mm) we have wf = 26 nm obtained from

equation (41). Curiously, the same result can be achieved by

multiplying the beam size calculated without considering the

aperture using formula (27) for the same wavelength by the

factor 1.887Ae /A. The latter can be easily verified if we

substitute the value of Ae obtained from (25) and take into

account that FL /A = rf /A0 .

Thus, the more accurate criterion for the situation in which

the CRL aperture does not influence the result is Ae < 0.53A.

Hence, we cannot simultaneously decrease the absorption and

the CRL aperture, as it is required by equation (31). The ratio

FL /A = rf /A0 allows us to rewrite equation (41) in a different

form using the definitions of the parameters FL and Lc, namely

wf ¼
0:886 h

SL

wc: ð42Þ

Here, the parameters defined by equation (31) are used. If we

define the CRL length for each photon energy E from the

condition of the constant value of the parameter SL , the beam

size becomes weakly dependent on E.

Equation (42) shows that in the case of focusing at the CRL

end when L = 2Lo and SL = 1, the beam size is slightly less than

wc = 20 nm. For the half of this length L = Lo , the beam size
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Figure 5
Curves of the X-ray radiation relative intensity distribution at the focal
distance for the third CRL example, E = 50 keV and L = Lo. The black
curve is for the case taking into account absorption; the red curve is for
the case without absorption.



is larger than wc , namely 26 nm for E = 50 keV. In reality,

absorption leads to further increasing the beam size, especially

in the region where Ae is close to but less than A/2.

It is of interest to note that formula (42) under the outlined

conditions is independent of the CRL aperture. Figure 6

presents the calculated transverse beam size at the focus,

depending on photon energy E. The black curve was eval-

uated using formula (30), i.e. without taking into account the

aperture but considering the absorption. The red curve was

calculated for L = Lo with the use of formula (42), i.e. taking

into account the aperture but not taking into consideration

the absorption. The blue markers show the accurate values

according to equation (35). Note that for any energy the

correct value is the greater one.

Figure 6 illustrates the following general conclusion. For

any CRL aperture and small values of the photon energy E,

approximation (27) without considering the aperture holds. As

the energy E increases, photons absorption decreases, and the

aperture starts to influence the result. Therefore, the calcula-

tions should be performed either under approximation (37)

taking into consideration the aperture size or using more

straightforward, though less accurate, equation (42) without

taking into account the absorption.

We can determine the boundary between the two cases

from the condition of the equality of equations (27) and (42).

From analytical calculation we obtain that the CRL aperture

affects the result when

A< A1 ¼ CA

h wc

�
; CA ¼

1:779

SL
L

; ð43Þ

and for the optimal situation (L = Lo) we have CA = 2.77.

The parameter A1 can be defined as the CRL critical

aperture, meaning that an increase of the aperture above this

value leads to the increased beam size at the focus. The value

of A1 increases with the increasing photon energy E. Figure 7

shows the dependence of the critical aperture A1 on the

photon energy E when L = Lo. From the graph, we can see

that each of the described CRLs having aperture sizes of 10, 30

and 50 mm can focus X-rays down to 26 nm, but the lens with

the smaller aperture does this in the broader energy range.

It is also interesting to consider the transverse beam size w0

at the end of the CRL. If we ignore absorption but take into

account the CRL aperture size, then we obtain w0 = A0, where

A0 = ACL. In the opposite extreme case of hard absorption,

we obtain w0 = wa, where wa is the FWHM of the intensity

Gaussian curve at the end of the lens according to the

analytical theory,

wa ¼ 0:664CL

�FL

�
L

� �1=2

: ð44Þ

It can be demonstrated that condition (43) is equivalent to the

condition A0 < 2wa, where the coefficient 2 appears due to the

FWHM difference of the Gaussian function and its square.

5. Conclusion

The main findings to be drawn from the presented analysis are

as follows.

X-ray compound refractive lenses (CRLs) having large

aperture size and optimal length L, approximately equal to

Lo = 0.28A/�1/2, strongly absorb the radiation for the low

photon energies E (less than 20 keV), which leads to the

decreasing effective aperture for a relatively high focal length.

Consequently, the transverse beam size at the focus has a

relatively high value, while the CRL aperture does not influ-

ence the result and merely increases the optimal length and

the focal length of the lens.

It is necessary to switch to the CRLs with the smaller

aperture and use harder radiation (E > 20 keV) in order to

reduce the beam size at the focus. In this instance, the

absorption impact on the focusing process decreases, and the

beam size inside the CRL is restricted by the CRL aperture.

For the CRL length L = Lo, the focused beam size no longer

depends on both the aperture and the energy. It is approxi-

mately equal to the critical size wc = �/(8�)1/2 obtained for the

first time by Bergemann et al. (2003) as the smallest achievable

beam size for any focusing method.

The previous conclusion is contrary to the widespread

view that materials consisting of light atoms (e.g. beryllium,

diamond, aluminium, silicon) have an advantage for the

production of CRLs. In fact, such materials are only effective
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Figure 6
Dependence of the focused beam transverse size wf (nm) from the photon
energy for two approximations: taking into account absorption but
without an aperture (black curve); and with aperture but without
absorption (red curve) for the third CRL example and L = Lo . The blue
markers show the accurate values according to equation (35).

Figure 7
Dependence of the critical aperture A1 (mm) from the photon energy E
for L = Lo . See text for details.



for soft energies. In contrast, for hard X-rays, heavy-atom

materials are promising, e.g. nickel.
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