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In recent years, major capability improvements at synchrotron beamlines have

given researchers the ability to capture more complex structures at a higher

resolution within a very short time. This opens up the possibility of studying

dynamic processes and observing resulting structural changes over time.

However, such studies can create a huge quantity of 3D image data, which

presents a major challenge for segmentation and analysis. Here tomography

experiments at the Australian synchrotron source are examined, which were

used to study bread dough formulations during rising and baking, resulting in

over 460 individual 3D datasets. The current pipeline for segmentation and

analysis involves semi-automated methods using commercial software that

require a large amount of user input. This paper focuses on exploring machine

learning methods to automate this process. The main challenge to be faced is

in generating adequate training datasets to train the machine learning model.

Creating training data by manually segmenting real images is very labour-

intensive, so instead methods of automatically creating synthetic training

datasets which have the same attributes of the original images have been tested.

The generated synthetic images are used to train a U-Net model, which is

then used to segment the original bread dough images. The trained U-Net

outperformed the previously used segmentation techniques while taking less

manual effort. This automated model for data segmentation would alleviate the

time-consuming aspects of experimental workflow and would open the door to

perform 4D characterization experiments with smaller time steps.

1. Introduction

Bread is a spongy, porous material consisting of open and

closed pores. The open pores comprise the majority of its

texture, with a single interconnected pore-network accounting

for about 99% of the total porosity. Breads produced world-

wide come in different appearances and features. For example,

French baguette is highly aerated crumb, the Middle East

flatbread features a dense and crispy crust, and the Chinese

steamed bread is usually soft with a moist skin (Gao et al.,

2018).

There has been great interest in studying the micro-struc-

ture of bread made from Australian wheat. Australia produces

around 17.3 million tons of wheat per year, the majority of

which is used in noodles, pasta and stemmed and flat breads.

There are notable differences compared with other types of

wheat worldwide. Australian wheat flour typically has lower

protein content than North American flour, so it is not

generally considered as suitable for commercial leavened
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bread-making (Park et al., 2017). In recent years researchers

have sought to understand the fundamentals of the perfor-

mance of Australian wheat flour in bread to improve its

performance with additives or new processing methods

(Chakrabarti-Bell et al., 2014).

Investigating the mechanical properties for bread samples

requires accurate quantification of the micro-structural para-

meters such as cell wall thickness, cell shape, void fraction,

crumb brightness, and fineness. To achieve this, many techni-

ques have been used (Falcone et al., 2006). Computer-aided

X-ray micro-tomography (micro-CT) is a recently popularized

method to investigate the internal structure of various

materials non-destructively. Many studies have utilized micro-

CT to study the bread properties, taking advantage of the high

contrast between pore and void phases in the bread (Babin

et al., 2005).

A growing trend is the increased use of fast (or ultra-fast)

micro-CT at third-generation synchrotron facilities allowing to

obtain larger sized and higher resolution data sets. This makes

it possible to follow the structural changes of bread over time

(Gao et al., 2018; Koksel et al., 2016). Analysing the bread

using the micro-CT technique has been employed to classify

different types of bread based on quantitatively measured

parameters (Cafarelli et al., 2014a), and to investigate the

correlation between the bread bubble size and its shape using

advanced statistical methods (Koksel et al., 2016). Different

types of bread have been characterized using micro-CT

studies ranging from bread varying in yeast and water content,

Canadian wheat with damage caused by insects and sprouting

and different types of Italian breads (Cafarelli et al., 2014b;

Suresh & Neethirajan, 2015).

Tomography experiments using synchrotron radiation can

produce a massive amount of 3D data in just a few days. This

presents a major challenge for quantitative data analysis using

traditional methods. Similar challenges are emerging with

increasingly efficient laboratory CT systems. This paper

focuses on the development of an automated workflow for

accurate image segmentation. The result may lead to more

accurate quantitative analysis of sequences of 3D data-sets

of samples evolving over time and/or in response to changing

experimental conditions, and with less need for user input.

Researchers have used different workflows for analysing

the 3D representation of the sample generated by the micro-

CT reconstruction software. However, there are common

steps shared among the majority of these studies, including

pre-processing, segmentation, labelling, post-processing, and

quantification of measurements. Researchers typically have

used different software modules to perform the different steps

through a point-and-click approach (Jensen et al., 2014).

There have been some efforts to automate some of the

manual processes that need to be done by an operator. The

back-end programming interface in Tool Command Language

(TCL) and Java available in Avizo and ImageJ has been

utilized to automate the point-and-click approach performed

by the user. However, the automated process still accounts for

a very small portion of the overall workflow and its accuracy

fails to achieve satisfactory output compared with the manual

workflow (Jensen et al., 2014). Table 1 lists a summary of

imaging and segmentation techniques used in existing studies

on bread.

Machine learning techniques have been used in analysing

tomography datasets used in many material science applica-

tions. A multi-layer perceptron architecture is used to detect

the crack in the tomographic dataset of lithium-ion cells

(Petrich et al., 2017). A supervised feature-based technique

is used to segment mineral phases of amphibole, plagioclase

and sulfide phases (Guntoro et al., 2019). A combination of

Trainable Weka Segmentation (TWS) and the level set

method is used to segment and reconstruct tomography

images of particles of granular geomaterials (Lai & Chen,

2019).

Recently, with the re-emergence of neural networks,

researchers have started to use deep neural networks as a

powerful tool to analyse CT-images primarily for generic

microstructure representation, classification and segmenta-

tion. PixelNet architecture has been used to segment ultrahigh

carbon steel trained on 24 images (DeCost et al., 2019). Other

models are summarized in Table 2. All these models depend
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Table 1
List of imaging sources and segmentation techniques used in existing studies on bread.

Wheat type Imaging technique Reference Year Segmentation method

1 Doughs mixed at different
pressures

FEI Quanta 200 environmental
scanning electron microscope

(Trinh et al., 2013) 2013 Avizo, thresholding

2 Canadian and Australian SkyScan 1176 high resolution (Chakrabarti-Bell et al., 2014;
Wang, 2015; Wang et al., 2013)

2014 Automatic thresholding

3 Bread (local bakery) Nikon metrology 160 Xi Gun
set X-ray source

(Dyck et al., 2014) 2014 Otsu’s method

4 Bread doughs European Synchrotron
Radiation Facility

(Turbin-Orger et al., 2015) 2015 Automatic thresholding

5 Cleaned and sifted samples
of Canadian wheat

SkyScan 1172 micro-computed
tomography scanner

(Suresh & Neethirajan, 2015) 2015 Multi-thresholding techniques

6 Australian and North
American bread dough

Australian Synchrotron (Mayo et al., 2016) 2016 Avizo

7 German commercial Eclipse Ti-U inverted
microscope

(Bernklau et al., 2016) 2017 AngioTool64

8 Bread doughs noodles Canadian Light Source (Koksel et al., 2016, 2017a,b;
Koksel & Scanlon, 2016)

2016–2018 Thresholding after histogram
equalization



critically on the accuracy of the ground truth images used

for training which are time-consuming to prepare, typically

relying on manual or only partially automated segmentation.

The U-Net model was initially developed for medical image

segmentation at the University of Freiburg, Germany

(Ronneberger et al., 2015). Here we have explored the

potential of U-Net for automated segmentation of porous

structures.

The main contribution of this paper is utilizing U-Net

Convolutional Neural Networks (CNNs) (DeCost et al., 2019)

to segment micro-CT images of bread doughs using synthetic

images to create a training dataset, and thus eliminating any

need for manually segmenting the ground truth data. We

have investigated the potential for this technique to facilitate

quantitative microstructure analyses that conventionally

would require a large amount of hands-on image processing.

The proposed approach enables the researchers to focus on

obtaining insights from their data rather than focusing on

manually segmenting and inspecting their data. This in turn

would allow researchers to perform further experiments

for bread doughs or any other porous material studies with

smaller time steps.

The remainder of this paper is organized as follows. First,

in Section 2, the dataset of bread dough and the process of

generating the synthetic data are explained. It also describes

the segmentation models, and how we train the model. The

results are discussed in Section 3. Finally, conclusions are

given in Section 4.

2. Experimental

2.1. Acquisition of the dataset

Images were acquired at the Australian Synchrotron to

study the effect of different salt additives on the performance

of dough made from high-protein flours (13.6% protein) and

low-protein flour (9.6% protein). For each of the two types of

flour (high and low protein) four formulations were made

using no salt, NaCl, KCl and NaBr, respectively. Two samples

of each formulation were prepared making 16 samples in total

as shown in Table 3. The micro-CT images were scanned

with the following parameters: monochromatic X-ray beam,

energy = 30 keV, 720 views, 0.5� step, 11.13 mm pixel size,

sample-to-detector distance of 80 cm, 16 s exposure time,

pixels containing the bread doughs 1024 � 1024 � 600. The

full details of preparing these samples are described by Mayo

et al. (2016). The sample-to-detector distance was chosen to

be sufficient that the images would benefit from propagation-

based phase-contrast (with phase-contrast fringes of the order

of the pixel size) in order to improve the visibility of voids,

without resulting in excessive blurring due to Fresnel

diffraction.

The scans were performed at interval of about 5 min during

both proving and baking. This was followed by data recon-

struction using the X-TRACT software (Gureyev et al., 2011).

This includes standard image corrections, phase retrieval using

Paganin’s algorithm (Paganin et al., 2002) and filtered back-

projection algorithm tomographic reconstruction. Phase-

retrieval is used because the data were collected in propaga-

tion-based phase-contrast mode and phase-retrieval improves

signal-to-noise in the resulting images and results in recon-

structed images more suitable to image segmentation. The

delta-to-beta ratio used for reconstruction was tuned to

remove phase-contrast fringes and improve signal-to-noise

without introducing additional blurring (Paganin et al., 2002).

The final output for all the samples was a total of 464 3D

volumes, representing scans at 29 time-points for each of the

16 dough samples.

2.2. Preparation of testing datasets

In order to validate and compare our proposed segmenta-

tion methods with other segmentation methods, we need a

testing dataset based on our real bread CT data images (as

input) and corresponding accurately segmented ‘ground truth’

images to compare with the output of the different segmen-

tation methods. Although the original image size is

1024 � 1024 pixels, as we use the U-Net model (and initialize

its weights using ImageNet dataset, which has a smaller input

size), input images are down-sampled to fit the U-Net network
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Table 3
Recipes for bread making and sample lists.

Sample
number Protein content Quantity Salt type

Water
target

1 Low protein (9.6% protein) 4 g KCl 2.18 ml
2 High protein (13.6% protein) 4 g KCl 2.18 ml
3 Low protein (9.6% protein) 4 g NaBr 2.24 ml
4 High protein (13.6% protein) 4 g NaBr 2.24 ml
5 Low protein (9.6% protein) 4 g No Salt 2.18 ml
6 High protein (13.6% protein) 4 g No Salt 2.18 ml
7 Low protein (9.6% protein) 4 g NaCl 2.24 ml
8 High protein (13.6% protein) 4 g NaCl 2.24 ml

Table 2
List of deep learning models used to segment porous materials.

Sample description Scanning technology Technique Ground truth
Number
of mages Reference

Four phases, ultrahigh carbon steel UHCS dataset PixelNet Partially automated 24 (DeCost et al., 2019)
Two phase steel LOM and SEM MVFCNN Manually by group of

material experts,
and metallographers

21 (Smal et al., 2018)

Fontainebleau sandstone and
Grosmont carbonate

Public dataset SegNet Manual segmentation 20 (Koksel et al., 2017b)



(without introducing interpolation errors). To show that the

downsampling process does not affect the overall porosity,

32 images of different sizes (32 � 32, 64 � 64, 256 � 256,

512 � 512, and full size 1024 � 1024) were selected for

porosity comparison. This analysis is conducted slice-wise,

where each image is a single x–y slice. As shown in Figure 1,

the porosity for images at or above 256 � 256 does not change

significantly and the average porosity for those sizes remains

relatively constant. As such, we chose to use images at

256 � 256 pixels in this work. Given that the inference time

for segmentation is less than 30 ms for images of this size, the

method could be used for larger datasets as well.

Figure 2 shows a grayscale sample image of a bread dough

slice and histogram of grayscale pixel intensities. The histo-

gram of grayscale images in some cases has two peaks, where

one represents the pore and the other represents the bread.

However, in many cases theses peaks are not distinguishable.

Therefore, the current solutions for automated segmentation

does not return accurate results.

From each bread sample, three 2D images at different time

steps were selected and annotated to create the ground-truth

dataset for testing step. As shown in Figure 3, the testing

images have different pore size and intensity brightness, which

provides a baseline evaluation for the trained network.

Creating the ground truth images involves three steps.

Creating the accurately segmented image from the original

image involved using a 2D Otsu thresholding technique

followed by the use of a manual annotation tool to fix the

mislabeled pixels as an expert supervisor. An open source

software tool (VIA) is used to select the over-segmented and
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Figure 1
Graph showing the porosity of the samples. Sample 1 is low protein with no salt, sample 2 is high protein with no salt, sample 3 is low protein with NaCl
salt, sample 4 is high protein with NaCl salt, sample 5 is low protein with NaBr, sample 6 is high protein with NaBr, sample 7 is low protein with KCl salt,
sample 8 is high protein with KCl salt.

Figure 2
Left: grayscale image of bread dough. Right: histogram of grayscale pixel
intensities.

Figure 3
Testing images. (A) Image for salt NaCl–high protein sample, (B) image
for salt KCl–low protein sample, and (C) image for salt NaBr–low protein
sample.



under-segmented regions (Dutta et al., 2016). Lastly, the

output of the annotator tool is a JSON file for polygon points

of the boundaries, which are converted into 2D masks and

then merged with the initial segmented images. Figure 4 shows

the steps followed to create the ground truth images.

By plotting the histogram of the pores and bread pixels for

the ground truth images, it is clear that the pixel intensities

of the pores and breads overlap. Figure 5 shows that for all

testing images there is an overlapping area in the pixel

intensities. The automatic threshold would fail to separate

the two classes accurately.

2.3. Generating synthetic training data

X-ray CT images should in principle have pixel intensities

proportional to the X-ray absorption coefficient in each pixel.

In reality, such images differ from the corresponding ideal

‘ground truth’ image for a number of reasons. These include

pixels with intermediate intensities because they are on the

boundary of a pore due to the partial volume effect. Other

reasons are the image noise (primarily photon shot noise) and

blurring due to the point-spread function of the imaging

system. These issues make it more time consuming to generate

sufficient quantities of accurate ground-truth data by accu-

rately segmenting real data, for training purposes. To alleviate

this limitation, we developed a method to generate and use

synthetic data for model training step.

In order to generate synthetic data, we have used the open

source library (PoresPy) to generate 3D synthetic binary

ground truth images from overlapping spheres or blobs with

different porosity values and shapes, and then they are split

into 2D slices (Keilegavlen et al., 2019). First we scale the

brightness of the generated 2D image by shifting the binary

image values [0,255] to the peaks of the original grayscale

image. Then a Gaussian noise is added to the 2D binary image

as shown in equation (1),

Inoiseði; jÞ ¼ Ibinaryði; jÞ þ Nði; jÞ: ð1Þ

Finally, Inoise is convoluted with a Gaussian blur kernel

followed by a sharpening function to create good contrast
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Figure 4
Steps for manual annotating of grayscale image. (A) Original image,
(B) automatic segmentation output, (C) removing over-segmented areas,
(D) adding under-segmented areas, (E) overlay of original image with the
fixed binary image, and (F) the final ground truth image.

Figure 5
Histogram of annotated images. (A) Low protein with no salt, (B) high
protein with no salt, (C) low protein with NaCl salt, (D) high protein with
NaCl salt, (E) low protein with NaBr, (F) high protein with NaBr, (G) low
protein with KCl salt, and (H) high protein with KCl salt.



images similar to the original images. Figure 6 shows 2D slice

of a synthetic image generated using this method.

The synthetic training data need to represent the char-

acteristics and structure of the dataset. We demonstrate that

they are not required to be closely matching the testing

dataset. As shown in Figure 7, the synthetic images are

generated from the combination of shapes and blobs

consisting of images with porosity ranges from 0.4 to 0.6, and

different blob sizes to generate images with varying sizes of

the pore. These values are selected as they are in the range of

real bread porosities. As the bread CT images are taken during
rising and baking, and the pores tend to change over time, the

synthetic images are generated from overlapping spheres at

different radius sizes to simulate change of pore sizes of

the real images, and to ensure the generated images are not

repeated and have different appearances.

In this way, we can create many images with different values

of noise, shapes and porosities for training the segmentation

models and verifying the accuracy of the model without

any need to create more ground truth images manually. The

outline of the proposed method is shown in Figure 8.

2.4. Training the U-Net deep neural network architecture

Deep learning is a subset of machine learning, which learns

the pattern from the data. It learns the hidden features of the

data and does not require the training dataset to close match

the predicted dataset (LeCun et al., 2015). Our work employs

the U-Net model as it is commonly used for medical image

segmentation. The U-Net architecture is illustrated schema-

tically in Figure 9. This architecture consists of three sections:

the contraction, the bottleneck and the expansion section. The

contraction section is initialized with the pre-trained models

used for classification such as ResNet and VGG models

(Yakubovskiy, 2019). That usually gives a better result than

initializing the weights randomly. This part is a down-sampling

path and it enables extracting coarse contextual information.

The bottleneck layer is the intermediates between the

contraction and the expansion layers. The last section is the

expansion, which is called an up-sampling path. It enables

extracting a precise localization of the features, with the

contracting path features using skip connections. The output

of the U-Net is a prediction for the class of each pixel of the

input image (e.g. pore versus dough in the case of our data).
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Figure 6
Synthetic images generated using the PoresPy library. Left: binary image.
Right: grayscale synthetic image.

Figure 7
Synthetic images with different shapes and appearances.

Figure 8
Steps to generate synthetic training images. (A) Input binary image,
(B) imaged with added noise, (C) image with blurring effect, and (D) the
output image.



The model was trained on the CSIRO High Performance

Computing system. The resources allocated were a K40

NVIDIA GPU, 40 GB memory. The inference time is

measured to be around 29.5 ms, which enables it to be used

for the segmentation of large datasets. The model was trained

using 1400 synthetic 2D images generated from different 3D

images, and different augmentation methods to enhance the

ability of the model to generalize its learning. As shown in

Figure 10, the augmentation methods add more variance to

the training images, which removes the need for generating

closely similar images to the testing images.

3. Results and discussion

3.1. Comparison of U-Net and Otsu segmentation

The test images selected from the bread CT scans were

segmented into pore and dough using the trained U-Net

model and the conventional Otsu threshold technique for

comparison. Different types of denoising filters such as bilat-

eral filter, non-local means and Gaussian filter were applied to

the images before using the Otsu threshold to improve its

accuracy. The best accuracy was achieved with the Gaussian

filter, which was applied for testing images as a preprocessing

step for both the U-Net model and Otsu threshold.

The accuracy of each segmentation is

calculated in terms of pixel accuracy

(PA) defined as follows,

PA ¼
TPþ TN

TPþ TNþ FPþ FN
; ð2Þ

where TP stands for true positive, TN

stands for true negative, FP stands for

false positive, and FN stands for false

negative. PA can be calculated sepa-

rately for pore, dough and the overall

segmentation. Table 4 shows the pore,

dough and overall PA of the test images using for both

methods. Best results are shown in bold. The relative perfor-

mance of each method is summarized in Figure 11.

As we can see in Table 4, the accuracy of the U-Net model

for each phase (pore and bread) outperformed the Otsu

thresholding (TH) for almost every measurement. Most

importantly, it is able to pick up the small pores, as shown in

Figure 12, which are very critical for the quantification analysis

that is usually performed after extracting the binary image.

Therefore, this model not only outperforms the automatic

thresholding in terms of the pixel accuracy but it also picks

up the difficult regions, which are missed by most of the

automatic segmentation techniques. Therefore, using this

model will give a very accurate binary image, which is the most

challenging task for quantification analysis.

Figure 12 shows a comparison of overlaying regions of the

proposed technique and Otsu thresholding segmentation. In

panels D and G of Fig. 12, the yellow labels are regions for

which the method successfully predicts the output (true

positives), while the red labels are regions for which the

method fails to predict the pores pixels (false positives). The

green labels are regions for which the method fails to predict

bread pixels (true negatives). It is clear that the proposed

method has fewer green and red regions, which indicates that

it outperforms the Otsu threshold method. The overall accu-

racy is shown in panels E and H, where the red regions indi-

cate the mislabelling of the prediction compared with the
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Figure 10
Different augmentation methods applied on training images.

Figure 11
Comparison of accuracy for the eight samples of bread using the U-Net
model trained on synthetics images generated from the Porespy library
and automatic Otsu TH.

Figure 9
The U-Net architecture (Ronneberger et al., 2015).



ground truth. The histogram of both methods in panels C, F

and I show that the proposed method is able to detect the

overlapping of pixel intensities, while the Otsu threshold

method fails to do the same, resulting in more true negative

and false positive regions.

The accuracy of the initial segmentation has a flow-on effect

in quantitative analyses based on the segmented data. To

examine this effect, the output of both above-described

methods is processed to extract typical quantitative

measurements: average pore diameter and number of pores.

The error in these measurements is

calculated using the following formula,

Error % ¼
PV�GTV

GTV

�
�
�
�

�
�
�
�
; ð3Þ

where GTV is the ground truth value

extracted from the manually segmented

test data, PV is the predicted value.

In simple terms, it is the fraction of

correctly classified pixels. The results

are reported in Tables 5 and 6 with the

best results highlighted in bold.

The U-Net method gives as expected

more accurate results for all the para-

meters. As the Otsu threshold-based

segmentation fails to pick up the small

pores, and it merges pores together,

the number of pores will be under-

estimated. Table 5 shows that the error

in the extracted number of pores

from the output of the Otsu threshold

segmentation is underestimated in the

range between 5% and 16%. On

the other hand, our proposed method

successfully outputs very accurate

results, with smaller errors than the

Otsu-based analysis; however, in

contrast, it sometimes overestimates

the number of pores.

The other parameter we have

measured is the average pore diameter,

which is important for porosity analysis.

As shown in Table 6, the accuracy

of our proposed method outperforms

automatic thresholding. Incorporating

the proposed method will ensure

extraction of more accurate parameters

for the bread analysis.

4. Conclusions

In this paper, we have proposed

a workflow to automatically segment

X-ray computed micro-tomography

images of bread dough scanned at the

Australian Synchrotron using a U-Net

model. An important contribution of

this paper is to devise a method for the generation of a

synthetic annotated/labelled dataset for training of a deep

neural network for segmentation of microCT images. As such,

we devised and employed an end-to-end deep learning

method to automatically segment the porous material and

in particular the bread data using synthetically generated

images. We showed that having accurate segmentation results

improves the accuracy of the statistical metrics extracted from

binary images. This approach can be extended to other porous

materials such as rocks. Usually, the most challenging part in

research papers

J. Synchrotron Rad. (2021). 28, 566–575 Salah Ali et al. � Automatic segmentation for imaging using deep learning 573

Figure 12
Comparison of using U-Net and Otsu thresholding on the original bread image, showing the
overlapping of the pixel intensities histogram. (A) Input grayscale image, (B) ground truth image,
(C) histogram of the ground truth of the pores and bread pixels, (D) Otsu threshold image
overlaying on the grayscale input image, (E) intersection of segmented image using Otsu threshold
and ground truth image, (F) histogram of the prediction of the pores and bread pixels using Otsu
threshold, (G) U-net predicted image overlaying on the grayscale input image, (H) intersection of
segmented image using U-net and ground truth image, and (I) histogram of the prediction of the
pores and bread pixels using U-net.

Table 4
Comparison of accuracy for eight samples of bread using the U-Net model trained on synthetic
images generated from the Porespy library and Otsu TH.

Pore PA Bread PA Overall PA

Sample name Otsu TH U-Net Otsu TH U-Net Otsu TH U-Net

No salt–low protein 90.80% 96.45% 92.91 98.65% 91.84% 97.62%
No salt–high protein 96.88% 99.49% 87.76% 97.67% 94.05% 99.05%
Salt NaCl–low protein 96.21% 99.20% 89.24% 98.42% 93.37% 98.94%
Salt NaCl–high protein 96.70% 99.30% 89.35% 97.91% 94.08% 98.81%
Salt NaBr–low protein 93.62% 97.13% 86.89% 99.21% 89.67% 98.33%
Salt NaBr–high protein 95.55% 95.41% 80.74% 99.52% 88.24% 97.23%
Salt KCl–low protein 93.15% 95.08% 81.91% 98.38% 86.91% 97.04%
Salt KCl–high protein 95.88% 99.47% 90.08% 98.28% 93.65% 99.04%



evaluating or training any deep learning model is the creation

of the ground truth training images. This is even more difficult

in the case of porous materials, as it is sometimes difficult

to distinguish between the phases. Therefore, the proposed

approach eliminates the need to annotate ground truth data-

sets. The proposed workflow outputs more accurate para-

meters such as number of pores, average area and average

pore diameter as these parameters are sensitive to the accu-

racy of the binary segmentation. This approach needs further

research to evaluate its performance for 3D images. Extending

this work to multi-phase materials would be a challenging but

worthwhile avenue of further study. Another potential appli-

cation of using this workflow is to extend it to 4D datasets

where it is challenging to manually segment the whole data.

One drawback with this approach is that the model needs to

be trained on synthetic images that have the features and

attributes of the original data. Therefore, this requires

studying the characteristics of the original images in order to

gain information about the shapes needed to create the

corresponding ground truth images. For example, bread dough

images usually have circular shapes interconnected with each

other, while other porous material such as other foams and

metallurgical coke have irregular shapes as these are mostly

single materials.
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