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In this paper a practical solution for the reconstruction and segmentation of low-

contrast X-ray tomographic data of protein crystals from the long-wavelength

macromolecular crystallography beamline I23 at Diamond Light Source is

provided. The resulting segmented data will provide the path lengths through

both diffracting and non-diffracting materials as basis for analytical absorption

corrections for X-ray diffraction data taken in the same sample environment

ahead of the tomography experiment. X-ray tomography data from protein

crystals can be difficult to analyse due to very low or absent contrast between the

different materials: the crystal, the sample holder and the surrounding mother

liquor. The proposed data processing pipeline consists of two major sequential

operations: model-based iterative reconstruction to improve contrast and

minimize the influence of noise and artefacts, followed by segmentation. The

segmentation aims to partition the reconstructed data into four phases: the

crystal, mother liquor, loop and vacuum. In this study three different semi-

automated segmentation methods are experimented with by using Gaussian

mixture models, geodesic distance thresholding and a novel morphological

method, RegionGrow, implemented specifically for the task. The complete

reconstruction-segmentation pipeline is integrated into the MPI-based data

analysis and reconstruction framework Savu, which is used to reduce

computation time through parallelization across a computing cluster and makes

the developed methods easily accessible.

1. Introduction

Long-wavelength macromolecular crystallography (MX)

exploits tender X-rays within a wavelength range of � = 2–6 Å

that covers absorption edges of light atoms of high significance

in biology and are natively present in or commonly bound to

macromolecules (S, P, K, Ca, Cl). It can be used either for

solving the crystallographic phase problem experimentally

(Hendrickson, 2000) or identifying these elements in the

resulting electron density maps based on anomalous scattering

(Minor et al., 2000). Anomalous scattering leads to a break

in the symmetry of the diffraction pattern from crystals, is

element specific with a maximum at the absorption edge,

rapidly decreasing on the low energy side and slowly

decreasing on the high energy side of the edge.

The macromolecular crystallography beamline I23 at

Diamond Light Source is a unique synchrotron instrument

dedicated to in-vacuum long-wavelength crystallography

experiments (Wagner et al., 2016). Operating in a high-vacuum

environment eliminates air absorption and scattering,
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resulting in higher signal-to-noise ratios even at the longest

wavelengths. However, the impact of absorption by the sample

(crystal, sample holder and surrounding mother liquor) is

drastic, as photoabsorption is approximately proportional to

the cube of the wavelength. While the sample environment

and detector allow precise measurement of X-ray diffraction

data, in order to deduce accurate structure factors and their

anomalous differences from the raw data, an absorption

correction needs to be applied. Empirical corrections from the

standard software packages [XDS (Kabsch, 2010), Aimless

(Evans & Murshudov, 2013)] have been used so far. Unfor-

tunately, for wavelengths longer than 3 Å, the absorption

effects are significantly larger, so these corrections are no

longer adequate and an analytical correction is needed.

The intensity of X-rays transmitted through a material

decreases due to absorption and the extent of these changes

varies depending on the size, shape and absorption coefficient

of the object under investigation. The premise of analytical

absorption corrections for a single-crystal diffraction experi-

ment is well established (Albrecht, 1939): conceptually it

requires the calculation of the transmission factor for all the

measured reflections hkl (Busing & Levy, 1957),

Thkl ¼
1

V

Z
exp

�
� � ra þ rbð Þ

�
dV; ð1Þ

where the integration is over the volume of the crystal V, � is

the X-ray absorption coefficient and ra, b are the path lengths

of the incident and diffracted beams in the crystal, respec-

tively.

In a typical MX experiment, the X-rays transmit not only

through the crystal but also through the sample mount and

the surrounding buffer solution. This can be accounted for by

expressing the transmission factor as (Santoro et al., 1968)

Thkl ¼
1

V

X
i

exp
�
� �i rai þ rbið Þ

�
dV; ð2Þ

where the summation is performed over i materials exposed to

the X-rays. This approach relies on the precise knowledge of

the geometry of all the objects to determine the path lengths

for all measured reflections. This requirement constitutes a

major practical complication and it is addressed in this

manuscript.

Two methods have been described to overcome this

problem. Leal et al. (2008) and Strutz (2011) have shown that

the three-dimensional model of a protein crystal, buffer and

sample mount can be constructed using a series of two-

dimensional images (silhouettes) taken with an optical sample

viewing system (microscope). The resulting model allows

the determination of geometrical parameters for absorption

correction, but the reconstruction is critically dependent on

the image quality commanded by the sample transparency,

depth of field, illumination, etc. Brockhauser et al. (2008) used

for this purpose X-ray microtomography and reported a

successful reconstruction of three-dimensional models of

protein and DNA crystals including the surrounding solvent

and sample holder. This study prompted further developments

of tomographic methods to complement and enhance MX, in

particular to locate small crystals in lipidic cubic phase (LCP)

which is non-transparent at cryogenic temperatures (Warren

et al., 2013; Polikarpov et al., 2019). X-ray tomography is

a promising technique that can aid analytical absorption

correction. Recent developments in MX data processing allow

very fast feedback to the synchrotron user from automated

pipelines (Winter, 2010). X-ray tomography and the subse-

quent processing should be linked in these pipelines without

or with only minimal user interaction. Automated segmenta-

tion is an important aspect of such a pipeline. This was

a motivation for including microtomography as a method

complementing the long-wavelength MX experiment at

beamline I23. The order of the two experiments is important.

While the total dose for diffraction data collection is

comparable with that required for imaging, radiation damage

will affect the higher-resolution information first (Howells et

al., 2009). Therefore, it is necessary to perform the tomo-

graphy experiment after the diffraction data collection.

In order to provide data required for analytical absorption

correction, the 3D volume of the sample needs to be recon-

structed from X-ray tomographic projections and segmented

for all composite materials (phases). In our case, we need to

extract four distinct phases: protein crystal, mother liquor,

the loop, and vacuum (background). There are multiple

challenges associated with a successful segmentation of X-ray

data of protein-based samples. One of the main difficulties is

that the chemical composition of protein crystals and their

surrounding liquid (mother liquor) are identical, leading to

small differences between their linear absorption coefficients

and poor absorption contrast between the two phases

(Brockhauser et al., 2008; Wang et al., 2016). Additionally, if

samples contain various impurities and inclusions, such as

protein precipitate from the crystallization buffer or surface of

ice crystals, this usually results in irregular intensity distribu-

tion, shadowing and streak artefacts in the reconstructed

images. Various imaging imperfections can also affect the

quality of reconstructions, resulting in ring artefacts and

zingers.

In order to overcome these challenges, a robust image

processing methodology and efficient software are required.

Both image reconstruction and multi-phase segmentation are

complex inverse problems meaning that the acquired data

are insufficient to determine a unique solution (Bertero &

Boccacci, 1998; Vogel, 2002). The segmentation result

normally depends on the approaches used for tomographic

image reconstruction and on the chosen segmentation

method. In this study, we endeavoured to solve the general

task sequentially by performing two independent steps: an

advanced tomographic image reconstruction followed by

segmentation of the reconstructed image.

The image reconstruction step is performed by using a

model-based iterative reconstruction (MBIR) approach with

regularization. With MBIR we aim to enhance contrast, signal-

to-noise ratio and suppress image artefacts in the recon-

structed images.

In the next step, we segment the reconstructed volume using

three different methods: Gaussian Mixture Models (GMM)
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(Bishop, 2006; Permuter et al., 2006), thresholding of the

geodesic distance transform of an image (GeoDistance)

(Toivanen, 1996; Criminisi et al., 2008; Bai & Sapiro, 2009;

Wang et al., 2019), and a novel region growing (RegionGrow)

segmentation technique which performs a set of morpholo-

gical operations under specific constraints. The results of

different segmentation techniques can be combined, providing

a multi-phase final segmentation. In order to quantitatively

assess the results of the proposed segmentations we also

perform manual segmentation for the selected samples.

The paper is organized as follows. In Section 2, we provide

information regarding the experimental setup for tomography

on beamline I23 at Diamond Light Source (DLS). In Section 3,

we describe the methodology required for iterative recon-

struction, manual and automated segmentations. We also

provide details regarding the open-source software. In

Section 4, we provide numerical results and quantitative

analysis for different segmentation methods. We conclude

in Section 5.

2. Microtomography setup at I23 beamline

The main purpose of the I23 beamline is to perform routinely

and reliably high-quality MX experiments with long-wave-

length X-rays. The solutions chosen to achieve this principal

goal dictated a number of unique features adopted by the

experimental station (see Wagner et al., 2016). This inevitably

affected construction and operation of all components, appa-

ratus and systems used to either enable the diffraction

experiment or enhance it. Two major requirements for any

system integrated in the I23 experimental station are (i)

compatibility with the vacuum environment and (ii) absence

of any interference with the diffraction experiment, which

practically means no shadowing of diffracted X-rays. Conse-

quently, the I23 tomography system is designed literally to ‘fit

around’ the MX experiment. One compromise is the shared

use of the MX multi-axis goniometer with a horizontal rota-

tion axis for both diffraction and X-ray tomography data

collections. As a result of variable gravitation pull, such a

goniometer has larger centering errors, compared with more

stable vertical orientation of the axis implemented at imaging

beamlines where all efforts are focused on perfecting the

X-ray tomography experiment.

The basic design of our tomography system follows the

traditional concept of X-ray imaging with crystal scintillators,

shown to be a successful approach for obtaining micrometre

spatial resolution (Koch et al., 1998): X-ray shadow images of a

sample are created on a scintillation screen and imaged via

microscope optics onto the chip of a CCD camera.

In the schematic representation of the system in Fig. 1 the

scintillation screen (1) is a 9 mm film of LSO–Tb grown by

liquid phase epitaxy on a 170 mm-thick LSO crystal substrate.

The scintillator with the emission peak at 550 nm exhibits

enhanced light yield and reduced afterglow, when compared

with other analogues (Martin et al., 2009).

The light is collected by a 20� Optem objective (2) with

numerical aperture NA = 0.42. The optical path is folded by

using a mirror (3) and extended by adding a relay lens (4)

inside of the L-shaped tube (7). The rationale behind this is to

place the CCD camera outside the vacuum vessel. The tube

end is welded to the vacuum flange with an optical window (5)

which transmits the light to the camera (6). The flange is

joined with the vacuum vessel by flexible bellows and mounted

on a motorized XYZ stage. This arrangement allows posi-

tioning of the tomography system in the beam and a fine

adjustment of the scintillator. The air-cooled 14-bit PCO 1600

camera has a 1600 � 1200 pixel CCD with a pixel size of

7.4 mm � 7.4 mm and maximum frame rate of 30 s�1. The

optical system provides a field of view of diameter 0.6 mm and

lateral resolution of �1 mm. For diffraction experiments, the
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Figure 1
A schematic drawing of the tomography system. 1 – scintillation screen,
2 – objective, 3 – mirror, 4 – relay lens, 5 – vacuum window, 6 –
tomography camera, 7 – L-shaped tube. The system is residing inside of
a vacuum vessel with pressure bellow 1.0 � 10�6 mbar. X-rays are
impinging upon a protein sample (S) mounted on the goniometer (G).

Figure 2
A: Sample position; B: goniometer; C: tomography camera, retracted
position; D: tomography camera, in-beam position; E: on-axis viewing
system; F: X-ray beam direction.



assembly is retracted back to the side of the end-station (see

C in Fig. 2). Switching to tomography experiments involves

translating the assembly by �23 cm to the working position

behind the sample (see D in Fig. 2). The sample-to-scintillator

distance can be adjusted between 0.5 and 10 mm by translating

the L-shaped tube along the beam path.

The photograph in Fig. 2 shows the view inside the vacuum

vessel from the perspective of the diffraction detector. The

tomography system (objective with scintillation screen) is in

the retracted position (C), used for collecting diffraction data.

The position of the system for collection tomography data is

shown with dotted lines (D).

2.1. Sample preparation

Crystals for all three protein samples were prepared by the

sitting drop vapour-diffusion technique, at 20�C, in 96-well

XtalQuickX crystallization plates. Thaumatin crystals (space

group P41212, unit cell 57.5 Å, 57.8 Å, 150.12 Å, 90�, 90�, 90�,

solvent content 44%) grew in 0.2 ml + 0.2 ml drops consisting

of 50 mg ml�1 solution of protein powder (Sigma, T7638)

dissolved in deionized water mixed with crystallization solu-

tion consisting of 0.050 M ADA buffer, pH 6.8, 0.6 M potas-

sium sodium tartrate (dissolved in DTNB-saturated water)

and 20% glycerol. Thermolysin crystals (space group P6122,

unit cell 92.7 Å, 92.7 Å, 128.7 Å, 90�, 90�, 120�, solvent content

47%) were prepared by mixing a 25 mg ml�1 solution of

protein powder (Sigma P1512) dissolved in 0.05 M MES

buffer, pH 6.0, 45% DMSO and 0.05 M sodium chloride with

well solution consisting of 1.2 M ammonium sulfate, in a 1:1

ratio, using 0.2 ml + 0.2 ml drops. Insulin crystals (space group

I213, unit cell 78.18 Å, 78.18 Å, 78.18 Å, 90�, 90�, 90�, solvent

content 65%) grew in 0.2 ml + 0.2 ml drops prepared by mixing

a 50 mg ml�1 solution of protein powder (Sigma I5500)

dissolved in 0.01 M sodium acetate, pH 3.8 with well solution

consisting of 0.1 M sodium acetate, pH 4.8, 10% sodium

chloride and 25% ethylene glycol.

Thaumatin and insulin crystals (see Fig. 3) did not require

any cryo-protection prior to vitrification in liquid nitrogen;

however, thermolysin crystals were cryo-protected by adding

1 ml of protein buffer to the crystallization drop, immediately

before harvesting. Crystals were harvested on dedicated I23

sample holders, compatible with the in-vacuum cryo-cooling

requirements of the I23 beamline sample environment.

Samples were transferred to the vacuum environment as

previously described (Wagner et al., 2016).

2.2. Tomography data collection

While we experimented with a range of energies for data

collection (3–9 keV), the lower energy regime clearly gave

better quality data, due to increased absorption of X-rays by

matter. The X-ray energies for data collection, 4 keV and

4.5 keV, were chosen as a balance between optimal signal to

noise on the detector and exposure time. Data collected at

energies outside this range required increased exposure times.

Data were collected at an energy of 4.5 keV for thermolysin

and 4 keV for thaumatin and insulin, with un-attenuated beam

slitted to 0.6 mm � 0.6 mm. The thermolysin dataset consisted

of a series of 20 dark images (X-ray shutter closed), followed

by 20 flat-field images (sample translated out of the beam

using the goniometer X-axis), 1800 projections and 20 flat-field

images at the end, taken with a sample to scintillator distance

of 1.2 mm. For thaumatin and insulin, data consisted of 40

dark images, 40 flat-field images and 1800 projections,

followed by 40 flat-field images, taken with a sample-to-scin-

tillator distance of 0.5 mm. All images were recorded with an

exposure time of 0.1 s whilst the sample was rotated with a

constant speed over the range of 180� (hardware-triggered on-

the-fly scan), with all data being collected within 7 min.

3. Methodology and software

The overall strategy for segmenting the data consists of two

major components: the MBIR of tomographic data followed

by segmentation of the reconstructed data into four phases or

classes, namely protein crystal, mother liquor, the loop, and

vacuum (background). Fig. 4 shows a block-scheme of the

implemented data processing steps, starting from the top block

of 3D MBIR and down to multi-phase segmentation using

various segmentation methods. Notably, the grayscale recon-

structed volume can be passed to three different segmentation

methods which can be used independently; however, the final

result is usually a combination of multiple segmentation

techniques. For instance, the MBIR reconstructed image can

be partially segmented using the GMM and then passed to the

RegionGrow method to segment the remaining phases (e.g.

the crystal). Therefore, in this case, the resulting segmented

image is a combination of GMM and RegionGrow segmen-

tations.

The reasoning behind this multi-stage segmentation

approach is to ensure some flexibility with regard to variations

in the data. In our case the data vary significantly depending

on the geometry of samples, energy of the beam and the

presence of multiple imaging artefacts. In this situation it

is hard to establish a single segmentation technique equally

suitable for all cases.

In the following sections we briefly explain each of the steps

given in Fig. 4.
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Figure 3
Images of the thaumatin (left) and insulin (right) crystals taken with the
on-axis viewing system of the I23 end-station.



3.1. Model-based iterative reconstruction

It is known that the direct reconstruction techniques do not

provide the same reconstructed image quality as iterative

methods (Bertero & Boccacci, 1998; Vogel, 2002). In order to

improve image contrast, enhance edges, provide better spatial

resolution and minimize image artefacts, we use the MBIR

approach to reconstruct tomographic projection data. Due to

smaller field of view and access to a computing cluster through

Savu software, it is feasible to use MBIR routinely. To quali-

tatively demonstrate the differences in the reconstructed

images from the two methods, we present the results from the

filtered-backprojection (FBP) direct reconstruction and the

MBIR of the insulin sample in Fig. 5. Notice the significant

edge enhancement and noise suppression for MBIR,

compared with FBP. Unfortunately, due to imaging conditions

and sample characteristics, the boundaries of phases are

inconsistent and absorption coefficients of A, B and C phases

are very close to each other. Notice also the presence of

double-edges (explained in Section 5) and other reconstruc-

tion artefacts (streaks and shadowing). The aforementioned

factors make the subsequent segmentation a highly challen-

ging task.

In X-ray tomography, the reconstruction task is to recover

the unknown attenuation coefficient distribution (the

absorption map) x 2 RN using the log-corrected normalized

tomographic projection data b = � ln Y=I 0ð Þ, where Y =

f yj g
M
j¼ 1 are raw measurements (photon counts) and I 0 is the

intensity of the incoming beam.

The following regularized optimization problem needs to

be solved,

min
x

f ðAx; bÞ þ �gðxÞ; ð3Þ

where A 2 RM�N is the system projection matrix,

f : RM
! Rþ is a continuously differentiable data misfit term,

g : RN
! Rþ is a convex penalty, and � is the regularization

parameter.

For our reconstructions we use the Penalized Weighted

Least Squares model for the data misfit, f ðAx; bÞ = ð1=2Þkrk 2
K,

where r ¼ Ax� b, K ¼ diagfyjg, and the Total Variation (TV)

penalty (Rudin et al., 1992) for regularization: g(x) = ||rx||TV.

Here, the TV penalty is a suitable choice to ensure a piece-

wise-constant image recovery due to the presence of sharp

geometrical features. The general optimization problem for

(3) is solved using A Fast Iterative Shrinkage-Thresholding

Algorithm (FISTA) (Beck & Teboulle, 2009).

We use the TOmographic MOdel-BAsed Reconstruction

(ToMoBAR) software (Kazantsev & Wadeson, 2020) to

reconstruct the projection data. The ToMoBAR software uses

projection-backprojection operators of the ASTRA Toolbox

(Van Aarle et al., 2016) and regularization modules of the

CCPi-Regularisation Toolkit (Kazantsev et al., 2019).

3.2. Segmentation techniques

The segmentation challenge involves partitioning the

grayscale image/volume into non-intersecting multiple

segments according to some underlying properties. In our

case, we consider absorption of four distinct phases: the

crystal, the sample holder (loop), mother liquor and vacuum.
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Figure 5
Reconstruction of the insulin sample using the FBP method (left) and
iterative reconstruction using ToMoBAR (right). The phases are: A:
crystal; B: mother liquor; C: loop; D: vacuum.

Figure 4
A top-to-bottom data processing pipeline where the first block is a
reconstruction with MBIR followed by three complimentary segmenta-
tion methods. The whole reconstruction-segmentation pipeline is
incorporated into Savu software (see Section. 3.3) to ensure fast data
access, processing speed and the ease of use.



The implemented segmentation pipeline consists of three

different methods which compliment one another in order to

achieve the final result (see Fig. 4).

3.2.1. Gaussian Mixture Model (GMM). The Gaussian

mixture clustering process is based on estimating parameters

for the K number of Gaussian probability density functions

(pdfs) given as

Nðxjl;�Þ ¼
1

ð2�ÞD=2
j�j1=2

exp
1

2
ðx� lÞ>��1

ðx� lÞ

� �
; ð4Þ

where � is a mixing probability, x represents input data points

and D is the number of dimensions of each data point, l is the

mean, and � is the covariance matrix.

In order to fit Gaussian pdfs to input data points one can

use maximum likelihood estimates to find optimal parameters

ð�; l;�Þ. This optimization procedure is implemented in the

Scikit–Learn Python library (Permuter et al., 2006; Pedregosa

et al., 2011). We use it with a fixed number of classes K = 4.

The major drawback of this approach (as of any histogram-

based segmentation technique) is the dependency on the

variations of intensity of different phases. Therefore if the

grayscale values of examined phases are close to each other as

liquor and crystal (chemically identical) phases in Fig. 5, this

can lead to an ambiguity of overlapping Gaussian pdfs. As a

result, mis-classification and phase-merging can occur. Fortu-

nately, some samples (e.g. see Section 4.1) can have intensity

distinctive phases, so they can be successfully segmented

with GMM.

3.2.2. Geodesic distance thresholding (GeoDistance). In

contrast to the statistical GMM approach, the geodesic

distance segmentation is a deterministic technique which also

requires some level of user interaction for initialization.

It is based on calculating the geodesic distance transform

(Toivanen, 1996; Criminisi et al., 2008; Bai & Sapiro, 2009;

Wang et al., 2019) on the reconstructed image and then

thresholding the result to obtain the examined phases.

The geodesic distance Dgeo is initiated by user selection in

order to classify the pixels belonging to the foreground (Sf)

and the background (Sb). The unsigned geodesic distance

for image I from pixel i to the scribble set SðS 2 fSf;SbgÞ is

given as

Gði;S; IÞ ¼ min
j2S

Dgeoði; j; IÞ; ð5Þ

Dgeoði; j; IÞ ¼ min
p2Pi; j

Z1

0

��rI
�
pðsÞ

�
� uðsÞ

�� ds; ð6Þ

where P i; j is the set of all paths between pixels i and j, and p(s)

indicates one feasible path parameterized by s 2 [0, 1]. The

unit vector uðsÞ = p0ðsÞ=kp0ðsÞk is tangent to the direction of

the path.

In order to calculate Dgeo in application to our problem, the

user needs to provide a mask which identifies the approximate

central area inside the crystal. The mask should be fully

enclosed within the crystal area and in theory can be set to any

geometrical object, e.g. a voxel, a sphere, a cylinder etc. We use

a curved (pipe-like) cylinder as a mask. After the geodesic

distance map is calculated using an initialized mask, the result

is thresholded in order to obtain the required phases. The

parameters for thresholding can be found manually or auto-

matically.

In this work, we use the implementation of the geodesic

distance calculation by Wang et al. (2019) which employs the

raster-scan algorithm (Criminisi et al., 2008). The performance

of the GeoDistance method depends on the accuracy of the

mask initialized and the subsequent thresholding step. The

method can be sensitive to intensity variations inside phases

and various image artefacts (e.g. ring artefacts, streaks).

Conveniently, the initial mask can be provided to the

RegionGrow segmentation technique described bellow.

3.2.3. Region growing (RegionGrow). This morphological

technique is implemented by the authors to enable faster and

more controllable 3D segmentation suitable for our purposes.

In accordance with other region growing segmentation

methods (Pal & Pal, 1993), the main idea is to compare

neighbouring pixels and merge them, if they are similar.

Let F be the set of all voxels in the reconstructed volume I,

while P( . . . ) is a logical uniformity predicate defined on

groups of connected voxels. The segmentation problem is to

partition F into a set of connected non-intersecting regions

ðS1;S2; . . . ;SKÞ such that

[K
k¼ 1

Sk ¼ F ; with Sk

\
Sl ¼ ;; k 6¼ l: ð7Þ

Here ; is the null set and PðSkÞ = TRUE for all regions ðSkÞ

and PðSk

S
SlÞ = FALSE for any adjacent regions Sk and Sl.

Let Sk � F be a user-initialized mask for a chosen phase k.

First we extract the list of statistical measures associated with

the given set F ^ Sk: mean (�k), mean absolute deviation

( ~��k), median (�k) and median absolute deviation ( ~��k). Then

the RegionGrow method consists of two main steps:

(1) Iterative expansion of the mask Sk based on the edge

detection stopping criteria. If i 2 Sk then j will assigned to Sk

when:

(i) j 2 N i and

(ii) jIj � �kj 	 1:48 ~��k� or jI j � �kj 	 1:48 ~��k�.
The iterations are terminated when the conditions above

are not fulfilled for any j 2 F.

(2) Iterative removal of morphological noise in Sk. We want

to remove gaps, sharp inconsistent features in Sk while

avoiding erosion of the mask. Therefore, for each i 2 Sk we

perform a non-local connectivity search in the neighbourhood

of ~NN i .

(i) To remove gaps if j 2 ~NN i and both i; j 2 Sk, then

assign all the voxels on the path between i and j to PðSkÞ =

TRUE.

(ii) To remove inconsistent features i; j =2Sk then all

voxels on the i � j path PðSkÞ = FALSE.

The i � j path is calculated using the Bresenham algorithm

(Bresenham, 1965). This discrete line-type of closing is

inspired by the work of Soille (2000). The iterations are
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terminated when there is no change in Sk compared with the

previous iteration.

The first step of RegionGrow checks the association of

voxel j to the local neighbourhood N i chosen to be 6 (first

order) or 26 (second order). The threshold parameter � is

normally chosen around the value � = 1.0 and the final edge

value is scaled automatically due to local statistics calculation.

In the second step the neighbourhood ~NN is chosen as

ð2þ ~NNsÞ
n, where n is the dimension of the input data and ~NNs is

the size of the non-local searching window.

Although the RegionGrow method is computationally fast,

due to parallel implementation, it has several drawbacks.

Similarly to the GeoDistance method, it depends on the

accuracy of the provided mask. The absence of the closed-

curve contour condition can allow RegionGrow evolution in

Step (1) to over-segment where the boundary between phases

is missing and phases have similar intensity values. The

evolution process is also interrupted by the presence of

various artefacts resulting in gaps and non-smooth protruding

features which should be removed in Step (2). Many iterations

of the Step (2) can also lead to over-smoothing of sharp

corners; however, this can be minimized by reducing the size

of the searching window.

3.3. Big data parallel processing with Savu

The challenge of processing big data efficiently is crucial for

many synchrotron facilities which can collect up to several

petabytes of data annually. At DLS, data are collected from

over 30 beamlines and integrated facilities. Therefore, it is

crucial to be able to process large amounts of data using

parallel computing architectures with the help of the Message

Passing Interface (MPI) protocols.

Savu is an open source MPI-based tomographic application

for large data processing developed at Diamond Light Source

(Wadeson & Basham, 2016). By parallelizing applications

across multiple nodes of a computing cluster, one can process

a parallel-beam tomographic data significantly faster and

more efficiently. Savu can be also installed as a standalone

application providing quick access to all integrated methods.

The reconstruction-segmentation pipeline presented here

has been fully integrated into Savu’s framework. This makes it

possible to obtain segmented X-ray absorption density maps

within reasonable time and minimal user supervision. Savu-

processed datasets, stored as hdf5 files, can be easily loaded

and visualized in another in-house open source data analysis

software, Dawn (Basham et al., 2015).

3.4. Manual segmentation in Avizo

Manual segmentation for all three datasets was completed

using Avizo Lite (9.7.0) by labelling four different phases

across the stack of the reconstructed images: crystal, solvent,

loop and vacuum background. For two of the three datasets,

thermolysin and thaumatin, segmentation was started with

histogram-based thresholding, using the ‘magic wand’ tool.

Segmentation errors caused by reconstruction artefacts were

corrected by removing unwanted sections or adding to existing

labels using the ‘lasso’ selection tool in ‘auto trace’ mode,

followed by interpolation between slices. For the insulin

dataset, poor contrast between the crystal and solvent did not

allow for histogram-based segmentation; instead, the ‘lasso’

tool and interpolation were used exclusively. Manually

segmented data can be used as a golden standard to compare

automatic segmentation methods since the ground truth is not

accessible. The segmented data were exported as tiff stacks,

for further comparison with the automatic segmentation data.

4. Numerical results

Three different protein crystals were chosen for this study,

in an attempt to capture different sample morphologies

and sizes: thermolysin (a hexagonal rod, approximate size

250 mm � 50 mm � 50 mm), thaumatin (a double-sided prism,

approximate size 200 mm � 100 mm � 50 mm) and insulin (a

rounded cube, approximate size 20 mm � 20 mm � 20 mm).

Manual and automated segmentation results for the three

samples are presented in the following sections.

4.1. Segmentation of the thermolysin sample

The appearance of the thermolysin sample is presented in

Fig. 6 via a volume rendering representation of the manually

segmented reconstructed data.

Fig. 7 (top row to bottom) shows the results of iterative

image reconstruction using the ToMoBAR package, manual

segmentation, GMM segmentation with GeoDistance and
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Figure 6
The rendered manual segmentation of the thermolysin sample showing the crystal (light purple), the loop (coral red), and the mother liquor (black
mesh).



RegionGrow for the thermolysin sample. The GMM

segmentation is successful in separating the mother liquor,

loop and vacuum phases thanks to significant intensity

differences between them. The segmentation of the crystal

phase is achieved by applying GeoDistance and RegionGrow

and then adding to the result of the GMM segmentation. The

red boxes highlight the image discrepancies between the

manual segmentation and other methods for the crystal phase.

These are calculated by taking the absolute difference

between the labelled pixels of manual segmentation and

automatic segmentation. Notably, the GeoDistance method

under-segments the crystal phase while RegionGrow is

significantly closer to the manual segmentation, yet slightly

smoother. The smoother shape of the crystal with the

RegionGrow method is related to the morphological volu-

metric operation (2) in Section 3.2.3. The more ragged surface

of manual segmentation is explained by the extrapolation

errors between manually labelled slices.

Fig. 8 shows plots for the total number of segmented pixels

for each phase against the 2D (x–y) slices. These plots are

helpful in highlighting how the automated segmentation

methods perform compared with the manual one. One can

easily identify the over-/under-segmentation in particular

regions/slices of the reconstructed volume. There is a very

good agreement between the GMM and manual segmentation

for the loop and mother liquor phases (top row). The

GeoDistance segmentation of the crystal (bottom left) shows a

substantial under-segmentation for slices 100–250 and 750–

830. Notably, slices 250–750 become over-segmented with

the GeoDistance method while RegionGrow (bottom right)

performs better and only small parts are mis-segmented.

An alternative quantitative representation of the discre-

pancy between the GeoDistance and RegionGrow segmen-

tations and the manual segmentation, for the crystal phase, is

presented in Fig. 9. It is evident that the GeoDistance method
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Figure 7
Thermolysin reconstruction and segmentation. Top row to bottom: the
result of iterative reconstruction using the ToMoBAR package, manual
segmentation using Avizo (see Section 3.4), a combined segmentation
using GMM (liquor, loop and vacuum) and GeoDistance thresholding for
crystal, a combined segmentation using GMM and RegionGrow method
for crystal. Image discrepancies between the manual segmentation of the
crystal and automated methods are presented in the red boxes.

Figure 8
The distribution of segmented pixels of an individual phase with respect
to 2D (x–y) slices for the thermolysin sample. The GMM segmentation
for the loop and the crystal is similar to the manual method. For the
crystal phase, RegionGrow performs better than Geodistance.



deviates more significantly from the manual segmentation

than RegionGrow, especially in the slices corresponding to the

edges of the crystal, i.e. the first 200 and the last 100 slices in

the 2D stack. These are the slices where the crystal is usually

elongated with fewer number of pixels in the cross-section.

Therefore any errors in segmentation contribute more

strongly into quantitative analysis.

4.2. Segmentation of the thaumatin sample

Volume rendering for the manual segmentation of the

thaumatin sample is shown in Fig. 10.

In Fig. 11, from top row to bottom, we present the results of

iterative image reconstruction using the ToMoBAR package,

manual segmentation, GMM segmentation with GeoDistance

and RegionGrow for the thaumatin sample. Similarly to the

thermolysin result, the GMM segmentation is successful in

segmenting the mother liquor, loop and vacuum phases.

GeoDistance and RegionGrow are used to segment the crystal

only and the result is added to the GMM result. For this

particular sample, GMM erroneously merges the crystal and

the loop into one phase. While this is not ideal, the final

segmentation result is dictated by the success of the

GeoDistance or RegionGrow method in accurately labelling
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Figure 9
Discrepancy between the automatic segmentation methods GeoDistance
and RegionGrow and manual segmentation for the thermolysin crystal.
Positive values mean under-segmentation and negative ones over-
segmentation. GeoDistance shows a larger deviation from manual
segmentation than RegionGrow.

Figure 10
The rendered manual segmentation of the thaumatin sample showing the crystal (light purple), the loop (coral red), and the mother liquor (black mesh).

Figure 11
Thaumatin reconstruction and segmentation. From top row to bottom:
the result of iterative reconstruction using the ToMoBAR package,
manual segmentation using Avizo, a combined segmentation using GMM
(liquor, loop and vacuum), GeoDistance thresholding and RegionGrow
for the crystal. One can see that the GeoDistance method under-segments
the crystal while RegionGrow is closer to the manual segmentation, yet
slightly smoother.



the crystal phase. In this instance, the GMM mis-segmentation

is rectified by the result of RegionGrow.

The automatic segmentation of the thaumatin sample

results in a more significant deviation from the manual method

for GeoDistance compared with RegionGrow with respect to

the crystal phase segmentation, which is consistent with the

result of the thermolysin sample. While RegionGrow is closer

to manual segmentation, GeoDistance undersegments the

crystal phase as illustrated in Fig. 12. The segmentation

difference plot in Fig. 13 confirms the qualitative assessment

of Fig. 11 and, again, shows a significant departure from the

manual segmentation especially in the regions of the 2D stack

corresponding to the edges of the crystal.

4.3. Segmentation of the insulin sample

The appearance of the insulin sample is presented in the

volume rendering of the manually segmented data in Fig. 14.

The mounting of this sample resulted in only a thin film of

mother liquor surrounding the crystal, which explains why this

phase is barely visible in the rendering.

Unlike the other two samples, the insulin reconstruction

data offers no contrast between the crystal, mother liquor and

loop phases, as shown in the reconstruction results presented

in the first row of Fig. 15. This renders the GMM segmentation

method ineffective and, therefore, the only option is to apply

the GeoDistance and RegionGrow methods.

The GeoDistance segmentation results, presented in Fig. 15,

third row from the top, show accurate identification of all four

phases. As evident from the image errors, the edges of the

crystal pose a significant challenge for the automatic

segmentation methods. The streak artefacts additionally

contribute to the discrepancies between the manual and

automated segmentations.

As a quantitative comparison between the two automatic

segmentation methods and the manual segmentation, Fig. 16

indicates that both GeoDistance and RegionGrow under-

segment the crystal, confirming the image errors in Fig. 15. The

quality of the reconstruction for the insulin sample is notice-

ably lower, compared with the other two samples, making

segmentation particularly challenging. The presence of

multiple artefacts and inconsistent boundaries between

phases lead to slightly higher segmentation inaccuracies than

expected. Given the segmentation challenge presented by this

sample, we take a different processing approach and attempt

a combination between the results of GeoDistance and

RegionGrow. With respect to the crystal phase, adding the

RegionGrow method slightly reduces the discrepancy

between the automated and manual methods, by expanding
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Figure 12
The distribution of segmented pixels of the crystal phase with respect to
2D (x–y) slices of the thaumatin sample using GeoDistance and
RegionGrow methods. It can be seen that the GeoDistance segmentation
significantly under-segments, while RegionGrow slightly over-segments.

Figure 13
The discrepancy of GeoDistance and RegionGrow segmentation from
the manual segmentation for the thaumatin crystal. Note that the
deviation of GeoDistance is larger than for RegionGrow. Positive values
mean under-segmentation and negative over-segmentation.

Figure 14
The rendered manual segmentation of the insulin sample showing the crystal (purple) and the loop (red). Mother liquor is not visible in this case.



the result of the under-segmented GeoDistance segmentation.

Nevertheless, it over-segments in some areas, such as slices

170–190 in Fig. 16 (right). However this is due to the presence

of streak artefacts, so, with better data, this should not be a

problem.

The segmentation discrepancy between the GeoDistance,

RegionGrow and the manual methods is shown in Fig. 17.

Notably, the RegionGrow method performs slightly better

than GeoDistance but mis-segments a small region.

For all three samples, the shape of the discrepancy curves

(Figs. 9, 13, 17) shows larger disagreements between automatic

and manual methods in the region of data corresponding to

the edges of the crystal, where the crystal phase represents a

small proportion of the entire object and also the presence of

artefacts is more pronounced.

5. Discussion and conclusion

In this study we present three complimentary semi-automatic

methods for segmenting low-contrast tomographic data

collected on the long-wavelength beamline I23 at DLS. These

can be used as part of a diffraction and tomography data

processing pipeline to account for the significant absorption of

very long wavelengths X-rays.

The three different samples in this study were chosen to

provide distinct morphologies and sizes for testing the auto-

matic segmentation methods. Our results show that the GMM

method is a convenient tool for segmenting some prominent

phases, e.g. vacuum, loop and mother liquor (see Sections 4.1

and 4.2), when the intensity differences allow it. The result of

GMM can then be superimposed with the GeoDistance and/or
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Figure 15
Insulin reconstruction and segmentation. From top row to bottom: the
result of iterative reconstruction using the ToMoBAR package, manual
segmentation using Avizo, a complete GeoDistance thresholding
segmentation for all phases, RegionGrow segmentation using an input
from GeoDistance to segment the crystal. One can see that the
GeoDistance method provides a reasonably good segmentation for all
phases. RegionGrow adds a small improvement to the existing
GeoDistance segmentation for the crystal.

Figure 16
The plots demonstrate the distribution of segmented pixels of the crystal
phase with respect to 2D (x–y) slices of the insulin sample using
GeoDistance and RegionGrow methods. The GeoDistance segmentation
significantly under-segments while RegionGrow slightly over-segments.

Figure 17
The discrepancy between the GeoDistance and RegionGrow segmenta-
tions and the manual segmentation for the insulin crystal. Note that the
RegionGrow slightly improves GeoDistance segmentation but mis-
segments 170–190 region. Positive values mean under-segmentation and
negative over-segmentation.



RegionGrow segmentations of the remaining phases, e.g. the

crystal phase. If the intensity differences between phases are

negligible (see Section 4.3) and GMM fails, as in the case with

the insulin sample in our study, GeoDistance can perform

segmentation for all required phases; however, it requires

more supervised effort. In order to obtain all the phases after

the result of GeoDistance calculation, one needs to apply

thresholding. This can be done manually, as in this paper,

or automatically. The developed RegionGrow method (see

Section 3.2.3) performs overall well if the threshold parameter

� is chosen correctly. Parameter � controls the edge detection

and, when chosen incorrectly, can lead to over or under

segmentation. Additionally, for both GeoDistance and

RegionGrow methods, the selection of the mask defines the

final result. To avoid mis-segmentation, the mask needs to be

fully within the selected phase and must not include any other

phases and edges.

All three datasets presented in this study show a feature

(double edges at boundaries between different materials) with

both positive and negative effects on segmentation and which

is an unavoidable effect of the data collection parameters, as

well as the nature of samples under investigation. The strong

double edges seen in the reconstructed images can be

regarded as helpful in providing a boundary between two

different phases, while being a hindrance in accurately iden-

tifying the physical limit of phases. Their presence can be

explained in terms of the interaction of long-wavelength

X-rays with low-contrast biological samples.

As protein crystals grow in a liquid medium with identical

chemical composition, the difference between the linear

absorption coefficients of crystal and surrounding liquid is

very small, leading to poor absorption contrast between the

two phases in tomographic reconstruction, which severely

impedes distinguishing between them for segmentation

purposes. Nevertheless, absorption is not the only conse-

quence of interactions of X-rays with matter, as X-rays passing

through a sample also undergo refraction. Both absorption

and refraction effects are more pronounced at lower energies

(E), as the two components of the complex refractive index n

(n = 1 � � + i�), the absorption index �, and the refractive

index decrement �, vary with ‘1/E 4’ and ‘1/E 2’, respectively.

Refraction of X-rays leads to phase changes between the

incoming and outgoing radiation, creating phase-contrast

effects which cause edge enhancement at the boundaries

between materials (Snigirev et al., 1995). This effect is mani-

fested as visible fringes in tomographic projections which

result in the double-edge features seen in our reconstruction

images, at the boundaries between crystal and surrounding

liquid, liquid and loop, as well as loop and background (see

Fig. 5). Although the edge enhancement is a useful feature for

both manual and automatic segmentation, the double-edge

creates an uncertainty on the position of the true edge.

While there are some discrepancies between the manual

and the automatic segmentation results, the two methods

produce comparable data. For difficult cases, like the insulin

sample in this study, manual adjustment of the automatically

segmented data would be needed to achieve the required

results. However, for conventional data, the automatic

segmentation offers a significant advantage in saving time.

Manual segmentation can take several hours, even up to a day,

per dataset, depending on the quality of the reconstructed

data and the presence of artefacts.

The presented segmentation methods provide a starting

point for developing more robust and automated segmenta-

tion techniques. For example, with the fast development of

deep learning (DL) classification and segmentation approa-

ches (Minaee et al., 2020), our next step will be to explore the

possibility of fully automated segmentation methods. Further

improvement of the presented segmentations can be obtained

with an improvement of the reconstruction stage. The model-

based reconstruction can be better tuned to minimize various

imaging artefacts. Equally, state-of-the-art DL denoising

algorithms can do a better job of removing noise than tradi-

tional regularization methods.

These improvements will allow us to focus on the next

important steps towards absorption corrections for long-

wavelength crystallography, such as the quantitative descrip-

tion of the segmented volumes and calculation of their

corresponding absorption coefficients.

In this paper, we demonstrated a multi-component pipeline

including model-based reconstruction and segmentation of

tomographic data. The pipeline has been successfully inte-

grated into the higher-level MPI-based software Savu to

provide fast access to data and computing resources at DLS.

These results represent an important and promising step

towards the development of a combined diffraction and

tomography pipeline aimed at providing absorption-corrected

long-wavelength data and thus enabling the unique experi-

mental opportunities that come with using the longest wave-

lengths beamline I23 can access.
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O., Brockhauser, S., Náray, G. & Ashton, A. W. (2015). J.
Synchrotron Rad. 22, 853–858.

Beck, A. & Teboulle, M. (2009). IEEE Trans. Image Process. 18,
2419–2434.

Bertero, M. & Boccacci, P. (1998). Introduction to Inverse Problems in
Imaging. CRC Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
Springer.

research papers

900 Daniil Kazantsev et al. � Tomographic reconstruction and segmentation pipeline J. Synchrotron Rad. (2021). 28, 889–901

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB19


Bresenham, J. (1965). Algorithm Comput. Contr. Digit. Plotter. IBM
Syst. J. 4, 25–30.

Brockhauser, S., Di Michiel, M., McGeehan, J. E., McCarthy, A. A. &
Ravelli, R. B. G. (2008). J. Appl. Cryst. 41, 1057–1066.

Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180–182.
Criminisi, A., Sharp, T. & Blake, A. (2008). European Conference on

Computer Vision – ECCV 2008, Vol. 5302 of Lecture Notes in
Computer Science, pp. 99–112. Berlin, Heidelberg: Springer.

Evans, P. R. & Murshudov, G. N. (2013). Acta Cryst. D69, 1204–1214.
Hendrickson, W. A. (2000). Trends Biochem. Sci. 25, 637–643.
Howells, M. R., Beetz, T., Chapman, H. N., Cui, C., Holton, J. M.,

Jacobsen, C. J., Kirz, J., Lima, E., Marchesini, S., Miao, H., Sayre, D.,
Shapiro, D. A., Spence, J. C. H. & Starodub, D. (2009). J. Electron
Spectrosc. Relat. Phenom. 170, 4–12.

Kabsch, W. (2010). Acta Cryst. D66, 125–132.
Kazantsev, D., Pasca, E., Turner, M. J. & Withers, P. J. (2019).

SoftwareX, 9, 317–323.
Kazantsev, D. & Wadeson, N. (2020). Proceedings of the 6th

International Conference on Image Formation in X-ray Computed
Tomography (CT 2020), 3–7 August 2020, Regensburg, Germany.

Koch, A., Raven, C., Spanne, P. & Snigirev, A. (1998). J. Opt. Soc.
Am. A, 15, 1940–1951.

Leal, R. M. F., Teixeira, S. C. M., Rey, V., Forsyth, V. T. & Mitchell,
E. P. (2008). J. Appl. Cryst. 41, 729–737.

Martin, T., Douissard, P. A., Couchaud, M., Cecilia, A., Baumbach, T.,
Dupre, K. & Rack, A. (2009). IEEE Trans. Nucl. Sci. 56, 1412–
1418.

Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N. &
Terzopoulos, D. (2020). arXiv:2001.05566.

Minor, W., Tomchick, D. R. & Otwinowski, Z. (2000). Strateg.
Macromol. Synchrotron Crystallogr. Struct. 8, R105–R110.

Pal, N. R. & Pal, S. K. (1993). Pattern Recognit. 26, 1277–1294.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.
& Duchesnay, E. (2011). Scikit-Learn.: Mach. Learn. Python J.
Mach. Learn. Res. 12, 2825–2830.

Permuter, H., Francos, J. & Jermyn, I. (2006). Pattern Recognit. 39,
695–706.

Polikarpov, M., Bourenkov, G., Snigireva, I., Snigirev, A., Zimmer-
mann, S., Csanko, K., Brockhauser, S. & Schneider, T. R. (2019).
Acta Cryst. D75, 947–958.

Rudin, L. I., Osher, S. & Fatemi, E. (1992). Physica D, 60, 259–268.
Santoro, A., Weir, C. E., Block, S. & Piermarini, G. J. (1968). J. Appl.

Cryst. 1, 101–107.
Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S. & Schelokov, I.

(1995). Rev. Sci. Instrum. 66, 5486–5492.
Soille, P. (2000). Proceedings of the International Conference on

Discrete Geometry for Computer Imagery (DGCI 2000), Vol. 1953
of Lecture Notes in Computer Science, pp. 78–98. Berlin,
Heidelberg: Springer.

Strutz, T. (2011). IEEE/ACM Trans. Comput. Biol. Bioinf. 8, 797–
807.

Toivanen, P. J. (1996). Pattern Recognit. Lett. 17, 437–450.
Vogel, C. R. (2002). Computational Methods for Inverse Problems,

Vol. 23 of Frontiers in Applied Mathematics. Siam.
Wadeson, N. & Basham, M. (2016). arXiv:1610.08015.
Wagner, A., Duman, R., Henderson, K. & Mykhaylyk, V. (2016). Acta

Cryst. D72, 430–439.
Wang, G., Zuluaga, M. A., Li, W., Pratt, R., Patel, P. A., Aertsen, M.,

Doel, T., David, A. L., Deprest, J., Ourselin, S. & Vercauteren, T.
(2019). IEEE Trans. Pattern Anal. Mach. Intell. 41, 1559–1572.

Wang, Z., Pan, Q., Yang, L., Zhou, H., Xu, C., Yu, F., Wang, Q.,
Huang, S. & He, J. (2016). J. Synchrotron Rad. 23, 1323–1332.

Warren, A. J., Armour, W., Axford, D., Basham, M., Connolley, T.,
Hall, D. R., Horrell, S., McAuley, K. E., Mykhaylyk, V., Wagner, A.
& Evans, G. (2013). Acta Cryst. D69, 1252–1259.

Winter, G. (2010). J. Appl. Cryst. 43, 186–190.

research papers

J. Synchrotron Rad. (2021). 28, 889–901 Daniil Kazantsev et al. � Tomographic reconstruction and segmentation pipeline 901

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5234&bbid=BB14

