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The Long Short-Term Memory neural network (LSTM) has excellent learning

ability for the time series of the nuclear pulse signal. It can accurately estimate

the parameters (such as amplitude, time constant, etc.) of the digitally shaped

nuclear pulse signal (especially the overlapping pulse signal). However, due

to the large number of pulse sequences, the direct use of these sequences as

samples to train the LSTM increases the complexity of the network, resulting in

a lower training efficiency of the model. The convolution neural network (CNN)

can effectively extract the sequence samples by using its unique convolution

kernel structure, thus greatly reducing the number of sequence samples.

Therefore, the CNN-LSTM deep neural network is used to estimate the

parameters of overlapping pulse signals after digital trapezoidal shaping of

exponential signals. Firstly, the estimation of the trapezoidal overlapping

nuclear pulse is considered to be obtained after the superposition of multiple

exponential nuclear pulses followed by trapezoidal shaping. Then, a data set

containing multiple samples is set up; each sample is composed of the sequence

of sampling values of the trapezoidal overlapping nuclear pulse and the set of

shaping parameters of the exponential pulse before digital shaping. Secondly,

the CNN is used to extract the abstract features of the training set in these

samples, and then these abstract features are applied to the training of the

LSTM model. In the training process, the pulse parameter set estimated by the

present neural network is calculated by forward propagation. Thirdly, the loss

function is used to calculate the loss value between the estimated pulse

parameter set and the actual pulse parameter set. Finally, a gradient-based

optimization algorithm is applied to update the weight by getting back the loss

value together with the gradient of the loss function to the network, so as

to realize the purpose of training the network. After model training was

completed, the sampled values of the trapezoidal overlapping nuclear pulse

were used as input to the CNN-LSTM model to obtain the required parameter

set from the output of the CNN-LSTM model. The experimental results

show that this method can effectively overcome the shortcomings of local

convergence of traditional methods and greatly save the time of model training.

At the same time, it can accurately estimate multiple trapezoidal overlapping

pulses due to the wide width of the flat top, thus realizing the optimal estimation

of nuclear pulse parameters in a global sense, which is a good pulse parameter

estimation method.

1. Introduction

Digital shaping methods are important in shaping nuclear

pulse signals because some digital signal processing can be

used to estimate the parameters of the nuclear signal, and

greatly improve the performance of the nuclear instrument.
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However, the overlap of adjacent nuclear pulses at high speed

counting is difficult to avoid regardless of the shaping method.

Therefore, the parameter estimation of overlapping nuclear

pulses after digital shaping is still a problem (Huang et al.,

2017; Jiang et al., 2017). For example, the exponential nuclear

pulse in the trapezoidal shaping method is shaped into a

trapezoidal nuclear pulse; thus, the signal is broadened to

facilitate the estimation of the amplitude; however, the

probability of the trapezoidal pulse overlapping is larger than

that of the exponential nuclear pulse (Chen, 2009; Ren et al.,

2018). Many research institutions have conducted in-depth

research on the formation, acquisition, identification, and

parameter estimation of trapezoidal nuclear pulses in recent

years (Xie, 2009; Zhang, 2006; Zhou et al., 2015). However,

the parameter estimation for heavily overlapping trapezoidal

nuclear pulses is unsatisfactory (Xiao et al., 2005; Zhou et al.,

2007; Tang et al., 2018; Hong et al., 2018). Deep learning

technology is a popular intelligent science technology (Hinton

& Salakhutdinov, 2006). It has hidden layers that contain

many nonlinear transformation structures. Thus, its ability in

fitting complex models by training a large amount of data is

enhanced (LeCun et al., 1998, 2015; Dorffner, 1996; Du et al.,

2018). At present, research related to introducing deep

learning technology into nuclear pulse parameter estimation is

still at the preliminary stage.

The Long Short-Term Memory neural network (LSTM) can

be used to estimate the parameters of the nuclear pulse signal

(Graves et al., 2009, 2013; Pascanu et al., 2013; Graves, 2013),

because the nuclear pulse signal has the characteristics of a

time series after discretization, and the LSTM (Hochreiter &

Schmidhuber, 1997; Gers et al., 2001) with cyclic structure is

extremely effective in dealing with time series problems.

Unfortunately, directly using a nuclear pulse sequence as

the input data of the LSTM network increases the complexity

of the model because of its complex and diverse character-

istics. Accordingly, the efficiency of the training model

decreases. Therefore, a convolutional neural network (CNN)

(Krizhevsky et al., 2017) can be used to extract abstract

features from the pulse sequence and then input these abstract

features into the LSTM network. In this study, a parameter

estimation method based on the deep learning CNN-LSTM

model is proposed for the overlapped nuclear pulses shaped

by several exponential decay nuclear pulses. This method is

important in verifying the shaping algorithm and acquiring

nuclear pulse parameters.

2. Principle and algorithm

2.1. Principle of trapezoidal shaping for exponential pulse

For the overlapping pulses obtained by the superposition of

N exponentially decaying nuclear pulses, the mathematical

model is as follows,

VeðtÞ ¼
XN

i¼ 1

u t � Tið ÞAi exp
�

t � Tið Þ=�
�
þ vðtÞ; ð1Þ

where u(t) represents the step signal, Ai is the amplitude

coefficient of the ith nuclear pulse, Ti represents the occur-

rence time of the ith nuclear pulse, � is the time constant, and

v(t) represents the noise in the detection process. Discretiza-

tion is performed by the sampling period Ts, and the discre-

tized exponential pulse is

Ve kTsð Þ ¼
XN

i¼ 1

u kTs � Tið ÞAi exp
�
� kTs � Tið Þ=�

�
: ð2Þ

The original trapezoidal overlapping nuclear pulse sequence

Vo(mTs) for parameter estimation is regarded as the result of

the trapezoidal shaping of N exponential decay nuclear pulse

stacking sequences Ve(kTs). Its mathematical model is as

follows,

Vo mTsð Þ ¼ 2Vo

�
ðm� 1ÞTs

�
� Vo

�
ðm� 2ÞTs

�
þ

1

na

�
Ve

�
ðm� 1ÞTs

�
� Ve

�
ðm� na � 1ÞTs

�
� Ve

�
ðm� nb � 1ÞTs

�
þ Ve

�
ðm� nc � 1ÞTs

�
� exp

�
� Ts=�

��
Ve

�
ðm� 2ÞTs

�
� Ve

�
ðm� na � 2ÞTs

�
� Ve

�
ðm� nb � 2ÞTs

�
þ Ve

�
ðm� nc � 2ÞTs

��	
: ð3Þ

In equations (2) and (3), u( . . . ) represents a step function;

k = 1, 2, 3, . . . , K; K is the number of discrete points of

Ve(kTs); � is the decay time constant of the exponential pulse;

Ts is the sampling period; Ai and Ti represent the amplitude

and occurrence time of the ith exponentially decaying nuclear

pulse, respectively; na = ta /Ts ; nb = (ta + D)/Ts ; nc = tc /Ts ; ta is

the rise time of the trapezoidal pulse; D is the flat top width

of the trapezoidal pulse; tc = 2ta + D represents the entire

trapezoidal shaping time; and m = 1, 2, 3, . . . , K + 2 + nc .

2.2. Parameter estimation of overlapping pulses

For the parameter estimation problem after N exponential

decay nuclear pulse trapezoidal shapings, the steps to solve

the problem mainly include the generation of data sets: the

forward propagation estimate pulse parameter set, the back

propagation update network weight, and the preservation

after the completion of the model training.

2.2.1. Production of the data set. A data set with n samples

is considered. The matrix representation of the data set is

as follows,

Vo Tsð Þ
� �

1
Vo 2Tsð Þ
� �

1
� � � VoððK þ 2þ ncÞTsÞ

� �
1

�1

Vo Tsð Þ
� �

2
Vo 2Tsð Þ
� �

2
� � � VoððK þ 2þ ncÞTsÞ

� �
2

�2

..

. ..
.

� � � ..
. ..

.

Vo Tsð Þ
� �

n
Vo 2Tsð Þ
� �

n
� � � VoððK þ 2þ ncÞTsÞ

� �
n

�n

2
6664

3
7775:
ð4Þ

Each row in matrix (4) represents data of one sample. nc

represents the entire trapezoidal shaping time (tc) divided by

the sampling period (Ts), nc = tc /Ts. The front K + 2 + nc data

research papers

J. Synchrotron Rad. (2021). 28, 910–918 Xing-Ke Ma et al. � Deep learning CNN-LSTM model 911



of each row are the sampling value of the trapezoidal over-

lapping nuclear pulse. The trapezoidal overlapping nuclear

pulse is assumed to be shaped according to the shaping

method in Section 2.1. The parameters of the input signal

Ve(kTs) before shaping are Ai (i = 1, 2, . . . , N), Ti (i = 1, 2, . . . ,

N) and �. The rising edge time at the time of trapezoidal

shaping is ta, and the flat top width time is D. These parameters

constitute the parameter set � of this sample, that is, � = [A1,

A2, . . . , AN , T1, T2, . . . , TN , �, ta , D]; for example, the sampling

values of the trapezoidal overlapping nuclear pulse Vo(mTs)

corresponding to the ith sample are [Vo(Ts)]i , [Vo(2Ts)]i ,

[Vo(3Ts)]i , . . . , [Vo((K + 2 + nc)Ts)]I ; the parameter set of the

ith sample becomes �i . The parameter set � is randomly

generated.

The data set is divided into a training set, a test set and a

validation set according to a certain proportion. Among them,

the training set is used to train the CNN-LSTM model, and the

test set is utilized to test the generalization ability of the model

after the model training is completed. The validation set is

adopted to test whether the trained model has an overfitting

phenomenon. If an overfitting phenomenon occurs, then

the Dropout (Srivastava et al., 2014; Bouthillier et al., 2015)

algorithm is used to modify the propagation structure of

the neural network. The Dropout algorithm can discard the

memory unit from the network according to a certain prob-

ability during the training process. The memory cells of the

network are temporarily discarded randomly. Thus, a differ-

ence in the network of each batch training is observed. Such

differences increase the generalization ability of the model.

Accordingly, the occurrence of overfitting is effectively

suppressed. Its mathematical model is as follows,

r
ð l Þ
j ’ Bernoullið pÞ; ð5Þ

~yy ð lþ 1 Þ
¼ r ð l Þ yð l Þ; ð6Þ

where p is the probability that the CNN-LSTM memory cell

stops propagating. r
ð l Þ
j is the retention probability of state

information for the jth LSTM memory cell of the layer l

network, which obeys the Bernoulli distribution. y( l ) is the

output information of the layer l network. ~yy ð lþ 1 Þ is the input

information of the layer l + 1 network.

2.2.2. Forward propagation. In training the CNN-LSTM

forward propagation, the sampling values of the trapezoidal

overlapping nuclear pulse Vo(mTs) corresponding to each

sample in the training set is used as the input data of the CNN-

LSTM model. We use CNN to extract abstract features of each

sample, including convolution and pooling processes, for fully

learning the training data by using the network. The abstract

feature of the sample extracted by CNN is utilized as the input

of LSTM using the structure of the forgetting gate, input gate,

memory cell state and output gate of LSTM to sequentially

iterate out the hidden state information hm and the state

information Cm of the memory cell. The hidden state infor-

mation hm is not only transferred to the next LSTM memory

cell of the same layer with the state information Cm of the

memory cell but also serves as the input information of the

LSTM network of the next layer. This way of information

transfer function enables the CNN-LSTM model to map

abstract features of data to higher dimensional network layers.

The convolution process, pooling process, forgetting gate,

input gate, memory cell state and output gate of CNN-LSTM

forward propagation are realized according to steps (A), (B),

(C), (D), (E) and (F) as follows:

(A) Calculation of the convolution process. The convolution

process in CNN is mainly implemented by the convolutional

layer, and the abstract features of the input data are extracted

by multiple internal convolution kernels. For the ith sample,

the input and output sequences of the Cl convolution layer are

assumed to be ½V Cl�1
o ðmTsÞ�i and ½V Cl

o ðmTsÞ�i, respectively, and

its mathematical model is expressed as

V Cl
o mTsð Þ

� �
i
¼ fa V Cl�1

o � !Cl
� �

mTsð Þ
� �

i


 �
¼ fa

XCs

x

V Cl�1
o s0 mTs þ xð Þ!Cl xð Þ

� �
i
þ bCl

i

( )
; ð7Þ

where !Cl(x) is the convolution kernel, Cs is the convolution

kernel size, and s0 is the convolution step size. fa is an acti-

vation function. Suppose that the total number of input

sequences and output sequences of the convolution layer are

M C1 and M Cl+1; the calculation formula is as follows,

M Cl ¼
M Cl�1 þ 2p� Cs

s0

þ 1; ð8Þ

where p is the padding number, and M Cl�1 = K + 2 + nc

when Cl = 1.

(B) Pooling process. After feature extraction in the

convolution layer, the output feature image is transferred to

the pooling layer for feature selection and information

filtering. The pooling layer contains a pooling function, which

replaces the result of a single point in the feature image with

the feature image statistic of its neighboring area. The steps of

selecting the pooling area in the pooling layer are the same as

those of the convolution kernel scanning feature image, which

are controlled by pool size, step size, and filling.

After the multi-layer CNN extracts abstract features from

the original sample sequence, the complexity of the sequence

Vo(mTs) is greatly decreased. At this time, the sequence is

input into the LSTM network for further processing. We

assume that the total number of sequences output by the last

layer of CNN is M Cl = M. Accordingly, the number of

sequences input by the LSTM first layer is MLl = M, and

we obtain �
Vo mTsð Þ

�
i
¼ V Cl

o mTsð Þ
� �

i
: ð9Þ

(C) Calculation of the forgetting gate structure. The forget-

ting gate structure can determine the degree of information

discarding of the state of the memory cell,

fm ¼ �
XMLl

m¼ 1

U
f

i;m

�
Vo mTsð Þ

�
i
þ
XMLl

m¼ 2

W
f

i;m hm�1 þ b
f

i

 !
; ð10Þ

where hm�1 is the hidden state information of the previous

memory cell; U
f

i;m and W
f

i;m are the input and cyclic weights of

research papers

912 Xing-Ke Ma et al. � Deep learning CNN-LSTM model J. Synchrotron Rad. (2021). 28, 910–918



the mth sample value [Vo(mTs)]i in the forgotten gate struc-

ture in the ith sample, respectively; b
f
i is the bias of the ith

sample in the forgetting gate structure; and � is the gate

function, which is composed of the Sigmoid function. With this

function, a value between 0 and 1 can be output to determine

the retention probability of the state information. The

formula is

�ðxÞ ¼
1

1þ expð�xÞ
: ð11Þ

(D) Calculation of the input gate structure. The input gate

structure is used to calculate the newly increased state infor-

mation in the interior of the memory cell. Its structure is like

that of the forgetting gate. The parameters of weight and bias

are U g, W g, and b g. The mathematical model is as follows,

gm ¼ �
XMLl

m¼ 1

U
g

i;m Vo mTsð Þ
� �

i
þ
XMLl

m¼ 2

W
g

i;m�1 hm�1 þ b
g
i

 !
; ð12Þ

where U
g

i;m and W
g

i;m are the input and cyclic weights of the

mth sampling value [Vo(mTs)]i in the ith sample in the input

gate structure, respectively; and b
g
i is the bias of the ith sample

in the input gate structure.

(E) Updating of memory cell status. The candidate infor-

mation vector ~CCm is created using the tanh function. The

forgetting gate information, the state information of the

previous memory cell, the input gate information, and the

candidate information vector are regarded as the update

elements of the state information of the current memory cell.

The mathematical model for updating the state information is

~CCm ¼ tanh
XMLl

m¼ 1

U C
i;m Vo mTsð Þ
� �

i
þ
XMLl

m¼ 2

W C
i;m�1 hm�1 þ b C

i

 !
;

ð13Þ

tanh xð Þ ¼
1� expð�2xÞ

1þ expð�2xÞ
; ð14Þ

Cm ¼ fmCm�1 þ gm
~CCm ; ð15Þ

where Cm represents the state value of the memory cell at the

current time; fm represents the output value of the forgetting

gate; Cm�1 represents the state value of the memory cell at the

previous time; gm represents the output value of the input

gate; ~CCm represents the candidate vector; U C
i;m and W C

i;m are the

input and cyclic weights of the mth sampling value [Vo(mTs)]i

in the ith sample in the state update structure of the memory

cell, respectively; and b C
i is the bias of the ith sample in the

state update structure of the memory cell.

(F) Calculation of the output gate. The output gate deter-

mines the hidden state information hm . First, the vector

containing the hidden state information hm�1 of the previous

memory cell and the current pulse sequence information

[Vo(mTs)]i are transferred to the Sigmoid function. Then, the

state information Cm of the memory cell is transferred to the

tanh function. Finally, the output of the tanh function is

multiplied by the output om of the Sigmoid function to

determine the hidden state information hm . The hidden state

information hm is transmitted to the next layer network, and

the state information Cm of the memory cell and this hm are

also transmitted to the next memory cell in the same layer.

The mathematical model of the output gate is as follows,

om ¼ �
XMLl

m¼ 1

U o
i;m Vo mTsð Þ
� �

i
þ
XMLl

m¼ 2

W o
i;m�1hm�1 þ b o

i

 !
; ð16Þ

hm ¼ om tanh Cmð Þ; ð17Þ

where U o
i;m and W o

i;m are the input and cyclic weights of the

mth sampling value [Vo(mTs)]i in the ith sample in the output

gate structure, and b o
i is the bias of the ith sample in the output

gate structure. The forward propagation ends when the last

layer of the LSTM network has predicted the set � 0i of pulse

parameters.

2.2.3. Back propagation. The back propagation training of

the trapezoid overlapping nuclear pulse is based on the back

propagation through time (BPTT) algorithm (Werbos, 1990;

Graves & Schmidhuber, 2005). The weights and biases of each

LSTM memory cell are randomly assigned when defining the

neural network. Thus, the error between the predicted pulse

parameter set � 0i outputted by the single forward propagation

iteration and the actual pulse parameter set �i in the training

set can be calculated by the loss function. For the training set

with q samples, the mean square error value of the parameter

set �i is taken as the function value LossMSE of the loss func-

tion, that is, the calculation formula of the loss function is

LossMSE ¼
1

q

Xq

i¼ 1

�i � �
0
ið Þ

2
: ð18Þ

The BPTT algorithm is used to feed the LossMSE and the

gradient of the loss function back to the network to update the

weight for reducing the error in the subsequent iteration.

2.2.4. Saving and application of the training model. After a

CNN-LSTM model that can estimate the parameter set � of

the trapezoidal overlapping nuclear pulse is trained, the

important information, such as the structure, weight, training

configuration, and optimizer status, of the trained model is

saved as a hierarchical data format 5 (HDF5) file. The sampled

value of the trapezoidal overlapping nuclear pulse to be esti-

mated is taken as the input of the CNN-LSTM model, and the

output of the CNN-LSTM model is used to obtain the desired

estimated pulse parameter set �.

3. Examples

According to Xiao et al. (2005), Chen (2009) and Ren et al.

(2018), trapezoidal shaping is a simple, fast, and efficient pulse

shaping method. Increasing the flat top width of the trape-

zoidal pulse can increase the number of samples to guarantee

the weak effect of noise on the shaped signal. However, a wide

flat top width indicates a high probability of pulse overlap.

When the time interval Ti of the adjacent exponential pulses

is small, the overlap of the pulses is serious. As a result, the

difficulty in estimating the pulse parameters increases.
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Therefore, the examples in this paper explore the parameter

estimation when the time interval of occurrence of multiple

exponential pulses is relatively short and the trapezoidal

shaping flat top width is relatively wide.

3.1. Example 1

Exponential pulses ‘Input 1’, ‘Input 2’, ‘Input 3’, and ‘Input

4’ were input into a trapezoidal shaping circuit with the

characteristic time � = 100 ns. The values for the amplitude

parameter, Ai , were 300, 150, 200, and 250 counts. The values

for the time parameter, Ti , were 20, 70, 120, and 170Ts, where

Ts is the sampling period. The white noise standard deviation

was 5 counts, and the sampling period, Ts, was 5 ns. The rise

time of the trapezoidal shaping pulse, ta , was 20Ts. The flat top

width of the trapezoidal pulse, D, was 300Ts. The effect of

shaping is shown in Fig. 1.

As shown in Fig. 1, trapezoidal shaping suppresses noise

very well. However, the overlap of the shaped pulses is very

serious due to the wide flat top width of the trapezoidal pulse.

The time when the overlapping part of the pulse occurs

is mainly concentrated in the front 600Ts. Therefore, the

number of input sequences of CNN-LSTM was set to 600 to

save computing resources and improve training efficiency. A

data set containing 10000 samples was considered, of which

72%, 8%, and 20% were considered for the training set, the

validation set, and the test set, respectively. In the CNN

model, two one-dimensional convolution layers and two

pooling layers were set. The first convolutional layer had 60

convolution kernels, and the second convolutional layer had

10 convolution kernels. The convolution kernel size in both

convolutional layers was 3, the filling strategy was ‘same,’ the

convolution kernel moving step size was 1, and the excitation

function was ‘relu.’ The pooling layer used one-dimensional

maximum pooling. In the LSTM model, four LSTM layers

were set, and the Adam optimizer (Kingma & Ba, 2014) was

used to set the learning rate to 0.0001 with parameters �1 = 0.9

and �2 = 0.999. The number of training rounds (named

epochs) was set to 16. In addition, groups of 10 samples were

gathered into a batch of input networks (batch size = 10). An

iterative graph of the loss value and accuracy in the training

process are shown in Fig. 2. A structural diagram of the

network model is shown in Fig. 3.

As shown in Fig. 2, the loss values of the algorithm on

the training set and the validation set are both decreasing.

Therefore, no over-fitting phenomenon occurs. In other words,

this example does not need to add a Dropout layer. The
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Figure 1
Comparison of four exponentially overlapping pulses before and after trapezoidal shaping. (a) The dashed line indicates the actual value before the
exponential pulse shaping (Input x, x = 1, 2, 3, 4), and the solid line indicates the four exponential overlapping pulses (Input 1 + Input 2 + Input 3 + Input
4) before shaping. (b) The dashed line indicates the actual value of the exponential pulse after trapezoidal shaping (Output x, x = 1, 2, 3, 4), and the solid
line indicates the four overlapping pulses after the trapezoidal shaping (Output 1+ Output 2 + Output 3 + Output 4).

Figure 2
Iterative graphs of (left) the loss value and (right) the accuracy in the
training process.



average accuracy of the trained model in the test set with 2000

samples was 100.00% (two decimal places were retained). The

pulse parameters and errors estimated by the CNN-LSTM

model (retaining two decimal places) are shown in Table 1.

The estimation results of nuclear pulse parameters based on

deep learning CNN-LSTM are shown in Fig. 4.

From the experimental results, the relative errors for

amplitude parameter, Ai , were 0.06%, 0.21%, 0.11%, and

0.08%, and the absolute errors for time parameter, Ti , were

0.19, 0.25, 0.26 and 0.08. In a word, the trapezoidal overlapping

nuclear pulse parameter estimation method based on the deep

learning CNN-LSTM network is of great significance for

improving the accuracy of radioactivity measurement, which

partly solves the technical problem to accurately extract

relevant information about the adjacent nuclear pulses due to

the overlapping pulse signals. This method has great signifi-

cance for improving the accuracy of radioactivity measure-

ment.

3.2. Example 2

When the time interval (Ti) of the adjacent exponential

nuclear pulses is short, the overlap between the pulses is

serious. As a result, estimating the overlapping nuclear pulse

parameters becomes very difficult. The purpose of this

example was to verify the ability of the proposed method to

estimate overlapping nuclear pulse parameters when the time

interval between adjacent exponential nuclear pulses was

small. Exponential pulses ‘Input 1’, ‘Input 2’, ‘Input 3’, and

‘Input 4’ were input into a trapezoidal shaping circuit with the

characteristic time of � = 100 ns. The values for the amplitude

parameter, Ai , were 300, 150, 200, and 250 counts. The values

for the time parameter, Ti , were 20, 40, 60, and 80Ts. The

white noise standard deviation was 5 counts, and the sampling

period, Ts, was 5 ns. The rise time of the trapezoidal shaping

pulse, ta , was 20Ts. The flat top width of the trapezoidal pulse,

D, was 300Ts. The effect of shaping is shown in Fig. 5.

As shown in Fig. 5, the overlap of the pulses is very serious

whether before or after shaping when the time interval

between adjacent pulses is relatively short. This example used

the same neural network model and training strategy as in

Example 1 to verify the parameter estimation effect of the

proposed method in the case of severe pulse overlap caused by

short time interval. An iterative graph of the loss value and

accuracy in the training process are shown in Fig. 6.

As shown in Fig. 6, the loss value of the algorithm on the

training set and verification set is decreasing. This condition

indicates that no over-fitting phenomenon occurs. Therefore,

this example does not need to add the Dropout layer. The

average accuracy of the trained model in the test set with 2000

samples was 100.00% (two decimal places were retained). The

pulse parameters and errors estimated by the CNN-LSTM

model (retaining two decimal places) are shown in Table 2.

The estimation results are shown in Fig. 7.
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Table 1
Comparison of estimated and actual values of overlapping pulses in the CNN-LSTM model (� = 100 ns, Ts = 5 ns, ta = 20 Ts, D = 300 Ts).

A1 A2 A3 A4 T1 T2 T3 T4

Actual value 300 150 200 250 20 70 120 170
Estimated value of the

CNN-LSTM model
299.83 149.68 200.21 249.79 20.19 70.25 120.26 170.08

Absolute error 0.17 0.32 0.21 0.21 0.19 0.25 0.26 0.08
Relative error (%) 0.06 0.21 0.11 0.08

Figure 3
Structure diagram of the network model.



According to the experimental results, the relative ampli-

tude parameter (Ai) errors were 0.14%, 0.03%, 0.17% and

0.06%, and the absolute time parameter (Ti) errors were

0.10, 0.05, 0.12 and 0.26, respectively. Therefore, even

when the time interval between adjacent exponential pulses

was short, the overlapping nuclear pulse shaping parameters

estimated by the CNN-LSTM model still showed high

precision.
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Figure 4
Estimation results of nuclear pulse parameters based on deep learning CNN-LSTM. (a) The solid line indicates the actual value of the exponential pulse
(Input x, x = 1, 2, 3, 4), and the dashed line indicates the estimated value of the exponential pulse (Input x 0, x = 1, 2, 3, 4). (b) The solid line indicates the
actual value of the pulse after trapezoidal shaping (Output x, x = 1, 2, 3, 4), and the dashed line indicates the pulse estimation value after trapezoidal
shaping (Output x 0, x = 1, 2, 3, 4).

Figure 5
Comparison of four exponentially overlapping pulses before and after trapezoidal shaping. (a) The dashed line indicates the actual value before the
exponential pulse shaping (Input x, x = 1, 2, 3, 4), and the solid line indicates the four exponential overlapping pulses (Input 1 + Input 2 + Input 3 + Input
4) before shaping. (b) The dashed line indicates the actual value of the exponential pulse after trapezoidal shaping (Output x, x = 1, 2, 3, 4), and the solid
line indicates the four overlapping pulses after the trapezoidal shaping (Output 1 + Output 2 + Output 3 + Output 4).



4. Conclusions

Traditional algorithms cannot extract signals from an entire

sample due to the limitation in the mathematical model scale.

The proposed method of parameter estimation based on deep

learning technology for trapezoidal overlapping nuclear

pulses obtained after trapezoidal shaping overcomes this

limitation. The method uses the trapezoidal pulse sequence

and the shaping parameters of the exponential pulse as a

sample set. The CNN-LSTM model is also allowed to establish

a mapping relationship between each trapezoidal pulse

sequence and its corresponding exponential pulse parameters

through continuous training. The purpose of overlapping

nuclear pulse parameter estimation is achieved. This method

greatly reduces the rejection rate of the trapezoidal over-

lapping nuclear pulse and improves the accuracy and relia-

bility of radioactivity measurement. The method is beneficial

in analyzing the fluctuation of the signal parameter caused by

the change in the response characteristics of the detector and

its subsequent circuits, such as the fluctuation of the time

constant of the exponential pulse signal. This method

is important in verifying the nuclear instrument waveform

shaping and energy spectrum drift correction algorithms,

analyzing the relationship of parameters change with time and

external conditions, and acquiring subsequent nuclear pulse

parameters. At the same time, the trained model is saved in

the HDF5 file format. Thus, other computer equipment can be

used to complete the pulse parameter estimation by directly

loading this model. With the increasing performance of

portable devices with Android as the operating system, HDF5
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Figure 6
Iterative graphs of (left) the loss value and (right) the accuracy in the
training process.

Figure 7
Estimation results of nuclear pulse parameters based on deep learning CNN-LSTM. (a) The solid line indicates the actual value of the exponential pulse
(Input x, x = 1, 2, 3, 4), and the dashed line indicates the estimated value of the exponential pulse (Input x 0, x = 1, 2, 3, 4). (b) The solid line indicates the
actual value of the pulse after trapezoidal shaping (Output x, x = 1, 2, 3, 4), and the dashed line indicates the pulse estimation value after trapezoidal
shaping (Output x 0, x = 1, 2, 3, 4).

Table 2
Comparison of estimated and actual values of overlapping pulses in the CNN-LSTM model (� = 100 ns, Ts = 5 ns, ta = 20 Ts, D = 300 Ts).

A1 A2 A3 A4 T1 T2 T3 T4

Actual value 300 150 200 250 20 40 60 80
Estimated value of the

CNN-LSTM model
300.43 150.04 200.34 249.85 20.10 40.05 59.88 80.26

Absolute error 0.43 0.04 0.34 0.15 0.10 0.05 0.12 0.26
Relative error (%) 0.14 0.03 0.17 0.06



files can be deployed on these portable devices with simple

modifications. This work provides support for the develop-

ment of new-generation portable nuclear pulse recognition

detectors.
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