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A mathematical apparatus for solving problems of X-ray wave propagation

through complex optical systems, when the lens thickness can change with

jumps, is developed and presented. The developed method is based on the use

of the superposition of oriented Gaussian beams, which satisfy the Helmholtz

equation with high accuracy. The wave propagation in air and through kinoform

and ordinary lenses is considered. Focusing and imaging properties are

compared for both types of X-ray optics. The diffraction effects arising due to

thickness jumps in the kinoform lenses and the influence of these jumps on the

X-ray focusing and imaging are investigated. The prospect of using the

developed theory for X-ray optics applications is discussed.

1. Introduction

Research with X-ray radiation is rapidly expanding, with many

new highly coherent and extreme-brightness radiation sources

being created globally (Cho, 2020). Today the new generation

of synchrotrons plays a leading role in a wide range of

scientific and technological applications. However, high-

quality coherent-relative optics are still vital for the full

utilization of highly coherent and intense light from diffrac-

tion-limited X-ray sources. Additionally, the development of

precise and high-efficiency X-ray optics requires extreme

precision and almost nanometre-accuracy from both methods

and instruments. Therefore, the critical issue remains the

ability to predict the interaction of radiation with real

materials and elements of X-ray optics (Roth et al., 2017;

Lyatun et al., 2020) mathematically, with controlled calculation

accuracy for highly coherent radiation.

Currently, coherent imaging based on X-ray optics is

developing rapidly due to the need for quick visualization of

micro- and nano-scale objects with high spatial resolution. To

visualize and study the internal structure of small objects, it

is necessary to have the appropriate optics to enable us to

control, collimate, transport and focus hard X-rays with high

accuracy and precision. Such optics for hard X-rays were

proposed in 1996 (Snigirev et al., 1996), which now copes with

the task of utilizing coherent radiation in the world’s leading

synchrotrons. However, almost all the materials used for X-ray

optics are not homogeneous, which leads to a sharp change in

the phase of the radiation as it passes through the optical

material (Roth et al., 2017). In this paper, we propose an

approach that provides a highly accurate solution to the

problem of calculating the scattering of short-wave radiation

by elements of refractive X-ray optics. Consideration is given

to the electrodynamic approach.

Here, we will investigate the mathematical apparatus

developed for the analysis of the optical properties of two
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types of X-ray optics with different shape profiles – concave

parabolic and kinoform. The latter type is of particular

interest because it has a sharp stepwise change in the lens

profile. When an X-ray wave propagates through a kinoform

lens, wavefield oscillations of significant amplitudes but very

fine scales occur at the lens thickness jumps. With distance

from the lens, these very fine oscillations of the wavefield

disappear, but they result in changing the physical system

properties as a whole. We expect similar physical effects when

X-ray waves propagate through lenses with internal defects

(inclusions, cavities) or through porous materials (Goikhman

et al., 2015). This sparks interest in the consideration of

kinoform lenses as simpler systems of a similar kind. We

believe that the study of the propagation of X-ray waves

through such inhomogeneous structures is important for the

development of the theoretical apparatus for X-ray optics. At

present, such systems are very difficult in their theoretical

description and calculations. This situation necessitates

interest in the theoretical consideration of such problems.

The technique of describing the propagation and refraction

of X-ray waves, applied and developed in this paper, is based

on the so-called Gaussian beams. The technique of using rays

in optics is presented in the literature (Kogelnik, 1965; Keller

& Streifer, 1971; Deschamps, 1972; Deschamps et al., 1983).

Gaussian beams are also used in radiolocation (Chabory et al.,

2005, 2010; Ghannoum et al., 2009). The theoretical applica-

tion of Gaussian beams to problems of X-ray optics was

presented by Wojda & Kshevetskii (2019).

It is also worth pointing out that the literature contains

a description of the asymptotic solutions of the Helmholtz

equation (Maslov, 1994), which can be interpreted as beams,

and which are more general in comparison with the Gaussian

beams used in this work. Gaussian beams have been used

to solve various short-wave physical problems (Popov, 2002;

Anikin et al., 2019) but not for X-rays.

Initially, Gaussian beams were understood in the literature

as exact solutions of the paraxial equation; they are widely

used in modelling electromagnetic wave propagation (Good-

man, 1996; Kohn, 2012). In this approach, electromagnetic

waves are described with a superposition of Gaussian beams.

Some development of this technique, adequate to the pecu-

liarities of X-ray waves, was suggested by Wojda & Kshev-

etskii (2019). Instead of conventional Gaussian beams, it was

suggested to use Gaussian beams multiplied by the plane wave

of the carrier frequency. Moreover, the use of oriented

Gaussian beams, in which the directions of wave propagation

in beams coincides with the local X-ray wave propagation

directions at the wavefront, was suggested. The condition is

that the direction of propagation of the beams should be

perpendicular to the front of the modelled wave and deter-

mines the tilt angles of the beams. Thus, the developed

approach combines the properties of geometrical optics and

wave optics. As soon as Gaussian beams oriented in space are

used, it is already more appropriate to consider such wave

beams not as solutions of the paraxial equation but as

approximate solutions of the more general and more exact

Helmholtz equation.

The authors consider the proposed method to be highly

accurate not so much because the Helmholtz equation is being

solved but rather to emphasize that some automatic procedure

for finding the required number of Gaussian beams for high-

quality calculations is suggested. Over time, this computation

tuning procedure may be improved. However, a reasonable

automatic choice of the method parameters ensuring the

accuracy and reliability of simulations is proposed and

implemented in this paper.

A famous book by Gerrard & Burch (1975) is devoted

to the mathematical apparatus of conventional optics. In a

significant part of this book, the method of beams, in reality, a

certain version of geometric optics, is presented. Compared

with the book, this paper uses a wave approach. The Gaussian

wave beam is given in Gerrard & Burch (1975) and is

discussed in detail. However, the methods based on the

superposition of Gaussian beams being developed and used in

this paper are not developed or discussed in Gerrard & Burch

(1975). In the calculations of this paper we use the repre-

sentation of the wavefield in terms of the sum of thin Gaussian

beams. The amplitudes and directions of the introduced

Gaussian beams are calculated from the electric wavefield

digitized on the mesh on the plane, while in Gerrard & Burch

(1975) the wave propagation paths from the source are

calculated for the entire optical system at once based on the

optical system configuration and its important optical char-

acteristics. In this paper, in front of each lens and after each

lens, in front of the sample and after the sample, the ampli-

tudes and propagation directions of wave beams are calcu-

lated anew from the analysis of the wavefield, and the

symmetry of the optical system is not necessary. The proposed

method in this paper allows us to take into account irregular

surfaces or internal defects in the lens or sample. Finally, in

this work, X-ray waves not only pass through the lenses but

also scan the sample and draw its image, and the sample is

included in the problem.

Currently, the Fourier method is often used to calculate the

propagation of X-ray waves in air. Programs that use it

include, inter alia, Synchrotron Radiation Workshop (Chubar

& Elleaume, 2013; Kohn, 2020). The Fourier method is espe-

cially popular due to the very fast standard computer

FFT library allowing the Fourier transform to be performed

very quickly. Despite the obvious differences between the

proposed Gaussian beam method and the Fourier method,

these two different approaches have much in common. One

can interpret the Gaussian beam method as some kind of

generalized Fourier method. Within this, some special non-

trivial set of basis functions, adapted to the specific considered

problems, is used instead of the complex exponentials of the

usual method. The adaptation of the basis functions to specific

considered problems determines the method’s effectiveness.

Additionally, the focusing of X-rays by beryllium and

diamond lenses will be considered in this paper since beryl-

lium is a widespread optical material and diamond is the most

promising material for X-ray optics and new ultra-bright

sources with high thermal load because of its high heat

conductivity (Isakovic et al., 2009).
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The proposed method allows calculating the smallest effects

on the focal plane resulting from X-ray diffraction at the edges

of the lens aperture (Wojda & Kshevetskii, 2019; Medveds-

kaya et al., 2020). Hence the idea to investigate the diffraction

effects on the thickness jumps of a kinoform lens arose. This

work is devoted to the development of a more advanced

mathematical apparatus for theoretical studies and the appli-

cation of the developed methods to the calculation of X-ray

focusing by a kinoform lens system. We hope that the devel-

oped approach can be easily adapted to real microstructured

and porous materials of X-ray optics (Goikhman et al., 2015;

Lyatun et al., 2020).

2. Basic equations and starting points

X-ray waves usually propagate at small angles to some specific

main direction of X-ray propagation. We further consider the

propagation of monochromatic X-ray waves, which are used

in X-ray microscopy. The monochromaticity of waves allows

an equation to be based on the Helmholtz equation, which

directly follows from Maxwell’s equations where the wave

frequency !0 is fixed (Levy, 2000; Ishimaru, 1991; Babich &

Buldyrev, 1991a,b),

�EðrÞ þ k2
0 n2ðrÞEðrÞ ¼ 0; k0 ¼

!0

c
: ð1Þ

In equation (1), E is the electric field; r = (x, y, z), k0 is the

wavenumber, c is the speed of light; n = 1� � + i� is a complex

refractive index, � is an absorption coefficient, and � is a

refractive coefficient (�, � are non-negative).

In the case of electromagnetic wave propagation in vacuum

or in air, n = 1. If the propagation of X-ray waves in a material

is under consideration, then the refractive index n = 1 � � + i�
depends on frequency. Moreover, � << 1 and � << �. For

example, for beryllium and for a 20 keV beam, we have � =

0.852 � 10�6 and � = 0.195 � 10�9.

The electric field E(r) is assumed to be continuous at the

air–material interface.

In X-ray optics, an approximate so-called paraxial equation

is often used, which follows from (1) and which was first

derived by Leontovich (1944). The paraxial equation takes

into account that waves propagate mainly along one specific

direction. The paraxial equation is often solved using Fourier

transform methods; finite-difference methods have also been

proposed (Kshevetskii et al., 2016). However, finite-difference

methods require a very dense computational grid, which

makes the calculations time-consuming.

In this paper, the Helmholtz equation (1) is directly solved,

without simplifications. The solution method is based on the

use of oriented Gaussian beams and was proposed by Wojda

& Kshevetskii (2019). The problem under consideration has

some specifics and is more complicated than in Wojda &

Kshevetskii (2019), so further development of the method

will be required.

2.1. X-ray propagation in a vacuum: approximation of the
X-ray wave electric field with a superposition of oriented
Gaussian beams

Waves in X-ray optics propagate at small angles to the main

direction of propagation. Let the X-rays propagate mainly

along the OX axis, not exactly along this axis but at a small

angle to it, and let the vector e1 indicate the direction of wave

propagation. Let the vector j be directed along the axis OZ.

We denote e2 = j � e1, e3 = e1 � e2. The approximate solution

of the Helmholtz equation within which the wave propagates

in the direction indicated by the vector e1 can be written as

follows (see, for example, Wojda & Kshevetskii, 2019),

G r; r0; e1ð Þ ¼ exp
�
i k0 r� r0ð Þ e1

�
�

h2

2� �2 þ i r� r0ð Þ e1

� �
=k0

� �
� exp �

r� r0ð Þ e2

� �2
þ r� r0ð Þ e3

� �2

2 �2 þ i r� r0ð Þ e1

� �
=k0

� �
 !

: ð2Þ

Here r = (x, y, z) and r0 = (x0, y0, z0) is a point in space through

which a Gaussian beam passes and this point lies on the

symmetry axis of the Gaussian beam. � is a parameter that

determines the Gaussian beam width. The product (r � r0) ej

is a dot product of the vectors r � r0 and ej , j = 1, 2, 3.

Under the condition (k0�)2
� 1, which is obviously satisfied

by a large margin in our study, the formula (2) gives an almost

exact particular solution to the Helmholtz equation (1).

Therefore, it was proposed in Wojda & Kshevetskii (2019) to

construct a general solution of equation (1) in the form of a

superposition of particular solutions (2) with appropriately

chosen parameters.

Let us consider the following general problem. Let a known

electric field E0(y, z) of an electromagnetic wave be given on

the plane x = x0. Using the Helmholtz equation, it is necessary

to calculate the electric field in the entire half-space x> x0.

We introduce in space a system of lines given by the

equations (y = ym, z = zn), where ym and zn are real numbers,

and ym+1 = ym + h, zn+1 = zn + h, where h is the step of the

introduced mesh �. In Wojda & Kshevetskii (2019), it is

proposed to search for a general solution to the problem of the

X-ray wave propagation in the form

E rð Þ ¼
X
m;n

E0 mnG r; rmn; e1;mn

� �
: ð3Þ

Here e1, mn are the unit vectors that determine the directions of

wave propagation in each beam. They are chosen so that they

should be locally perpendicular to the wavefront of the wave

and directed along the local direction of wave propagation.

The formulas for e1, mn are given in Section 3; they depend on

the form in which the wavefield is represented. The coeffi-

cients E0 mn of the superposition (3) have been calculated in

Wojda & Kshevetskii (2019); it is shown that E0mn =

E0(ym, zn).

In Wojda & Kshevetskii (2019) it is shown that it is wise to

choose � = h.
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Further in the text, we consider both cases: the planar

one and the three-dimensional one. For the planar case, the

Gaussian beam looks like

G r; r0; e1ð Þ ¼ exp
�
i k0 r� r0ð Þ e1

�
�

h

2� �2 þ i r� r0ð Þe1

� �
=k0

� �� �1=2

� exp �
r� r0ð Þ e2;m

� �2

2 �2 þ i r� r0ð Þ e1

� �
=k0

� �
 !

: ð4Þ

The wavevector e1 indicates the direction of propagation of

X-ray waves in the beam.

The general solution for a planar case of the problem of

X-ray wave propagation has the form

E rð Þ ¼
X

m

E0m G r; rm; e1;m

� �
: ð5Þ

For the planar case, the electric field from the X-ray source is

given by the formula

E0ðyÞ ¼ E00 exp
�
ik0 x� x0ð Þ

�
exp �y2=ð2�2Þ

� �
; ð6Þ

whereas for the three-dimensional case

E0ðy; zÞ ¼ E00 exp
�
ik0 x� x0ð Þ

�
exp � y2

þ z2
� �

=ð2�2
Þ

� �
: ð7Þ

In the works of Popov (1982, 1987, 2002) and Grikurov &

Popov (1983), the wavefield of short waves (not X-ray waves,

but described by the Helmholtz equation) in an inhomoge-

neous medium was considered. The wavefield was generated

by a point source. For the solution, some representation of the

wavefield as a sum over Gaussian beams similar to (3) and (5)

(or as an integral over angular variables) was used. The main

difference in the case here under consideration is obvious in

that we do not have an analytically specified point source of

waves but instead we have an arbitrarily specified electric field

of X-ray waves digitized at points rmn on the plane x = x0 in

the three-dimensional case, or digitized on the grid on the line

x = x0 in the two-dimensional case. This electric wavefield is

decomposed into a superposition of Gaussian beams based on

the fact that these Gaussian beams, starting from the plane

x = x0 , behave like Gaussian functions at the section x = x0 and

play the role of basis functions. Expansion coefficients and

direction vectors of Gaussian beams were derived by Wojda &

Kshevetskii (2019). In (3) and (5), E0mn and E0m are the values

of the digitized electric wavefield at the points rmn on the plane

in the three-dimensional problem or at the points rn on the

straight line in the two-dimensional problem, respectively. The

direction vectors of Gaussian beams will be given later.

3. X-ray propagation through optical elements

Let the X-rays propagate mainly along the axis OX. We will

use some simplifications. We will not describe in detail the

X-ray propagation in the thickness of each lens, but we will

apply some formulas giving the wavefield after each lens. Also,

we neglect very small corrections as the wave can only really

propagate at a very small angle to the OX axis. Finally, we use

only sufficiently thin Gaussian beams, which allow us to take

into account the lens shapes in detail. In Wojda & Kshevetskii

(2019), it is shown that when the X-ray wave passed through a

lens it acquired a local phase shift,

E xC; y; z
� �þ

¼ E xC; y; z
� ��

exp
�
i k0ð��þ i�ÞFðy; zÞ

�
: ð8Þ

In (8), E(xC, y, z)� is the electric field in front of an optical

element and E(xC, y, z)+ is the field after the optical element.

That is, if an X-ray wave passes through an optical element

with a local thickness F(y, z), then at the exit from the

optical element the X-ray wave acquires an additional phase

�(y, z) = k0(�� + i �) F(y, z). It is also equivalent to the

function describing the electric field gaining a factor

exp i k0ð��þ i�ÞF y; zð Þ
� �

.

Also, the wave changes its propagation direction. The

changes in the components of the vector e1 are given by the

formulas (Wojda & Kshevetskii, 2019)

eþ1;mn;y ¼ e�1;mn;y � �
@Fðym; znÞ

@y
;

eþ1;mn;z ¼ e�1;mn;z � �
@Fðym; znÞ

@z
;

eþ1;mn;x ¼ 1�
eþ1;mn;y

� �2
þ eþ1;mn;z

� �2

2
:

ð9Þ

The formulas (8) and (9) are applied to Gaussian beams.

Namely, on the surface in front of each lens, the electric field

is represented as (3). After the lens, each Gaussian beam

acquires a factor according to (8) and changes its propagation

direction according to (9).

In specific calculations, the partial derivatives in the

formulas (9) for propagation directions of Gaussian beams are

approximately calculated using finite-difference methods. For

example,

@F ym; znð Þ

@y
’

F ymþ1; zn

� �
� F ym�1; znð Þ

2h
;

@F ym; znð Þ

@z
’

F ym; znþ1

� �
� F ym; zn�1ð Þ

2h
:

ð10Þ

3.1. Influence of jumps in the thickness of a kinoform lens
and lens edges on X-ray wave propagation: substantiation of
calculation methods in the case of a non-smooth lens surface

Idealized lenses may not have a width, and then their form

can be expressed as follows: F(y, z) = R(y2 + z2) + Wsm.

However, all real objects have limited sizes. For a lens, this is

particularly evident in that the lens aperture is limited. The

thickness of a lens can be written using the formula

FLðy; zÞ ¼ min fR ðy2 þ z2Þ þWsm;Wg, where R denotes the

lens curvature, W is the maximum thickness of the lens and

Wsm is the minimum thickness of the lens (see Fig. 1).

Formulas (9) contain derivatives of lens thickness. Some of

these derivatives may not exist if the point (ym, zn) lies on the

lens thickness jump. In the case of a conventional lens, this is

not of great importance, since in experiments the intensity of
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X-ray radiation incident on the lens edge or the lens aperture

edge is small in comparison with the maximum radiation

intensity. The publication by Wojda & Kshevetskii (2019)

shows that the lens edges and the lens aperture edges generate

diffraction effects.

Such diffraction effects are even more significant for kino-

form lenses because the kinoform thickness at the jumps

changes rapidly, and the radiation intensity falling onto the

sharp thickness change is comparable with the maximum

intensity.

According to the Huygens–Fresnel principle, spherical

waves should form in places where there is a sharp change in

the kinoform thickness. However, it is impractical to use this

principle in calculations, since this requires a huge amount of

calculations. The use of Gaussian beams, whose propagation

directions coincide with local wave propagation directions,

allows calculating the solution with high accuracy using a

relatively small number of Gaussian beams. This greatly

reduces the volume of required computations.

However, the question of how to correct the formulas (9)

and (10) so that they can be applied to kinoform lenses arises.

Additionally, it is necessary to mathematically substantiate

the applicability of the proposed mathematical apparatus as a

whole to kinoform lenses.

First, we correct the formulas (9) and (10). Kinoform lenses

can be viewed as consisting of concentric rings whose thick-

ness is described with differentiable functions. We use this

circumstance and replace the finite-difference approximations

of the derivatives in (10) with any other finite-difference

approximations within which the used points lie within one

such concentric ring. Then the formulas (9) and (10) will be

correct even in the case of kinoform lenses.

Second, let us consider the applicability of the proposed

mathematical apparatus in general to kinoform lenses. It is

enough to consider only one jump in lens thickness. The

essence of the estimates given below is that very narrow

Gaussian beams are used when passing through the lens, and

there are a lot of them. Only a small number of beams fall into

the lens thickness jump, and, as can be seen, they practically

do not affect the overall wave pattern. So, let the thickness

jump of a three-dimensional kinoform lens take place on a

circle of radius RR. Consider the ring (RR � 	, RR + 	). The

upper bound Q of the contribution of this ring to the total

wave electric field is

Q ¼ 2�RR 2	 jEjM h2= 2��2
� �� �

¼ 2RR 	 jEjM h2=�2; ð11Þ

where |E|M is the electric field amplitude. In obtaining this

estimate, we took into account that very narrow beams are

used when crossing the lens, and they intersect weakly.

Therefore, the contribution to the wavefield near the lens at

any point is practically the contribution of a single Gaussian

beam. With increasing distance from the lens, the beams

expand significantly, and together they create a wave pattern.

However, the beam amplitudes decrease when the beam

widths increase, and therefore the contribution of the ring to

the overall wave pattern remains the same as near the lens.

Let us consider the limit h�!0, 	�!0. [Consideration of

the limit ��!0 is possible from a mathematical point of view.

However, the Gaussian beam (2) is an approximate asymp-

totic solution to the Helmholtz equation (1) only if (k0�)2
� 1.

In our calculations, (k0�)2 > 109. Therefore, we assume that �
is very small compared with the lens size and compared with

the distance between thickness jumps, but ðh=�Þ�!0 in the

considered limit.] It is also reasonable to take 	> h. One can

see that Q�!0 in the considered limit. This also means that,

although the thickness jump certainly affects the wave pattern,

nevertheless fine details near the thickness jump do not affect

the wavefield. For example, if you slightly smooth the thick-

ness jump, the result will be very similar.

4. Calculation of local propagation directions of an
electromagnetic wave

The use of oriented Gaussian beams allows one to calculate

the propagation of waves with high accuracy. To apply the

method, one must first represent the electromagnetic wave in

the form of a superposition of oriented Gaussian beams. In

particular, one needs to efficiently calculate the propagation

directions of the Gaussian beams, which by definition coincide

with the local wave propagation directions.

In solving the problem, two different situations are

encountered in which the directions of local wave propagation

need to be calculated. In the first case, the electromagnetic

wave is represented with a relatively simple analytical

expression (for example, this situation takes place when the

wave from the source falls on the lens). We represent the

X-ray wavefield in the vicinity of the point rmn = (x0, ym, zn) in

the form

E x; y; zð Þ ¼ E0mn exp i� x; y; zð Þ½ �; ð12Þ

where �(x, y, z) is a real local phase of the wave. In this

representation of the wavefield, the local phase function

�(x, y, z) describes the entire dependence of the wavefield on

the coordinates. From (12), the following formula follows,

rEð Þ ¼ i r�ð ÞE: ð13Þ
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Figure 1
The shape of a parabolic biconcave lens and a kinoform lens. For the
biconcave parabolic lens FLðy; zÞ ¼ min fR ðy2 þ z2Þ þWsm;Wg. For the
kinoform lens FKðx; yÞ ¼ ½min fR ðy2 þ z2Þ;Wg �WK � l� 2 ½0;WK �, WK

is the kinoform lens thickness, l = 0, 1, . . . , W/WK � 1.



Therefore, the phase function gradient can be found based

on (13),

r� ¼ < �i
rE

E

� 	
: ð14Þ

Here < denotes the real part of a complex number. The phase

function gradient (14) gives the local propagation directions of

the electromagnetic wave, and therefore it is reasonable to

define the propagation directions of the introduced Gaussian

beams by the formula

e1;mn ¼
r� x0; ym; znð Þ

jr� x0; ym; znð Þj
: ð15Þ

Partial derivatives on the right-hand side of (14) can be

approximately calculated based on the values of the field E

on the grid, using finite-difference approximations of the

derivatives.

In reality, unfortunately, the formula (15) is only useful in

simple cases. For example, when an X-ray wave from a source

falls on a lens, the wave propagates almost along one direction,

and this case greatly simplifies the calculations. At the same

time, usually, an X-ray wavefield is described with very rapidly

changing functions. The wave propagation directions at

different points can vary quite significantly. Altogether, this

may bring some situations when local directions of wave

propagation cannot be calculated with high accuracy based on

the formula (15) without use of dense calculation mesh.

In this case, a description of such a rapidly changing

wavefield with a superposition of Gaussian beams is adequate,

and some acceptable formula is necessary.

The approximate relation follows from (2),

rG r; r0; e1ð Þ ’ ik0e1G r; r0; e1ð Þ: ð16Þ

This approximate relation is valid because in (2) the deriva-

tives of the first exponential factor are much larger than the

derivatives of the remaining factors. So we have the formula

rE ’
X
m;n

ik0e1;mn E0mnG r; rmn; e1;mn

� �
: ð17Þ

Equation (17) follows from equations (13), (14) and (16).

Further, using the formulas (14) and (15), we come to the

formulas for calculating the local wave propagation directions,

e01;y ¼ < �i
Dy½EðrÞ�

EðrÞ


 ��
k0;

e01;z ¼ < �i
Dz½EðrÞ�

EðrÞ


 ��
k0;

e01;x ¼ 1�
e021;y þ e021;z

2
;

ð18Þ

and

Dy½EðrÞ� ¼
X
m;n

i k0 e1;mn;y E0mn G r; rmn; e1;mn

� �
;

Dz½EðrÞ� ¼
X
m;n

i k0 e1;mn;z E0mn G r; rmn; e1;mn

� �
;

where e1, mn = (e1, mn, x, e1, mn, y, e1, mn, z).

The formulas (18) allow us to decompose the wavefield,

represented as a superposition of Gaussian beams, into a new

superposition of Gaussian beams. For example, if a wave

presented in the form of a superposition of Gaussian beams

falls on a lens, then one needs to apply such a decomposition

because the Gaussian beam widths grow with distance, but one

needs to pass through the lens only with very narrow Gaussian

beams in order to take into account the lens shape in detail.

The formulas (18) allow one to perform such a decomposition.

5. Modelling of propagation and focusing of X-ray
waves, imaging with X-ray waves: experimental
conditions and technique for solving the problems

We consider two cases: planar and three-dimensional propa-

gation of X-rays through some optical systems. The propaga-

tion and focusing of X-ray waves are studied for the following

conditions. Let us consider the situation when a source of

monochromatic X-ray waves with a wavelength 
0 = 10�10 m

produces in the plane x = x0 (x0 ¼ 0 > m) a Gaussian distri-

bution of electric wavefield intensity with the width % =

100 mm. More specifically, on the plane x = x0 , the X-ray

source creates an electric field

Eðx; y; tÞ ¼ E0 exp ik0 x� c tð Þ
� �

exp �
y2

2%2


 �

in the planar case and

Eðx; y; z; tÞ ¼ E0 exp ik0ðx� c tÞ
� �

exp �
y2 þ z2

2%2


 �

in the three-dimensional case. Then the X-ray radiation

propagates further to a distance of 40 m.

Then, for the planar case, the propagation of X-ray waves

through a lens (lens system) made of beryllium and the wave

propagation after the lens (lens system) is considered. The

general scheme for calculating the X-ray wave propagation is

shown in Fig. 2. For beryllium lenses and the given X-ray

wavelength, �Be = 3.1801� 10�10 and �Be = 2.2156� 10�6. The

lens curvature radius is 50 mm, and the smallest width is 30 mm.

For the three-dimensional case, the following problem is

considered: propagation of an X-ray wave from a given

wavefield on the x = x0 plane towards the grating at a distance

of 40 m, propagation through a copper grating (�Cu = 8.8546�

10�7 and �Cu = 1.1015 � 10�5), then wave propagation to a

distance of dX meters, up to a diamond lens (�D = 2.8366 �

10�9 and �D = 4.7423 � 10�6), propagation through the lens

and, finally, propagation to the screen at a distance of dY from

the lens. The general scheme for calculating the X-ray wave

propagation is shown in Fig. 3.

The planar problem is solved as follows. The specified wave

electric field obtained experimentally from the source of

monochromatic X-ray waves is digitized on a mesh in the x =

x0 plane, at a large distance to the grating and lenses. Then,

using this digitized wave electric field, the amplitudes and local

propagation directions of the introduced system of Gaussian

beams centred at the mesh points are calculated. Summing
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over all Gaussian beams, an expression for the electric field of

X-rays in the region x > x0 is constructed using the formulas

(4), (5) and (18). The resulting wave electric field, which is the

sum of the Gaussian beams, is digitized on a mesh in the x = x1

plane. These values of the wave electric field on the mesh are

used to calculate the amplitudes and local propagation

directions of the new introduced Gaussian beams for the

region x 	 x1. Then, the changes in the amplitudes and

propagation directions of Gaussian beams due to their

propagation through the optical element (lens/kinoform) or

sample (copper grating) is calculated using the formulas (8)

and (9). The resulting electric field of the wave, which is the

sum over Gaussian beams, is obtained for x 	 x1. Next, the

values of this electric field are calculated on the mesh in the

x = x2 plane. Therefore, when you put it all together, the wave

propagation through the sample or lens is calculated using the

formulas (4), (5), (18), (8) and (9), and the electric field of the

wave in front of the next optical element on the mesh on the

plane x = x2 is calculated. The calculated values of the electric

field on the mesh are used to calculate the amplitudes and

local propagation directions of the system of new Gaussian

beams for the region x 	 x2 . Thus, an expression for the wave

electric field is obtained, which is the sum over Gaussian

beams for x 	 x2 . The resulting electric wavefield for the

region x 	 x2 is digitized on a mesh in the plane x = x3, and so

on. This is repeated until the wavefield after the last lens/

kinoform is calculated. The resulting wavefield after the last

lens/kinoform, which is the sum over the Gaussian beams, is

used to calculate the results for |E| after all optical elements. In

particular, the resulting wavefield after all lenses/kinoforms

is used to determine the best focus position or to image the

grating.

The three-dimensional problem is solved in a similar way.

However, instead of formulas (4) and (5), the formulas (2)

and (3) are used.

The propagation of X-ray waves through the sample

(grating) is calculated using the same formulas as the propa-

gation of waves through the lens, but only the coefficients are

taken for copper.

5.1. Setting up a computer program

Setting up a computer program includes finding out and

regulating the accuracy of the approximate solution obtained.

This issue has some complications.

In general, the question of the actual calculation error is

one of the most difficult in the theory of numerical calcula-

tions. Usually, for the mathematical justification of a numerical

method, the asymptotic convergence of an approximate

solution to the exact one is proved. However, asymptotic

convergence is not a real error estimate, but it is the only

possibility for achieving the required accuracy. In papers,

usually, instead of evaluating the calculation error, the rate of

convergence of an approximate solution to an exact one or the

calculation results showing that for different values of the

method parameter the calculation results are close to each

other are given. Due to these objective mathematical diffi-

culties, most papers do not contain numerical estimates of

actual errors of the results obtained. Instead, for example,

an approximate solution is compared with an experiment

(although this is not the same thing, because the model can

have drawbacks).

The calculation accuracy strongly depends on subtle details

of the problem (for example, whether the equation coefficients

are differentiable functions or not). When solving similar

problems, but differing in such important details, the accuracy

can differ significantly. Also, if one solves the same problem
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Figure 3
Optical system for the three-dimensional case (top) and the general
scheme for 3D calculations of the X-ray wave propagation (bottom).

Figure 2
Optical system for the planar case (top) and the general scheme for
calculating the X-ray wave propagation (bottom).



with different simulation methods, the accuracies of the

obtained approximate solutions can differ.

Finally, the answer to the question of accuracy also depends

on what we mean by accuracy. For example, Fourier methods

converge on average over the area, and this convergence

is often considered sufficient. Accordingly, the calculation

accuracy can be estimated on average over the region.

However, having high accuracy on the average over the area,

there can be large deviations of the approximate solution from

the exact one at and near some points. This depends on

solution smoothness, and the solution smoothness depends on

the equation coefficient smoothness, and on the smoothness of

the field at the boundary.

Despite these theoretical difficulties, in practice it is often

possible to suggest some simple asymptotic working formulas

for the calculation error under conditions when the deviation

of the numerical solution from the exact one is small. Thus, in

the paper by Kshevetskii et al. (2016), some simple formula

was proposed for the calculation error for used finite-differ-

ence methods. The formula was developed on the basis of the

well known Runge’s rule, and the calculation errors were

evaluated. For the Gaussian beam method used in this work,

simple formulas based on Runge’s rule were also proposed for

calculation errors (Wojda & Kshevetskii, 2019).

In Wojda & Kshevetskii (2019), the accuracy of the focusing

simulation was investigated and it was shown that the

maximum amplitude of the electric field in the focal spot and

the half-width of the focal spot is very sensitive to the

numerical simulation quality, while the focal length is easily

calculated even with rough simulations.

The resulting image quality mainly depends on the focusing

quality. Therefore, to ensure high simulation accuracy, we

control the errors of calculating the maximum electric field

amplitude in the focal spot and the focal spot width at half of

the maximum amplitude as the most sensitive to the calcula-

tion quality.

As a whole, the algorithm for the accuracy control in the

case of ideal lenses is as follows:

(i) First of all, one needs to find the number of Gaussian

beams required for qualitative focusing. It is necessary to take

so many Gaussian beams so that the error in calculating the

maximum electric field amplitude at the focal spot and the

width of the focal spot at half of the maximum amplitude does

not exceed 1%. To estimate these errors, the method and the

formula for error from Wojda & Kshevetskii (2019) is used,

degree k = 2.

(ii) Further, if we calculate the grating image, then the

number of Gaussian beams should not be less than in the

focusing calculation. To find the required number of beams, it

is appropriate to proceed as in the case of focusing calcula-

tions. Several bright points in the grating image are selected,

and the number of beams is found in order that the error in the

electric field amplitude at these points does not exceed 1%.

The number of Gaussian beams is found, and the calcula-

tions are tuned.

Now let us take a look at kinoform lenses. In principle, the

algorithm for setting up calculations with kinoforms is the

same. However, a kinoform lens has a rather smeared, wide

focal spot, elongated along the main optical axis, and uneven.

The maximum field amplitude in the focal spot is poorly

expressed, and the general blurring of the focal spot also

interferes with the adjustment (this can lead to poor image

quality due to physical, not mathematical, reasons). However,

an additional rule helps: the number of Gaussian beams

should be no less than in a similar case for ideal lenses. In the

formula for estimating the error (Wojda & Kshevetskii, 2019),

it is necessary to take k = 1 because it follows from formula

(11) that the error is O(h) on the lens thickness jumps.

In reality, the calculation parameters are as follows. For the

planar case, the calculations were carried out for 2000 points

with a space step h = 0.5 mm. For three-dimensional ones the

calculation was carried out for 400 � 400 points with a space

step h = 1.25 mm. The step values differ in simulations because

only one lens is used in 3D modelling, while in the planar case

up to 30 lenses are taken into account. The computational

complexity (the number of operations) of the presented

method using Gaussian beams is estimated as NI � NF. Here

NI is the number of points digitizing the electric field after the

lenses, and NF is the number of points at which we calculate

the electric field after the lenses at the distance we are inter-

ested in. After the X-rays have propagated through a system

of several tens of lenses, the wavefield becomes fast oscillating,

and a rather dense numerical grid is required for its digitiza-

tion, which determines the number NI . The number NF is

determined only by the desirable resolution of the picture

of interest.

5.2. Comparison of the calculation method with some
other existing ones

At present, Fourier methods are often used for calculations

in X-ray optics. It is known that the computational complexity

of the fast Fourier transform (FFT) is estimated as M log2(M),

where M is the number of points used in the FFT method

(Cooley et al., 1967). The FFT method is very fast. However,

the FFT algorithm is somewhat lacking in robustness and

stability (Chubar et al., 2017). Standard methods for esti-

mating the error of Fourier series truncating are expressed in

terms of derivatives of the decomposed function. In X-ray

optics, we deal with functions digitized on a mesh on a plane,

and estimating the truncating error may be more difficult.

Usually, when the Fourier method in X-ray optics is applied,

the paraxial equation is solved,

@A

@x
þ

kðn2 � 1Þ

2i
Aþ

1

2ik

@2

@y2
þ
@2

@z2


 �
A ¼ 0; ð19Þ

where E = exp(ikx)A. When calculating wave propagation in

air, a simpler equation with constant coefficients is solved,

@A

@x
þ

1

2ik

@2

@y2
þ
@2

@z2


 �
A ¼ 0; ð20Þ

whose solution can be written analytically in Fourier series,

due to which one can apply FFT. At the same time, the effect
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of lenses on wave propagation is calculated based on the

simplified equation

@A

@x
þ

kðn2 � 1Þ

2i
A ¼ 0: ð21Þ

It is easy to find that the solution of equation (21) in the case

of kinoforms contains discontinuities in the variables y and z.

Thus, the boundary condition for equation (20) will contain

discontinuities. It is known from the Fourier series theory that,

in the case of a function with discontinuities of the first kind,

the terms of the Fourier series decrease slowly, as 1/km, where

km is the wavenumber of the harmonic m. It is also known that

the formulas for the truncated series error for this case are

poorly developed, since this error depends on subtle details of

the function’s behaviour, and it is difficult to write a general

effective formula. Thus, although the Fourier method

converges in the case of kinoforms, and the solution can in

principle be obtained, nevertheless, in the case under consid-

eration, the method converges slowly and also there may be

difficulties in controlling the approximate solution error.

Thus, in the case of kinoforms, the described method of

oriented Gaussian beams may have some advantage, because

the influence of discontinuity points on the solution is easily

controlled. Only a relatively small number of Gaussian beams

effectively intersect with discontinuities, while the image is

created by all Gaussian beams together. With a large number

of Gaussian beams, possible inaccuracies in the parameters of

Gaussian beams intersecting with discontinuities are not of

great importance, because there are few such beams relative to

their total number. Gaussian beams intersecting with discon-

tinuities can even be ignored, which is shown when the

formula (11) is constructed and investigated.

Moreover, in the case of kinoform lenses, the mathematical

interpretation of equation (1) causes certain difficulties due to

the presence of a jump change in the coefficient. When the

wave falls on a discontinuity approximately perpendicular to

the discontinuity surface, we use the condition of the electric

field continuity at the discontinuity. When the angle between

the direction of wave propagation and the discontinuity

surface is small, then – physically – diffraction effects should

arise. At the same time, some clear principles should

be implemented mathematically. We can use an approximate

solution in the form of a sum of Gaussian beams to define the

solution for this case. If we discard in the sum the Gaussian

beams effectively intersecting with discontinuities and go to

the limit of an infinite number of Gaussian beams, then we

obtain a physically justified definition of the solution for this

case. Expressions for Gaussian beams are specified more

exactly by Maslov (1994).

To solve the X-ray wave propagation problem, Frechet or

Kirchhoff integral representations can be used in the paraxial

approximation. The integrands of these integrals are products

of the electric field function on the surface and a very fast

oscillating function (in the paraxial case, this is the Kirchhoff

propagator). In simple cases, these integrals can be calculated

analytically. Due to fast-oscillating functions in the integrands,

these integrals often cannot be calculated without using

special numerical methods. Using the theorem that the inte-

gral of the product of functions is equal to the integral of the

product of the Fourier transforms of the functions is a popular

way to calculate these integrals numerically (Chubar &

Elleaume, 2013). The use of this theorem essentially returns

the question of these integrals to the question of the Fourier

series. The Fourier series has to be truncated, and control of

the truncated error is desirable. This issue has already been

discussed above. In Kshevetskii & Wojda (2015), an alter-

native way of calculating the Kirchhoff integral is proposed,

which does not use the Fourier transform but is a version

of Philon’s well known numerical method for calculating

the integrals of fast-oscillating functions (Levin, 1982;

Iserles, 2004).

Sums (3) and (5) over Gaussian beams may be considered

as integral sums, which in the limit h ! 0 give integral

representations for a solution like Frechet or Kirchhoff

integrals. However, a detailed investigation of this issue is

beyond the scope of this work.

The development of a theoretical apparatus for solving

various problems of X-ray wave propagation and investigation

of the behaviour of these waves on the medium parameter

jumps is the purpose of this study. Over the course of the

research, a computer program for solving the problems of

interest has been developed. The computer program is a

research tool but was not the purpose of this research, and

therefore, according to the authors, it is not the main result

of this work.

5.3. Results of calculating the X-ray wave propagation
through kinoforms and ordinary lenses

The theory of calculating the X-ray wave propagation based

on the Helmholtz equation using the Gaussian beam tech-

nique is described by Wojda & Kshevetskii (2019). Since this

work has some specifics, for example we consider kinoforms

and not ordinary lenses, the proposed methods require some

development and generalization, and this is done in this work.

A stepwise change in lens thickness results in diffraction

effects caused by this step-change in thickness. The study of

these diffraction effects is interesting from a physical point of

view. But we also draw attention to some theoretical problems.

Derivatives in (9) do not exist where a lens thickness

jump occurs. Therefore, formulas (9) require modification or

some special justification. Perhaps some development of the

Helmholtz equation theory is required to make the theory

applicable to the considered non-standard case.

Diffraction effects arising from jumps in the kinoform-lens

thickness are more pronounced in the case of planar lenses, as

compared with three-dimensional kinoform lenses. Therefore,

planar lenses are the most interesting for theoretical research,

and we will pay the greatest attention to such lenses.

When an X-ray wave propagates through a biconcave lens,

we can observe diffraction caused only by the edge of the lens

aperture (Wojda & Kshevetskii, 2019), and the effect is not

very strong. If an X-ray wave propagates through a kinoform

lens, then spherical waves appear in places where there is a
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sharp change in the lens thickness. They appear as spots and

are a consequence of X-ray diffraction. Fig. 4 shows the result

of calculating the X-ray wave propagation through the kino-

form lens; the figure shows the detailed structure of the

electric field module at a distance of 1 m from the optical

object. Calculations are performed for the X-ray wavelength


0 = 10�10 m, � = 3.1801 � 10�10 and � = 2.2156 � 10�6. For

comparison, in Fig. 4, there is a red dashed line that shows the

results of calculations for a conventional single beryllium lens.

The lens has a curvature of R = 20 000/m. The kinoform lens

has the same surface curvature as the conventional lens; the

calculations for the kinoform lens are shown with the blue line.

The performed calculations show that a kinoform lens

does not focus X-rays as well as a perfect lens does. Fig. 5

demonstrates this. The reason a kinoform lens is not as effi-

cient at focusing radiation as a perfect lens is because a step

change in the kinoform width causes some of the radiation to

scatter. The distance at which this scattering occurs (less than

1 m from the kinoform) is much shorter than the distance at

which the lens focuses the X-ray waves (11 m).

The cause of X-ray radiation scattering is an abrupt change

in the wave electric field phase due to a jump-like change in

the kinoform lens thickness. From these breakpoints, X-ray

waves propagate in the form of spherical waves. At the

distance of 20 m and 40 m, we can observe a strong influence

of stepwise changes in the thickness of the kinoform lens on

the shape of the graph of the electric field intensity; see plots

in Fig. 4.

However, calculations show that by increasing the number

of kinoform lenses used, the X-ray scattering effect can be

significantly reduced. Focusing X-rays on a large number of

kinoform lenses is significantly more efficient because more

lenses focus the radiation at a shorter distance.

To take into account in detail the challenging shape of the

kinoform lens, when calculating the propagation of X-rays

through the lens one should use Gaussian beams with a very

small width. The narrower the Gaussian beams used, the

smaller the error in the obtained approximate solution arising

from inaccurate accounting for the stepwise change in the

kinoform lens thickness. The formulas for the electric wave-

field contain many Gaussian beams. The smaller the widths of

the Gaussian beams used, the more Gaussian beams are used

and the less the influence of each Gaussian beam on the

final wavefield. Therefore, jumps in the thickness of kinoform

lenses have a limited effect on the wavefield, and the influence

of jumps on the wavefield may be better calculated. Below we

will consider in more detail the influence of jumps in the lens

thickness on the wave electric field.

Given the calculation results presented, it would appear

that kinoform lenses are not suitable for focusing X-rays. Let
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Figure 4
Calculation results for |E| at distances of 1, 3, 20 and 40 m after one conventional lens (red dashed line) and one kinoform lens (blue line).



us see, however, if increasing the number of kinoform lenses

used will improve the focusing of X-rays.

The graphs in Fig. 6 show a comparison of the absolute

value of the electric field obtained with 10 ideal lenses and

10 kinoform lenses, respectively. The main differences are as

follows. The maximum electric field value with ideal lenses was

obtained at a distance of 1.126 m, and the highest value with

kinoform lenses was obtained at a distance of 1.133 m. Also,

when using kinoform lenses, the electric field intensity at the

best focus distance is not exactly concise with the Gaussian

law. However, additional peaks are noticeable, the size of

which is only several times smaller than the maximum value.

We should note that an increase in the number of kinoform

lenses used significantly improves the quality of focusing,

and, with a significant number of kinoform lenses, focusing is

practically not inferior to that of conventional ideal lenses.

Fig. 7 shows for comparison the maximum value of the electric

wavefield, which was obtained with 30 ideal lenses (red) and

30 kinoform lenses (blue). One can see that using 30 kinoform

lenses allows very good focusing of X-ray waves.

Optical aberration occurs in an optical system that uses a

kinoform lens. Increasing the number of kinoform lenses

allows us to reduce the defects of the optical system, and also

enables better focusing of X-rays.

Although the optical system of many kinoform lenses is

good for focusing X-rays, the calculations performed show

that kinoform lenses are probably not suitable for obtaining

high-quality magnified images of objects. Calculations show

that a stepwise change in the thickness of a kinoform lens

causes significant deviations of the X-ray radiation intensity

from the Gaussian shape both before the focusing point

and after the focusing point. We can see this in the graphs

in Fig. 8. The diffraction effects visible in the graphs in Fig. 8

will undoubtedly manifest themselves during attempts to

obtain images of objects.

Figs. 9 and 10 show the focal spot of one 3D kinoform lens.

Diffraction effects due to jumps in the kinoform lens thickness

in the 3D case are weaker than in the planar case, but these

effects certainly take place and they are significant.

Figs. 11, 12 and 13 show grating images obtained from the

comparison between one kinoform lens and one ideal lens.

The calculations were performed for diamond lenses under

the assumption that the X-ray wavelength is equal to 1 Å.

For diamond and an X-ray wavelength of 1 Å, the complex
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Figure 6
Focus spot obtained with 10 kinoform lenses (blue line) and 10 ideal
lenses (red dashed line).

Figure 7
Focus spot obtained using 30 perfect lenses (red dashed line) and 30
kinoforms (blue line).

Figure 5
Results for |E| before the focus spot (at the distance 11 m after one lens)
obtained with 1 kinoform lens (blue line) and 1 ideal lens (red dashed
line).



refractive index values are: � = 4.7423 � 10�6 and � =

2.8366 � 10�9. The distances between the grating and the

optical system were different in the calculations to obtain 1, 2,

4 and 8 magnification factors. The distances between the

optical system and the image of the grating behind the optical

system were determined using the well known thin lens

formula

1

f
¼

1

dX

þ
1

dY

; ð22Þ

where the focal length f is found from the formula f = 1/(2�R).

Thus, in all figures, these are the clearest images possible

within the framework of the optical systems used.

6. Some generalizations: formulas for lenses
with defects

Below we generalize the previous formulas for the case when

lenses contain internal defects (cavities, inclusions) or external

defects (surface irregularities, surface roughness). This item, in

the physical sense, is close to kinoform lenses since the main

thing that distinguishes both cases is a possible non-smooth,

abrupt behaviour of the phase of an X-ray wave passing

through such lenses.

Consider formulas (9): these contain partial derivatives of

functions describing lens thickness. Differentiable functions

are a mathematical abstraction, so the differentiability of

functions describing real physical objects cannot be verified

experimentally. Obviously, formulas (8) and (9) are for

idealized lenses, whose thickness may contain some abrupt

changes. On the whole, the thickness is described with smooth
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Figure 8
Results of calculation of electric field obtained for 30 kinoform lenses
(blue line) and 30 ideal lenses (red dashed line) 0.166 m after optical
objects and 1.5 m after optical objects.

Figure 9
Distribution of the electric field modulus in a focal spot created by one
3D kinoform lens (size in millimetres).

Figure 10
Distribution of the electric field modulus in a focal spot created by one
3D kinoform lens (size in millimetres). The field magnitude is shown with
the density plot.

Figure 11
Image of the grating directly after the grating.



functions, that need some adjustments to make them suitable

for cases of non-smooth behaviour of the parameters.

Below are some modifications of formulas (8) and (9) that

allow taking into account the irregularities in the lens shape

and even internal lens defects,

EðxC; y; zÞþ ¼ EðxC; y; zÞ� exp i k0�ðy; zÞ
� �

; ð23Þ

eþ1;mn;y ¼ e�1;mn;y þ
@

@y
< �ðym; znÞ
� �

;

eþ1;mn;z ¼ e�1;mn;z þ
@

@z
< �ðym; znÞ
� �

;

eþ1;mn;x ¼ 1�
eþ1;mn;y

� �2
þ eþ1;mn;z

� �2

2
;

ð24Þ

where

�ðy; zÞ ¼

Z x2

x1

n x0; y; zð Þ � 1½ � dx0: ð25Þ

In (25), x1 and x2 are the coordinates of the beginning and end

of the lens plate. Based on physical intuition, differentiability

of the function �(y, z) with respect to the variables y, z is not

assumed. [The case of a piecewise-differentiable function

�(y, z), as a simpler one, has already been considered above.]

It is assumed that the function �(y, z) is piecewise continuous.

The assumption that the function �(y, z) is piecewise

continuous is not burdensome and seems quite physically

justified. Recall that the differentiability of a function implies

its continuity, but the converse is generally speaking not true.

[Weierstrass gave a wonderful example of a function that is

continuous at each point, but not differentiable at any point.

This is the function f ðxÞ ¼
P1

k¼1ð1=k2Þ sinðk2xÞ (Weierstrass,

1894).]

The Gaussian beam technique, developed in Wojda &

Kshevetskii (2019) and in this paper, assumes that at each step

of the procedure used we start from the field E(x0, y, z), given

on some plane x = x0, and the function E(x0, y, z) is piecewise

differentiable with respect to the variables y and z, or

smoother. Under this condition, the approximate solution,

constructed within the framework of the Gaussian beam

technique, converges to the exact one as h�!0. Accordingly,

within the framework of this method, the function �(y, z), as

it relates to the function E(x0, y, z), has to be at least piece-

wise-differentiable. Therefore, the need exists for removing

the existing limitations of the method to allow similarly

piecewise continuous functions. Below, such a fundamental

possibility will be shown.

Let us consider the function

�ðy; z; aÞ ¼
1

a2

Z yþa

y�a

Z zþa

z�a

� y0; z0ð Þ dy0 dz0: ð26Þ

This function �(y, z, a) is differentiable with respect to both

variables y and z, and �ðy; z; aÞ�!�ðy; zÞ as a�!0 at all

points of continuity of the function �(y, z). Let us replace the

function �(y, z) with the function �(y, z, a) everywhere in

formulas (23) and (24), considering the obtained expressions

as approximate solutions, while the exact solution is given by

the limit a�!0. This then implies that the complete solution

of the problem, for the electromagnetic wavefield, is

lima!0 Eðx; y; z; aÞ. This is a general scheme for obtaining the
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Figure 12
Gating image at a distance of two, three, five and nine focus distances
from the kinoform lens. The field magnitude is shown with the density
plot.

Figure 13
Grating image at a distance of two, three, five and nine focus distances
from the ideal lens. The field magnitude is shown with the density plot.



solution for the considered case of non-smooth function

n(x, y, z). Then from (26) the approximate relations follow,

@� y; zð Þ

@y
’

� yþ a; zð Þ �� y� a; zð Þ

2a
;

@� y; zð Þ

@z
’

� y; zþ að Þ �� y; z� að Þ

2a
:

ð27Þ

In the formulas (27) and (24), symbols of partial derivatives

are understood not as ordinary derivatives but as generalized

derivatives, or derivatives in a weak sense (Ladyzenskaya,

1985). The solution obtained in the limit a�!0 is understood

as a generalized or weak solution of the equation (1) under

study (Ladyzenskaya, 1985).

The formulas (27) are similar to the formulas (10). In

practical calculations, the choice of the parameter a is

important. When deriving formulas (8) and (9), it was assumed

that the beams are narrow and that the incident phase can

locally be approximated with a linear function. So it makes

sense to use a > �.

A few words about the importance of studying the effect of

small-scale defects in lenses on focusing and imaging. In this

paper, kinoform lenses, which roughly correspond to real

lenses of this type, are considered. However, we can also

imagine an extremely thin kinoform lens containing a very

large number of concentric rings. Such a lens, although

extremely thin, is likely to be capable of focusing X-rays, albeit

with poor quality. We can think of such a very thin kinoform

lens as a model of the influence of lens defects on focusing and

imaging. The effect may be significant. Therefore, the question

requires research.

7. Conclusion

The article contains a description of a new mathematical

apparatus for high-precision calculation of X-ray wave

propagation for cases when the medium is highly inhomoge-

neous or the optical element shape is sharply changing. The

paper examines the propagation of X-ray waves through

kinoform lenses and analyzes the use of these lenses for

focusing and imaging. The thickness jumps in kinoform lenses

produce diffraction effects that merit interest and are difficult

to calculate, making them a worthwhile field of study. In the

research, preference is given to the study of planar lenses,

since in this case the diffraction effects are greater than in

three-dimensional lenses. These diffraction effects manifest

themselves in the form of the electric field oscillations of

significant amplitudes, but at very fine spatial scales and with a

very fine structure. These fine diffraction structures disappear

as the distance from the lens increases, but the optical system

properties change.

To calculate the X-ray wave propagation, the method of

oriented Gaussian beams is developed and applied. Within the

framework of this approach, the X-ray wave is represented as

a superposition of oriented Gaussian beams. Explicit formulas

are written describing the Gaussian beam propagation

through a lens or a sample.

Let us first consider the results obtained in calculations for

planar lenses. Lens thickness jumps lead to diffraction effects

when X-ray waves propagate through the lens. As a result, on

the plane at the focal length, we can observe one main peak of

the X-ray wave intensity and peaks of smaller but significant

amplitudes. These satellite peaks prevent the formation of

quality images with kinoform lenses.

However, when many kinoform lenses are used, the number

of peaks on the plane of the focal length decreases, and the

value of the main peak increases. Thus, the focal spot obtained

with kinoform lenses is not very different from that obtained

with ideal lenses. Therefore, the use of a large number of

kinoforms can have a positive effect on imaging. Nevertheless,

although the focal spot is quite good, diffraction effects due to

lens thickness jumps are observed at distances both shorter

and longer than the focal length. This effect should degrade

imaging quality.

Compared with diffraction effects on thickness jumps of

planar lenses, 3D kinoform lenses generate wavy diffraction

effects. These effects have a lower amplitude than in the case

of planar lenses, but their characteristics (number of waves)

are the same (compare Fig. 5 and Fig. 9). Hence, we can

conclude that the study of diffraction effects at thickness

jumps of planar lenses gives a good notion of this kind of

diffraction phenomena.

To illustrate the capabilities of the Gaussian beam tech-

nique, the results of calculating the image of a grating placed

in front of either an ideal lens or a kinoform lens are

presented. The image is presented at various distances behind

the lens, according to the thin lens formula. One can see that in

the case of kinoform lenses the image has many defects.

The use of kinoform lenses for focusing X-rays was

previously experimentally investigated by Gorelick et al.

(2019), and it has been argued that kinoform lenses may have

limitations in focusing X-rays. In this study, we showed that

kinoform lenses can also have imaging limitations. However,

kinoform lenses have been considered here rather for studying

diffraction effects and with the aim of developing theoretical

methods for their calculation, because one can expect similar

diffraction effects on defects (cavities, inclusions) of real

lenses and when X-rays propagate through porous materials.

Thus, the development of theoretical methods for calculating

these diffraction effects in X-rays optics may be useful.
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