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The emergence of fourth-generation synchrotrons is prompting the develop-

ment of new systems for experimental control and data acquisition. However,

as general control systems are designed to cover a wide set of instruments

and techniques, they tend to become large and complicated, at the cost of

experimental flexibility. Here we present Contrast, a simple Python framework

for interacting with beamline components, orchestrating experiments and

managing data acquisition. The system is presented and demonstrated via its

application at the NanoMAX beamline of the MAX IV Laboratory.

1. Introduction

As next-generation light sources are being built around the

world, the software systems that serve such machines are also

developing. Incidentally, the development of these diffraction-

limited storage rings has coincided with the rise of Python

as the de facto standard for general-purpose scientific

computing. As an interpreted language, Python natively

provides scripting utilities and shells, which can be easily

integrated in larger frameworks for interactive programmatic

control. It is then not surprising that four new synchrotron

data acquisition projects have been largely or entirely based

on interactive Python. The Sardana (Coutinho et al., 2011),

bliss (Guijarro et al., 2017) and Bluesky (Arkilic et al., 2017)

projects are written in Python, while GDA (Gibbons et al.,

2011) provides an embedded Jython interpreter.

The above-mentioned developments share a common

purpose, namely to unify data acquisition procedures and

pipelines. Here, bliss and GDA pursue this goal at the facility

level, while the Sardana and Bluesky projects involve multiple

laboratories. The advantage of this is that resources can be

pooled to implement advanced features. For example, Bluesky

provides very useful dynamic control, where experiments can

be paused, rewound and resumed. Sardana allows building

customized graphical interfaces using the Taurus and Qt

toolkits, and provides generalized support for continuous

scanning. While compelling, these high ambitions necessarily

mean that code bases grow as wide ranges of functionality are

added. At the time of writing, each of these projects contains

well above 100000 lines of core source code. Clearly, gener-

alizing and unifying data acquisition via large software

projects can sometimes increase robustness and provide

advanced functionality, but at a cost. As complexity grows,

maintenance and code modification necessarily become

more arduous.

On the other hand, experiments frequently demand high

flexibility and the ability to adapt to unforeseen experimental
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needs. As an example of this, the NanoMAX beamline of the

MAX IV Laboratory is a multi-modal instrument, where

scanning and time-domain experiments can be designed by

combining X-ray detectors and other equipment in flexible

schemes. Experience from the beamline shows that the most

productive acquisition system is one which the experimental

scientist understands and is able to quickly modify, extend and

troubleshoot in a transparent way. Indeed, we argue that the

acquisition system is a core part of any beamline setup, which

must be chosen or designed with the same care as taken when

selecting or building instrument-specific hardware.

Conveniently, as large-scale research facilities typically run

distributed control systems such as Tango (Chaize et al., 1999)

or EPICS (Dalesio et al., 1994), the task of coordinating the

various components of even the most complex experiment,

and gathering the resulting data, can usually be broken down

into rather simple operations. In this paper, we present a new

and lightweight orchestration and acquisition framework,

named Contrast, which provides the experimentalist with an

interface for interacting with the underlying control system, as

well as with a simple way to define experimental procedures

(Björling, 2020a). Contrast is deployed at NanoMAX, and

has successfully been used for user experiments in scanning

fluorescence spectroscopy, coherent imaging, tomography and

in situ strain mapping for 18 months of user operation to date

(Björling, 2020b). Its deployment has brought increased flex-

ibility, an improvement in beamline reliability, as well as

the freedom to construct experimentally driven downstream

analysis pipelines with relative ease.

While Contrast adds yet another Python-based acquisition

framework, our ambition is not to provide a general system

valid for any experimental context. We suggest that Contrast

could be used as-is at other instruments, and that its simplicity

would be an asset compared with the alternatives. But it can

equally well serve as inspiration for how similar tailored

systems can be built, showing by example that simple and

transparent systems can substantially improve data acquisi-

tion.

The first part of the paper details the design choices and

implementation. The second part describes its integration with

the lower-level control system and detector infrastructure at

NanoMAX. Lastly, we give two example applications of the

framework, where X-ray fluorescence mapping and radial

image sector integration are carried out and analyzed in real

time as the data are collected.

2. Software design

Contrast is a beamline interface based on IPython, with code

organized as a library containing various classes. A beamline is

set up simply by making instances of these classes for detec-

tors, motors and any other devices directly in IPython or in a

script.

Contrast conceptually does three things:

(i) Represents and keeps track of beamline components as

Python objects.

(ii) Provides shorthand macros to carry out orchestrated

operations on these devices.

(iii) Keeps track of the environment in which the instru-

ment is run.

The framework runs locally in an IPython interpreter. This

allows direct interaction between all beamline components.

Parallelization is avoided in the interest of simplicity, with the

exception of data handling, which would otherwise slow down

the light-weight acquisition loop.

2.1. Object representation of beamline components

Beamline components such as motors and detectors are

represented by classes which expose a simple and uniform

interface. At the top of the inheritance tree [Figure 1(a)], an

abstract Gadget base class provides instance tracking, so that

computer programs
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Figure 1
(a) Inheritance tree showing the most important beamline component
base classes, along with three examples of Recorder types. (b) Example
script which launches a minimal dummy beamline. Gadget names are
given as keyword arguments, so that the instance tracking can assign a
unique name for each object.



all objects can be found by interrogating class methods at the

appropriate level in the tree. This allows querying all existing

objects of a certain kind, without having to manage a global

list of components.

The Motor and Detector base classes represent beamline

components that are primarily used for control and data

acquisition, respectively. The distinction is not always clear,

but devices are typically implemented as one or the other to

satisfy one of the standardized interfaces. Actual motors, as

well as voltage biases, temperature setpoints, sample pumps or

collective coordinates of multiple real motors, for example,

can usually conform to the Motor class interface. Data

acquisition devices such as cameras, spectrometers, ion

chambers, electrometers and other sensors can often conve-

niently inherit from Detector.

The Recorder class is introduced in analogy with Sardana

(Coutinho et al., 2011) to handle incoming data asynchro-

nously. Recorders are parallel sub-processes which perform

tasks on collected data, for example relaying them over

streams, writing them to file, or making live plots. Acquisition

typically involves placing any gathered data in the queues

of all currently active recorders (available through the

Recorder:get instances class method) before the

measurement cycle continues without delay. High-rate detec-

tors are assumed to pipe their data independently, with only

links or other meta-information returned to Contrast.

Figure 1(b) shows a minimal beamline script, which sets up

two motors, a detector and a data recorder. Such a script can

be run interactively from within IPython using the %run

magic, or launched directly from a terminal as follows,

ipython � i beamline script :py

For a real instrument, the detector and motor objects created

would correspond to the actual hardware, and instantiate

hardware-specific subclasses of Detector and Motor.

Basic data handling would typically involve a simple

Hdf5Recorder instance, while more elaborate schemes, as

exemplified below, might make use of data distribution over

ZeroMQ via instances of the built-in StreamRecorder class.

The documentation and source code (Björling, 2020a,b)

contain detailed descriptions of all available components, as

well as complete real-world examples.

Once the beamline is set up, the instance tracking by

Gadget and its subclasses can be used to find any

beamline component. Every Gadget class tracks all of its

instances, which can be accessed from anywhere in the

library or from the interactive interpreter. For example,

Detector:getinstancesðÞ is a generator over all available

detector objects, which can then be filtered on name, active

status or some other property. Typically, however, shorthand

macros, described in the next section, are used for handling

components and running data acquisition procedures.

2.2. Shorthand macros

The object representation of beamline components

[Fig. 1(a)] already suggests how a basic acquisition loop might

look. Typically, some motor or other parameter is varied. All

active detectors are found through instance tracking, and then

started at every parameter position. The data collected are

then distributed to all available recorders for handling, before

the cycle continues [see Figure 2(a)]. Any such sequences

of operations on Gadget objects could be run directly on

the IPython command line, or scripted in library functions.

However, to provide a more user-friendly interface which also

resembles familiar historical beamline acquisition systems,

shorthand macros are introduced.

Macros are implemented as IPython ‘magic commands’,

inspired by the interactive interpreter of Sardana (Coutinho et

al., 2011). This allows the user to enter short commands with

shell-style arguments, rather than to require correct Python

syntax. For example, the shorthand macro syntax

%ascan energy 8:0 11:0 30 0:1

scans the energy motor from 8 to 11 keV in 30 intervals,

exposing all active detectors for 0.1 s at each energy. This
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Figure 2
(a) Basic steps of a data acquisition macro. (b) Example code showing
how to write a new macro, in this case implementing scanning of two
motors along a spiral. (c) A simple procedural script in which a spiral scan
is run across a range of energy motor positions.



macro expression is equivalent to the following less conve-

nient Python statement,

AScanð 0 energy 0; 8:0; 11:0; 30; 0:1Þ :runð Þ

The Contrast library provides a decorator and class interface

for writing custom macros. Macros are defined throughout the

library source so that macros associated with certain classes

are contained in the same module. For example, macros which

operate on motors are found in the motors module, rather

than being listed in a separate macro module, making the

library intuitively organized and easy to version control.

Macros can take optional keyword arguments, which is useful

for enabling extra behaviour (e.g. adding positional jitter to

mapping scans or adding extra delays). These do not have to

be pre-defined, and can therefore be used for attaching arbi-

trary tags to experimental runs for later reference (e.g. to mark

ptychographic scans for later automatic phase retrieval).

The built-in acquisition macros inherit from a common

SoftwareScan base class, which implements the core

behaviour of actuating, measuring, collecting and redis-

tributing data. The key steps of this sequence are illustrated as

pseudo-code in Figure 2(a). Factoring out such core behaviour

simplifies writing custom acquisition macros where only some

part of the loop, for example in what pattern to scan some

set of motors, is rewritten. Implementing new acquisition

modalities can either build on the existing base classes, or

start from scratch for entirely new functionality. For simple

experimental procedures, ordinary Python scripts can be

written to run a sequence of Contrast macros. Figure 2(b)

shows how a two-dimensional spiral scan can be implemented

as a proper Contrast macro, while Figure 2(c) illustrates a

simple scripted procedure.

2.3. The beamline environment

Aside from the core classes representing hardware

components and data handlers, Contrast contains utility

classes to manage and interface with other parts of the

beamline. The environment sub-module gathers these

components as well as some macros to manage them. The

sub-module creates a library-level object env which can be

globally imported. That way, data acquisition routines and

Gadget objects can interrogate the local environment if

needed.

One important attribute on the central env instance is the

object which determines where to write data. By default, the

attribute env:paths points to an object which takes data

paths manually. But in real beamline environments, data paths

might be set externally by the user management system, or be

set from any other source. Another aspect of the environment

is the conditions required for data acquisition to proceed. At

synchrotrons, for example, conditions might be set on the

storage ring current, electron injection status and state of the

X-ray shutters. The env:scheduler attribute can point to

any customized class, and be interrogated by data acquisition

routines.

Other beamline aspects managed by the central env object

include how to gather a beamline snapshot before acquiring

data, a rudimentary user level setting for filtering the visibility

of advanced beamline features, references to previous macro

results, and an incremental scan number to identify acquired

data. The last lines of Figure 1(b) illustrate how the env object

can be configured to hold various utility objects. For an actual

beamline, many of these will be adapted to the surrounding

infrastructure. The actual env object for the NanoMAX

instrument is described in Section 3 as a concrete example, and

the documentation (Björling, 2020b) can be consulted for a

full description.

2.4. Comparison with existing frameworks

A full, systematic comparison of data acquisition frame-

works is beyond the scope of this article, especially as we have

unbalanced experience of the above-mentioned frameworks.

Clearly, Contrast has some disadvantages and lacks some

attractive features compared with the heavier alternatives. As

an example, beamline components are represented by objects

within a Python process, and there is no standard way of

interacting with them from the outside. Sardana, on the other

hand, dynamically exposes a large set of Tango servers and

builds on a server-client design. This allows running graphical

user interfaces (GUIs) on different machines, and one could

for example imagine implementing a web-based front-end for

remote operation (even if, to our knowledge, this is not done).

In Contrast, a GUI would instead be written as part of the

main Python process, using Qt or some other widget toolkit.

As another example, the Bluesky RunEngine uses check-

pointing for increased fault tolerance, which allows rewinding

and re-running parts of experimental procedure. This feature

is not available in Contrast, and there is no straightforward

way of implementing such features. Also, convenience

features such as the ability to manage queues of macros to run

are not available in Contrast, where sequences are instead

scripted as described above.

As outlined in the Introduction, the development of

Contrast was motivated by the need for a simpler acquisition

framework. We define simplicity here in a practical sense, as

describing a system which is easy for non-experts to under-

stand and modify. As outlined above, this is necessary for a

productive beamline as it allows experimentalists to adapt to

changing needs. We consider Contrast simple in a number of

ways, many of which we believe compare favourably with the

existing alternatives.

First, the framework does not have a separate hardware

abstraction layer, but instead the Gadget subclass repre-

senting a certain beamline component interfaces directly with

the hardware or its server. As seen in the next section, this can

be implemented in different ways depending on the hardware

in question. For example, some detectors are fitted with full

state machines with high-level interfaces, while others are

managed by a separate control system (e.g. Tango) server via

lower-level vendor libraries. When implementing a Contrast

class to represent one of these components, these specifics are

computer programs
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taken into account. This direct interface comes at the cost of

potentially needing different Gadget subclasses for the same

hardware component, depending on how that component is

run. On the other hand, it reduces the number of abstraction

layers and makes it easier to follow the control flow and

understand bugs and performance bottlenecks. This also

means that the requirements on the other parts of the control

system are very loose. Any interface can be tolerated, as long

as the Contrast process is not required to perform heavy

operations or time-consuming work. The current source code

(Björling, 2020a) contains examples of HTTP, PyTango and

TCP socket interfaces, including blocking protocols which can

be handled with local threads.

Secondly, Contrast strives to implement a clear basic API

for the Gadget subclasses, so that the sequence in which

components are moved, armed, triggered and read out is easy

to follow. It is our experience that complicated control flows

increase the risk of mistakes due to misunderstandings,

especially when experimentalists who do not grasp the full

framework design need to adapt to novel acquisition schemes,

which can ultimately lead to unstable controls. In the simpler

API design, all Gadget components are autonomous from the

Contrast point of view. For example, a Motor object defines a

single degree of freedom, even if the motor itself is physically

managed by a multi-axis motion controller. Where needed,

managing classes which coordinate motions can be freely

defined by the programmer, without the need for such meta-

objects to be part of the Contrast framework. We note that,

depending on the underlying hardware control, this could in

principle mean that simultaneous or coordinated motions are

not possible. However, with the motion controllers currently

used at NanoMAX, this has not been encountered. The source

code and documentation (Björling, 2020b) contain several

examples of multi-axis controllers. The reliance on the native

Python import system in general allows the programmer to

adapt to specific hardware, and to go beyond the scope of the

thin API when needed.

Third, the Contrast design takes a minimal approach to

error handling, with no ambition to comprehensively catch

and handle exceptions. Since all Gadget objects and data

acquisition routines run in the same Python process, excep-

tions can be directly examined using built-in IPython

debugger. By comparison, exceptions raised in the separate

processes of more complex frameworks can often be hard

to identify and understand. With a multitude of beamline

components, for which the vendor-supplied servers or libraries

can be of varying quality, the total set of possible errors,

instabilities and deviations from specified behaviour is so wide

that issues found are best dealt with on a per-component basis

in the respective Gadget subclass. For general operations

where network glitches or transient problems are found to

impact operational stability, workarounds are implemented

which for example try a number of times before re-raising the

underlying exception.

We have found that the direct approach to hardware

communication, the simple API and the transparent error

handling greatly improve the operational beamline reliability.

Thus the stability of the NanoMAX instrument, previously a

bottleneck in user operation, was improved by deploying the

simpler Contrast framework in place of the previous system.

3. The NanoMAX beamline

We now turn to the application of Contrast to a real experi-

mental system. NanoMAX is a general-purpose hard X-ray

nanoprobe beamline at the MAX IV Laboratory, described in

detail by Johansson et al. (2013) and Björling et al. (2020).

While the current endstation is optimized for in operando

diffraction experiments in the Bragg geometry, it also has

forward imaging and X-ray fluorescence mapping capabilities.

A second endstation for tomographic imaging is in the design

phase. Hence, a wide set of detectors and other equipment is

integrated via Contrast.

Figure 3 summarizes the NanoMAX acquisition system,

including the main data pathways. The Merlin, Eiger and

Pilatus detectors, for Bragg diffraction, forward imaging and

wide-angle scattering, respectively, implement their own state

machines and are interfaced directly through their repre-

sentative Contrast objects. The Xspress3 and Andor detectors,

for X-ray fluorescence emission spectroscopy (XRF) and

forward full-field imaging, respectively, do not come with their

own servers. For these two detectors, acquisition control is

maintained by Tango servers built on vendor-supplied Soft-

ware Development Kits (SDKs) (Björling, 2020c; Weninger,

2020a). All detectors stream data over ZeroMQ sockets

directly to central cluster resources, where they are written to

disk or analyzed in real time. For the Eiger, streaming is built

into the vendor’s control server, while streaming solutions for

the other detectors are written in-house (Weninger, 2020b,c).

Figure 3 shows the basic mode of operation, where all detector
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Figure 3
The NanoMAX data acquisition system in HDF5 saving mode. Tango is a
distributed control system which manages all motors, interfaces with the
beamline PLC and safety systems, controls the vacuum and optics, and
handles data acquisition from encoders, electrometers, analog inputs, etc.,
as well as general sensor readout. These components are then
orchestrated together with the high-rate detectors in Contrast. Note that
Tango could be replaced by any distributed control system.



data are simply written to disk as HDF5 files (The HDF

Group, 2000–2020). Note that all high-rate detectors stream

their data independently from Contrast. The built-in

Hdf5Recorder writes files in a simple, Nexus-inspired

format, where consecutive motor values and detector data are

appended to flat arrays. Streaming detectors return links to

their separate target files, so that all data become accessible

via the main Contrast HDF5 file. Since the Recorder objects

run asynchronously, low-rate data can be written directly

over the Network File System (NFS) with no impact on the

experimental overhead.

The beamline environment is taken into account by

configuration of the central Contrast object env (Section 2.3).

For example, data paths at MAX IV are managed by a central

Scientific Data Management (SDM) system, which sets up

storage folders based on user proposals. The data paths are

available from a dedicated Tango device server, and the

Contrast object env:paths attribute refers to an instance of

the SdmPathFixer class, written to reflect this environment.

This facility-specific object thus replaces the default

PathFixer object, which would otherwise take paths

manually. Similarly, the env:scheduler attribute refers to a

MaxivScheduler object which keeps track of the machine

and safety shutter status at the beamline. This ensures that

data acquisition can be paused when the beam is not available

or is unstable due to electron injection. Following the API, the

env:scheduler object can also report on upcoming dead-

lines, such as injections, and macros are free to estimate

whether there is enough time for another acquisition before

the next such event. The other env attributes used at

NanoMAX follow the library defaults.

Data collection at NanoMAX frequently involves scanning

a sample through the beam, for example in mapping or

ptychographic imaging. While such scans can be synchronized

via Contrast, it is often more efficient to delegate motion

control and triggering to designated hardware. This also allows

performing continuous scanning to avoid the overhead of the

scanner’s settling time. At NanoMAX, delegation of scanning

control to an nPoint three-axis piezoelectric stage is imple-

mented as a dedicated macro. For each software step, the

macro parameters are used to calculate the desired piezo

motor waveform. Any detector which can be hardware trig-

gered is then armed for the appropriate number of exposures,

while non-triggered sensors are set up for a single point of

data acquisition. As the waveform starts, the motion controller

sends a signal to a PandABox acquisition board (Zhang et al.,

2017), which produces a time-based trigger train for the

detectors, and also reads the piezo encoder signals in a gated-

average fashion. After waveform execution, control is

returned to Contrast, which passes the gathered data to

recorders as usual, and proceeds to the next software step.

4. Example applications with real-time analysis

Beyond the basic operating mode described in Figure 3,

Contrast is used at NanoMAX together with streaming

detectors to form real-time data analysis pipelines as needed.

These online analysis schemes extend the basic HDF5 writing

scheme in Figure 3 in ways particular to specific experimental

applications. While not part of Contrast itself, these examples

are included to demonstrate that advanced data pipelines can

be built from simple elements in combination with Contrast’s

Recorder objects.

4.1. XRF mapping

The first example is illustrated in Figure 4, where contin-

uous scanning and XRF detection are combined with a stream

receiver which creates and updates elemental maps as the data

become available. Here, the nPoint LC.400 device controlling

the piezo scanner generates continuous scanning patterns, and

XRF data are collected from the moving sample, as described

above. The positional data are streamed out by a Contrast

StreamRecorder, while the Xspress3 pulse processor is

managed by a Tango server with streaming capabilities

(Björling, 2020c).

The measured sample is a lamella of heat-treated steel,

prepared by focused ion beam (FIB) milling. The lamella is

approximately 10 mm high. It contains several first-row tran-

sition metals, as well as Pt from the FIB preparation. Before

the scan, a selection is made of spectral ranges corresponding

to each element of interest, as determined from a preliminary

scan. This reduces the memory usage of the application, since

each spectrum can be reduced to set of scalars as it is received.

As the scan progresses, the XRF map for each element

develops and grows, while the latest and average emission

spectra are updated for the user to follow the experimental

progress.

The example shown here reveals differences in elemental

distribution. While Fe, Co and Mn are evenly spread across

computer programs
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Figure 4
Real-time XRF mapping using Contrast and streaming detectors at
NanoMAX. Selected parts of the beamline are shown schematically. The
live processing pipeline plots the most recent fluorescence emission
spectrum (red), along with the average of the spectra received (blue).
Also shown in yellow bands are the selected spectral regions of interest.
Maps are created for each such region, here corresponding to eight
elements and the total spectrum. The decrease in Ar signal across the
lamella comes from shadowing the air path behind the sample.



the lamella, there is complementary structure to Ni and Cr.

Having this type of information available during data collec-

tion allows beamline users to make informed decisions on the

further progress of the experiment, cancel scans after passing

the region of interest, and gain a general sense of how the data

acquisition is going. A video of this data collection and live

processing is shown in the supporting information online. The

supporting information also contains a video showing the live

processing of an XRF scan across a collection of gold-capped

gallium phosphide nanowires grown by gas-phase epitaxy

(Sivakumar et al., 2020).

This live mapping application was possible to realize with

relative ease, thanks to the built-in StreamRecorder which

gives access to all data collected by Contrast anywhere on the

local network. Additionally, using streaming detectors allows

for conveniently combining high-rate data with that from

Contrast in custom downstream analysis or feedback utilities.

Another application, not yet implemented, could be real-time

phase retrieval of coherent imaging data, for example live

ptychographic reconstruction (Daurer et al., 2017).

4.2. Live radial integration

Another example of real-time analysis is the radial inte-

gration of X-ray scattering (SAXS/WAXS) or powder

diffraction (XRD) data. Experiments in scanning SAXS/

WAXS or XRD often use exposure times on the order of

10 ms, with a resulting frame rate of 100 Hz. For time-resolved

or time-correlation techniques, the Eiger2X 4M installed at

NanoMAX is often operated up to its maximum frame rate of

500 Hz, corresponding to a raw data rate of up to 36 Gbit s�1.

In order to obtain fast experimental feedback on the experi-

ment, it is important to be able to radially integrate this deluge

of image data in rings or sectors without significant delay.

Figure 5 shows a schematic layout of an acquisition setup

where 4M Eiger images are integrated as they are collected

(Weninger, 2020d). The primary receiver of the detector

stream writes everything to disk and relays the compressed

data on a secondary ZeroMQ socket. The images are then

distributed to a set of worker processes by a dynamic round-

robin schema through the ZeroMQ push/pull pattern. The

workers are dedicated to radial integration using a compiled

library module for fast processing. A collector process gathers

and orders the integrated data, before writing to disk in the

HDF5 format. As soon as the acquisition is complete, the file is

closed and the integrated data are available for inspection.

Tests at NanoMAX show that the pipeline can keep up with

the maximum frame rate of the Eiger2X 4M of 500 Hz using

12 worker processes on a compute node with two 12-core

CPUs (Intel Xeon Gold 5118).

The scheme with a secondary processing pipeline is also

utilized for other intra-frame operations such as down-

sampling, with similar performance. Additional tasks such as

frame-by-frame hit finding could be readily added to the

existing pipeline. Inter-frame analyses based on reduced data,

such as beam damage assessment or live calculation of time–

time correlations, could be run in the collecting process to suit

the needs of the particular experiment, but are not currently

implemented.

5. Conclusion

We have presented the basic design of the Contrast acquisition

system, as well as its implementation at the NanoMAX

beamline with two examples of real-time analysis pipelines.

Although Contrast could be installed and used at other

instruments with relative ease, it also serves as an example of

how simple beamline-driven acquisition systems can improve

the performance of an instrument. We argue that experimental

control is at the heart of modern beamlines, and should be

treated on equal footing with other scientific tools.

Clearly, the cost of developing and maintaining the software

must also be factored into strategic beamline controls deci-

sions. Here, taking part in broader software collaborations

can ideally reduce the work needed per beamline for imple-

menting experimental control. Also, for large facilities, stan-

dardization allows pooling of resources and enables central

support and responsibility for the software. But as discussed

above, experience from the particular case of the NanoMAX

beamline shows that these costs were outweighed by the

advantages.
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(contract No. 2018-07152); VINNOVA (contract No. 2018-
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Figure 5
Real-time radial integration of Eiger 4M images at 500 Hz. The rate test
used 12 worker processes. All HDF5 writers create separate files, which
are linked from the main Contrast HDF5 file for single-point access.



References

Arkilic, A., Allan, D. B., Caswell, T. A., Li, L., Lauer, K. & Abeykoon,
S. (2017). Synchrotron Radiat. News, 30(2), 44–45.

Björling, A. (2020a). The Contrast source code, http://www.github.
com/maxiv-science/contrast.

Björling, A. (2020b). The online Contrast documentation, http://
contrast.readthedocs.io.

Björling, A. (2020c). A Python interface and streaming utility for the
Xspress3, http://www.github.com/maxiv-science/xspress3-streamer.

Björling, A., Kalbfleisch, S., Kahnt, M., Sala, S., Parfeniukas, K., Vogt,
U., Carbone, D. & Johansson, U. (2020). Opt. Express, 28, 5069.
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