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Multislice ptychography is a high-resolution microscopy technique used to

image multiple separate axial planes using a single illumination direction.

However, multislice ptychography reconstructions are often degraded by

crosstalk, where some features on one plane erroneously contribute to the

reconstructed image of another plane. Here, the use of a modified ‘double deep

image prior’ (DDIP) architecture is demonstrated in mitigating crosstalk

artifacts in multislice ptychography. Utilizing the tendency of generative neural

networks to produce natural images, a modified DDIP method yielded good

results on experimental data. For one of the datasets, it is shown that using

DDIP could remove the need of using additional experimental data, such as

from X-ray fluorescence, to suppress the crosstalk. This method may help X-ray

multislice ptychography work for more general experimental scenarios.

1. Introduction

In ptychography, a spatially limited coherent probe is scanned

across multiple transverse positions; the far-field diffraction

patterns are then used to reconstruct the complex optical

transmittance of a planar object (Faulkner & Rodenburg,

2004). Multislice ptychography (Maiden et al., 2012; Tsai et al.,

2016) is an extension of this approach for imaging multiple

axial planes each separated by a distance zDoF greater than the

depth of field (DoF) of (Born et al., 1999; Gilles et al., 2018)

zDoF ¼
2

0:612

� 2
t

�
’ 5:4

� 2
t

�
ð1Þ

where �t is the transverse spatial resolution. In multislice

ptychography, the probe illumination function at each probe

position is modulated by the first axial plane, after which

Fresnel propagation is used to bring it to the next plane, and so

on until the far-field diffraction intensity is obtained.

When the contrast of upstream planes is significant enough

that the first Born approximation is violated, the illumination

of downstream planes is significantly affected; if incorrectly

accounted for in a reconstruction algorithm, this can lead to

crosstalk between the images from these separate planes.

Even with low contrast objects, if the axial separation between

object planes is only a small multiple of zDoF , Fresnel propa-

gation alone may be insufficient to cleanly reconstruct the two

planes correctly. This can be seen in a 12 keV X-ray multislice

ptychography experiment where crosstalk was observed in �t =

9.2 nm images of objects on two planes separated by 10 mm, or

2.3 � zDoF = 4.4 mm in this case (Öztürk et al., 2018).

Given that hard X-ray microscopy is well suited to imaging

objects in this thickness range (Du & Jacobsen, 2018), this
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limitation of multislice ptychography becomes important to

overcome. Alternative approaches include ptychographic

tomography for objects that do not extend in depth beyond

zDoF at any rotation angle (Dierolf et al., 2010), or multislice

ptychographic tomography of thicker objects where propa-

gation is used to compensate for Fresnel diffraction blurring

but images of separate planes are not required (Van den

Broek & Koch, 2012; Kamilov et al., 2015; Li & Maiden, 2018;

Gilles et al., 2018; Du et al., 2020a); however, both of these

approaches require images obtained over multiple object

rotation angles. The more extensive data collection required

for these tomographic approaches is not always feasible or

desirable, so it remains important to overcome crosstalk

effects in single-viewing-direction multislice ptychography of

separate object planes.

Many ptychographic beamlines at synchrotron light sources

are equipped with both an area detector for recording far-field

coherent diffraction data and an energy-dispersive detector

for recording X-ray fluorescence (XRF) signals in the same

scan of the illumination probe. Unlike ptychography, fluores-

cence imaging is an incoherent process with a spatial resolu-

tion limited by the focusing optic used; however, XRF can

provide low spatial frequency information of a sample with

distinct distributions of chemical elements. This approach

has been used to provide low-crosstalk reconstructions of an

upstream plane object consisting of an Au zone plate structure

and a downstream plane consisting of NiO particles mounted

on a silicon nitride window (Huang et al., 2019). In this case,

the Ni XRF image was used to generate an initial guess of the

object on the downstream plane, as well as to subtract the

spectrum of the NiO object’s ‘ghost image’ from an initial

reconstruction of the upstream plane, after which a multislice

ptychographic reconstruction was allowed to proceed. The

resulting images [shown in Figs. 3(a) and 3(b) of Huang et al.

(2019)] indeed show almost no crosstalk between the recon-

structed images at the two axial planes.

While the XRF-aided reconstruction has been shown to

be effective, its limitation is also apparent: if the chemical

composition of objects on the different axial planes is similar,

then XRF can no longer provide strict object separation.

Therefore, it is valuable to explore alternative methods to

suppress crosstalk without using XRF data. In fact, the

crosstalk separation problem resembles the well known

problem of blind source separation (BSS) in signal processing

(Cao & Liu, 1996). In the BSS problem, one begins with

N measurements y = [y1(t), y2(t), . . . , yN(t)], where each

measurement is a linear superimposition of M source signals

s = [s1(t), s2(t), . . . , sM(t)] with a unique set of weighting

factors wn, m so that one obtains measured data of yn(t) =PM
m wn;m smðtÞ. The goal in this case is to solve the linear

system

y ¼ As ð2Þ

so as to obtain the source signals s. The problem can be

overdetermined, underdetermined, or exactly determined

depending on the relative values of M and N. Separating out

all M sources requires N � M. Obviously, for multislice

ptychography, N = M, which is a necessary condition for all

‘clean’ slices to be solved from phase retrieved slices

containing crosstalk.

The complication for multislice ptychography is that the

ghost features are not a simple superimposition added onto an

affected slice but rather a filtered version of the real features

after losing information in certain spatial frequency bands. For

example, the ghost particles in one axial plane of Fig. 4(a) of

Öztürk et al. (2018) appear like a low-pass filtered version of

features in the other axial plane. This band loss has to be taken

into account before separating the ghost features. Moreover,

for a BSS problem to be solved successfully, the rows of A in

equation (2) should be linearly independent. In the case of

multislice ptychography, that requires sufficient differentiation

between real and ghost features in the axial slices. When the

slice spacing is large, this condition is usually easy to satisfy.

However, if the slice separation is too small, the weak probe

variation between adjacent slices makes them dificult to be

cleanly reconstructed when starting from a random guess,

since this can yield retrieved slices that are too similar to each

other. Under this scenario, we may relax our constraint and

allow the use of XRF data to assist with the initial phase

retrieval. However, it turns out that even with good initial

guesses aided by XRF, one is still unable to fully eliminate

inter-slice crosstalk without a very careful search of recon-

struction parameters and reconstruction algorithms. For

example, to obtain Figs. 3(a) and 3(b) of Huang et al. (2019),

many efforts were made to optimize the algorithm and para-

meters. Before doing that, a standard reconstruction yielded

images with considerable crosstalk as shown in Fig. 4(a) of

our paper. We demonstrate here that crosstalk can be greatly

reduced, so that in both situations (large separation without

using XRF, and small separation with XRF) the crosstalk can

be mitigated using a neural network algorithm based on a

‘double deep image prior’, or ‘double-DIP’ (DDIP).

In the deep image prior (DIP) approach (Ulyanov et al.,

2018), images in the forward model are generated from a

generative neural network, so that the network itself functions

to provide prior knowledge to the system. This is because a

deep neural network prefers generating ‘natural images’ with

lower patch-wise entropy, rather than those with higher patch-

wise entropy (Gandelsman et al., 2018). In Ulyanov et al.

(2018), DIP has been demonstrated to perform well for a

series of tasks such as denoising and deblurring. As described

in the cited paper, DIP is a type of ‘untrained’ neural network,

which means that, instead of training the networks on a large

dataset and then using the trained networks for non-iterative

prediction, one ‘trains’ (or ‘fits’, which might be a more proper

term) the neural network to solve one particular problem

using only the data pertaining to that problem and an explicit

model describing the image degradation process, without any

labels or ground truths. There is no separated prediction phase

in addition to the iterative training phase, as the fitting already

results in a network that can generate the restored image (and

it only learns to generate that image). When one applies the

neural network architecture to another problem, it needs to

be ‘fitted’ again using the data of that problem. It might be
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helpful to analogize the workflow of the untrained neural

network approach to that of conventional model-based

inverse problem solvers, such as ePIE (Maiden & Roden-

burg, 2009). These model-based solvers also perform iterative

optimization for each different problem, without training

on a large dataset in advance. However, with DIP, instead of

directly solving for the restored images, we solve for the

parameters in the generative networks which in turn generate

the restored images, so that we can exploit the prior knowl-

edge coming with these neural networks. In other words,

the untrained DIP approach is more properly classified as a

model-driven method, instead of a data-driven method like

traditional neural network-based approaches.

Since the ‘untrained’ usage of DIP requires iterative fitting

for each distinct problem, one may question its efficiency. The

untrained DIP approach does not enjoy the non-iterative

prediction as in data-driven neural networks. However, since

for each problem the DIP networks are fitted only on the data

pertaining to a single problem, the iterative fitting time is

generally short, and a moderate-scale network that can fit into

the memory of a modern GPU would usually suffice. Also, the

generalizabilty of a DIP-based algorithm is not constrained by

the training set; that is, we are not concerned with overfitting.

This initial demonstration of DIP (Ulyanov et al., 2018) used

an encoder–decoder structure which learns to map an input

tensor to an image with the same spatial dimension. By using

an encoder–decoder network with skip connections linking

the encoder part and the decoder part, one can lead the

network to generate images with structure at multiple spatial

scales, thus better capturing the characteristics of natural

images.

Building upon this initial work, it has been shown that the

use of multiple DIP networks can achieve improved outcomes

on a series of layer decomposition problems including image

dehazing, image segmentation, and transparency separation

whose goal is to separate out multiple individual natural

images from blends of them (Gandelsman et al., 2018). All

these tasks can be carried out using a similar architecture: if

there are two layers to be separated, one can use two DIP

networks to generate two distinct images, and use a third DIP

to generate either a mask or a constant blending ratio. The

architecture is thus named ‘double-DIP’ (DDIP) after the two

image-generating DIPs. Using the generated images and the

mask or ratio, one can synthesize a blended image, and train

the networks to minimize a loss function measuring the

mismatch between the synthesized image and the original

blended images. The preference of DIPs to generate natural

images means that the local patches consisting of the images

they generate usually have lower empirical entropy, which

is an indication that these images are more likely to

be unblended ‘single’ images. Additionally, prior work

(Gandelsman et al., 2018) also included an exclusion term in

the loss function, which penalizes the correlation between

the spatial gradients of the generated images. This further

suppresses the crosstalk in the output images.

Therefore, one can expect that the DDIP architecture can

function effectively in the multislice ptychography crosstalk

separation problem. In view of the additional band loss

complication of the ghost features, we modified the DDIP

architecture from the original design of Gandelsman et al.

(2018). The network architecture will be introduced in more

detail in Section 2. In Section 3, we will show the results

obtained using DDIP on two datasets, each representing one

of the slice spacing situations mentioned above.

2. Methods

2.1. Algorithm

The overall model structure of our modified DDIP is shown

in Fig. 1. The two image-generating DIPs, labeled DIP-1 and

DIP-2, are of the same ‘U-Net’-like architecture (Ronne-

berger et al., 2015), as shown in Fig. 2. The kernel size used in

all 2D convolutional layers is 5 � 5; an exception is the skip

connections, where 1 � 1 kernels are used. The input/output

numbers of channels of these convolutional layers are shown

in the figure. A leaky ReLU is used after each 2D convolu-

tional layer as the activation function. The inputs to both

DIPs, z1 and z2, are mono-channel tensors of random numbers

that are uniformly sampled between�0.5 and 0.5 and have the

same height and width as the original images. The DIP that

generates the constant weighting factor, DIP-3, adopts the

same architecture as DIP-1 and DIP-2 except that the input

and output numbers of channels are two. During training,

DIP-1 and DIP-2 learn to map z1 and z2 to y1 and y2 which are

supposed to be the ‘clean’ slice images. For DIP-3, the values
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Figure 1
The ‘double DIP’ model used in this work. Building on prior work
(Gandelsman et al., 2018), the outputs of both image-generating deep
image priors (DIPs; as shown in Fig. 2) are filtered by function f1/2 to
account for the partial band transfer of superimposed images. f1/2 can be
either a single-layer filter, or a shallow three-level DIP network.



of the central pixels from both output channels are used as the

blending weights �1 and �2. In Gandelsman et al. (2018), a

linear combination is used to synthesize the blended images I1

and I2 from generated images y1 and y2, i.e. I1 = �1y1 + (1 �

�1)y2, and I2 = �2y1 + (1 � �2)y2. In our case, to account for

the band loss of the ghost features, we pass the images of

the source of crosstalk through an additional function f1 or f2,

giving

I1 ¼ �1 y1 þ 1� �1ð Þ f1ðy2Þ;

I2 ¼ �2 f2 y1ð Þ þ 1� �2ð Þ y2:
ð3Þ

We explored two types of choices for f1

and f2 . Before discussing the choices for

these functions, one can see in Figs. 3(a)

and 4(a) that the ghost images from

more strongly scattering materials (e.g.

gold) appear like the high-pass filtered

version of the real features. On the

other hand, the more weakly scattering

materials (e.g. NiO) contribute to the

crosstalk with a low-passed version of

the real features. Thus, one can define

f1 and f2 as two single-kernel filtering

functions, which can be implemented

through 2D convolution,

f1ðxÞ ¼ x � k1;

f2ðxÞ ¼ x � k2:
ð4Þ

Based on the appearance of the original

images, k1 and k2 can be initialized to be

a low-pass or high-pass kernel. During

training, their values are optimized

along with the DIP parameters. For our results to be shown in

Section 3 where both cases are consisted of one slice with low-

pass crosstalk and another with high-pass crosstalk, we set

k1 to be a 7 � 7 uniform filter, and k2 to be a 7 � 7 kernel

containing a five-point Laplacian filter.

A single filtering kernel may not be able to capture the band

loss at various spatial scales. Therefore, a second way is to set

f1 and f2 as another two shallow DIPs with downsampling and

skip connections. In our implementation, we used a three-level

DIP with the same kernel size as DIP-1, -2, and -3, so that
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Figure 3
Input images (a) and separation results (b)–( f ) of the Au/NiO dataset. The results were obtained
with f1/2 set to either single filters or shallow DIPs. For each case, several �excl values were tested.
Ghost features are effectively suppressed with a proper setting for �excl . However, when �excl is too
large, fine details of the features are smeared out. The final values of �1|�2 are indicated at the upper
right corners of the corresponding subplots. The values of � hold steady except when we use shallow
DIPs for f1/2 and over-weight the exclusion loss, in which case the ratio �1/�2 decreases significantly.

Figure 2
Architecture of a DIP network used in the DDIP model. Numbers underneath tensor blocks indicate the number of channels.



there are three downsampling/upsampling operations, each

with a factor of two. However, the number of channels of

intermediate tensors is always one. Additionally, skip

connections are used at all three spatial scales in order to

prevent the loss of high-frequency information. These shallow

DIPs are initialized using uniform random numbers, and

the parameters are optimized along with the ‘major’ DIPs

during training.

With these, we can now formulate the loss function which

contains a data mismatch term measuring the difference

between the synthesized images I1/2 and the original images

I 0
1=2. Additionally, as indicated by Gandelsman et al. (2018), it

is also essential to employ an exclusion loss which penalizes

the correlation of the spatial gradients of y1 and y2 at multiple

spatial scales. The values of �1 and �2 are also penalized for

drifting away from 0.5 at the first 100 epochs of the algorithm

in order to stabilize their values against the random input and

network initialization. Thus, the full loss function (for a two-

slice separation task) is written as

L ¼
X2

i¼ 1

Ii DIP-1; 2; 3; f1;2

� �
� I 0

i

�� ��2

þ �excl

X5

j¼ 1

X

l2fx;yg

Dj rl y1ð ÞDj rl y2ð Þ

þ �½1;100�ðkÞ
X2

i¼ 1

�i � 0:5
�� ��2

; ð5Þ

where �excl is a constant weight of the exclusion loss term, Dj is

the downsampling function that downsamples the image in its

argument by a factor of 2 j�1, rl y denotes the spatial gradient

of y along direction l (either x or y), and �[1, 100](k) is a step

function of epoch number k that returns 1 when k � 100,

and 0 otherwise.

Our model is trained on an HP Z8 G4 workstation with two

Intel Xeon Silver 4108 CPUs and two NVIDIA Quadro P4000

GPUs, although the model is run using only one GPU each

time. PyTorch (Paszke et al., 2019) is used for automatic

differentiation. The code is available on https://github.com/

mdw771/ddip4ptycho.

2.2. Beamline experiments

The datasets used in both cases shown in Section 3 were

acquired at the Hard X-ray Nanoprobe beamline (3-ID) of the

National Synchrotron Light Source II at Brookhaven National

Laboratory.

The first dataset involves a synthetic sample, where Au

nanoparticles and NiO particles are deposited on both sides of

a 10 mm-thick Si wafer. We will hereafter refer to this dataset

as the Au/NiO dataset. The dataset was collected with a beam

energy of 12 keV and a transverse resolution �t = 7.3 nm,

which, according to equation (1), gives zDoF = 2.8 mm. The

10 mm slice spacing is therefore about 3.6 times larger than

zDoF. The multislice reconstruction result of this dataset

was published earlier by Öztürk et al. (2018), which can be

referred to for more experimental details. Similar to Öztürk

et al. (2018), we assume two slices in the sample, which,

respectively, correspond to the Au layer and the NiO layer.

The second dataset, described here as the ZP/NiO dataset,

also involves a two-slice sample that has been previously

published (Huang et al., 2019). In this case, Au zone plate

structures and NiO particles are deposited on both sides of a
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Figure 4
Input images (a) and separation results (b–g) of the ZP/NiO dataset. Like
in the cases shown in Fig. 3, the results were obtained with f1/2 set to either
single filters or shallow DIPs. The final values of �1|�2 are indicated at the
upper right corners of the corresponding subplots. While the influence
of �excl on slice 1 is minimal, it greatly affects the balance between
separation effectiveness and image resolution for slice 2. The rightmost
column shows the normalized power spectra of slice 2, plotted as
ðlog10 PÞ2:5 (where P is the original power spectrum). A slanted streak
corresponding to the periodicity of the zone plate’s ghost features can be
seen obviously in the input image’s spectrum. In the outputs of the DDIP
(i.e. y2), the spectrum density of this streak becomes much lower. Also, we
again see that, when we use shallow DIPs for f1/2 and over-weigh the
exclusion loss, a smaller �1/�2 ratio is yielded.



500 nm-thick silicon nitride membrane. The beam energy and

transverse resolution on the first slice are 12 keV and 8.7 nm,

giving zDoF = 3.9 mm. Hence, the slice spacing is just about

0.13 of the DoF.

3. Results

3.1. Large-spacing separation for Au/NiO data

The crosstalk-contaminated slice images of the Au/NiO

dataset were reconstructed using an adaptive momentum

based algorithm in a tool we developed called Adorym (Du et

al., 2020b). The phase retrieval was initialized using Gaussian

randoms, without using the XRF data. Because the slice

spacing is 3.6 times larger than zDoF , our multislice recon-

struction algorithm is able to provide reconstructions of both

slices with the ‘true’ features of each slice resolved sharply, but

they also exhibit obvious ghost features due to the crosstalk.

Next, we cropped a 272 � 272 pixel area that has full probe

overlap from each slice [Fig. 3(a)], and passed the slices to

DDIP as I 0
1 and I 0

2 .

We performed five test runs with f1/2 set to use either

shallow DIPs or single filters for f1/2 , and with different values

of �excl . Each parameter combination was run for 10000

epochs. When using shallow DIPs for f1/2 , the peak GPU

memory usage was 439 MB, and each run took around 30 min

to complete. The results are shown in Figs. 3(b)–3( f), where

the final values of �1 and �2 are indicated at the top right

corners of the corresponding subplots as �1|�2. The dynamic

range of all plots is set to [�� 4�, � + 4�], with � and � being

the image mean and standard deviation.

Since the ghost image on slice 1 of the NiO particle (which is

in fact on slice 2) is very blurry, it appears like a subtle change

in the image background. Under all tested parameter settings,

DDIP barely affected the presence of this faint region. This

can be explained by the nature of deep image priors: as noted

by Gandelsman et al. (2018), generative neural networks

tend to generate images that have a smaller empirical entropy

across its local patches; in other words, the generated images

tend to have ‘strong internal self-similarity’. Since the ghost

feature on slice 1 is very smooth, it is hard for DIPs to exclude

it from the generated image. However, the ghost features on

slice 2 are sharp and have a much higher variance. They make

the local patches of the image more complicated and more

‘unlike’ each other, so DIP tends to generate images that are

free of these artifacts. Therefore, the improvement of slice 2 is

obvious. The effect on slice 2 is also largely dependent on �excl

regardless of whether f1/2 is set to use shallow DIPs or single

filters. When using single filters for f1/2 , the setting of �excl = 0.5

can provide an apparent mitigation of the crosstalk coming

from slice 1, where the sharpness and contrast of the ghost Au

particles are greatly reduced. Increasing �excl to 1.0 suppresses

the ghost features even further, but it also starts to destroy

details in the ‘true image’ of the NiO particle. In particular, the

regions in the NiO particle that overlap with ghost Au parti-

cles are severely smeared. Given such high values of �excl , the

correlation of gradients is over-penalized and the algorithm

tends to reduce the spatial gradient of slice 2 at the over-

lapping regions to 0, resulting in flattened areas.

Improved results are obtained when we switch f1/2 to use

shallow DIPs. In Fig. 3(d), when �excl = 0.1, the crosstalk

suppression on slice 2 is nearly as effective as for Fig. 3(b) with

single filters and �excl = 0.5. Increasing �excl to 0.2 slightly

enhances the suppression effect, surpassing the efficacy of

Fig. 3(c) with single filters and �excl = 1.0. Moreover,

comparing Figs. 3(c) and 3(e) reveals that using shallow DIPs

leads to much better preserved high-frequency details in the

NiO particle. This is an expected improvement, as the multi-

scale filtering with skip connections in the shallow DIPs better

describes the band loss of ghost features than single filters. If

one increases �excl further to 0.4, however, the images would

start to lose high-frequency details as well.

The final values of blending weights for all cases are

composed of a large �1 and a small �2 . Based on equation (3),

this indicates that y1 contributes much more than f1(y2) does

to I1 , while y2 contributes more than f2(y1) to I2 . This is a

reasonable trend as one would expect a smaller contribution

from the ghost features than real features in a ‘blended’ slice.

However, we should not interpret the � values as the absolute

intensities of the ghost or real features present in I1 or I2 , since

the mean intensities of y1 , y2 , f1(y2), and f2(y1) can vary as well.

On the other hand, the � pair may be used as an indication of

the fidelity of the result. In Fig. 3( f), where the details of the

features are obviously undermined, the final value of �1 is

much lower than other results with better preserved features,

while �2 is much higher. Since the algorithm always tries to

minimize the mismatch between I1/2 and I 0
1=2 where the latter

is fixed, unusual � values point to unusual value ranges of

the outputs of DIP-1/2 and f1/2 , implying that the generated

images might be highly aberrated.

3.2. Small-spacing separation for ZP/NiO data

The 500 nm slice spacing in the ZP/NiO dataset is only

about 0.13 times the DoF. As such, our attempt of recon-

structing both slices using random initial guesses yielded two

slices that are largely undifferentiated. The superimposed

features on both slices are mixed with an almost identical

ratio, and the band loss of ghost features is very small. Images

like this could hardly provide enough diversity of measure-

ment in order to solve the BSS problem. Therefore, it becomes

essential to employ the XRF data as additional prior knowl-

edge to the reconstruction algorithm. As mentioned earlier,

the slice images to be separated were obtained using the XRF-

aided method described by Huang et al. (2019), where the

XRF map of Ni is used to reduce the contrast of NiO in the

single-slice reconstruction, leaving the Au zone plate struc-

ture, and the NiO-removed Au image and the re-sampled Ni

XRF map are used as the initial guess for the first and second

slice, respectively, for the subsequent multislice ptychographic

phase retrieval. Without dedicated parameter tuning and

algorithm search, standard phase retrieval could not provide

well separated slices; instead, it yielded the slice images shown

in Fig. 4(a), where slice 2 is heavily affected by the ghost
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images from the Au zone plate structures on slice 1. Our goal

is to show that, even though XRF data have to be used, DDIP

can provide better separated images based on this result, so

that the excessive amount of phase retrieval parameter tuning

may be avoided.

We again tested several �excl values with f1/2 using shallow

DIPs or single filters. 10000 epochs are run for each case. The

input image size is 448 � 448. When using shallow DIPs, the

peak memory usage is 1130 MB, and it took 37 min to

complete the training. On the other hand, when using single

filters, the total walltime becomes 31 min, though the peak

memory usage did not change significantly since the para-

meter size of the shallow DIPs is rather small compared with

the major DIPs. The results are shown in Figs. 4(b)–4(h).

Similar to what was observed with the Au/Ni dataset, the

crosstalk does not significantly affect slice 1, but results in

obvious ghost images on slice 2 due to the strong scattering

of Au. For single filters, �excl = 0.4 [Fig. 4(c)] gives the best

balance between crosstalk suppression and feature fidelity.

Using a lower �excl of 0.1 leaves a lot of residual ghost image

features, while a higher value of 1.0 results in a blocky

appearance of the recovered slice 2. When using shallow DIPs,

the optimal �excl is found around 0.1. If �excl is set too high, the

fidelity of y2 is dramatically lost, which is accompanied by a

much larger �2 .

Since the Au zone plate structures are well aligned in

the same direction, we can analyze the power spectra of

the outcome y2 to evaluate the effectiveness of crosstalk

suppression. These power spectra are normalized by the

integrated energy, and plotted as ðlog10 PÞ
2:5 (where P is the

original normalized power spectrum) to improve contrast. In

the power spectra of the original image shown in Fig. 4(a), one

can clearly observe a slanted streak that represents the peri-

odicity of the zone plate ghost features. For �excl = 0.4 when

using single filters, the streak is suppressed; for �excl = 0.1 when

using shallow DIPs, the streak is reduced even more. Further

increasing �excl in both cases cause energy to concentrate in the

low-frequency region, associated with the smeared appear-

ance of Figs. 4(d) and 4(g).

Taking the results obtained using shallow DIPs for f1/2 and

�excl = 0.1, we estimated the resolution of the slice images

using the same method as in the earlier publication (Huang et

al., 2019), and made a comparison. As shown in Fig. 5(a),

the resolution found from the full width at half-maximum

(FWHM) of the spatial derivative of the fitted error function

along the indicated line profile in slice 1 is 6.1 nm, better than

the reported 8.7 nm of Huang et al. (2019). On the other hand,

the FWHM for the same line position in slice 2, as shown in

Fig. 5(b), is 67.9 nm, worse than the 15 nm reported by Huang

et al. (2019). However, this location is not representative of

the overall image. The FWHM at another location in slice 2,

shown in Fig. 5(c), is about 8.0 nm, again revealing a good

spatial resolution. Meanwhile, we should keep in mind that

our method is a post-processing approach that is agnostic to

the original ptychographic diffraction patterns, and the above

resolution is achieved without accessing the high-frequency

information in the raw diffraction data. Additionally, we note

again that the reconstruction results of Huang et al. (2019)

were obtained with careful tuning to the ptychographic

reconstruction parameters. The parameter space to be tuned,

and the time efforts required to achieve good results directly

from ptychographic phase retrieval, can often be higher than

tuning DDIP in order to yield our results. Moreover, the

results of DDIP may also be used as the initial guess for a

second pass of multislice ptychographic phase retrieval. With a

much closer initial guess, less parameter tuning is required.

4. Discussion

We have demonstrated the crosstalk separation capability of

our modified DDIP model in two cases, one with slice images

reconstructed without using XRF data, the other recon-

structed using the aid of XRF data but without fine tuning

of phase retrieval parameters. In practice, one problem of

concern might be the reproducibility of the algorithm due to

its inherent uncertainty, which is contributed by the random-

ness of input vectors z1 , z2 , z3 and the random initialization of

network parameters. In our experience, this uncertainty is

associated with the value of �excl , so we conducted a test to

evaluate the change of result distribution with �excl . On the

Au/Ni dataset, we ran a series of DDIP separations using

�excl = 0.04, 0.1, 0.2, 0.4, each run for 20 times. For the results
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Figure 5
The error function fitting for the line profiles in our output images: (a) slice 1, and (b, c) two locations in slice 2. The location of the line profiles are
indicated by the yellow lines. From the full width at half-maximum (FWHM) of the spatial derivative of the fitted error function, one can estimate the
spatial resolution of these images.



of each �excl , the standard deviation

over the 20 runs at each pixel position is

shown in Figs. 6(a)–6(d). The averages

of these standard deviation maps are

plotted in Fig. 6(e), which clearly show

an increasing trend. Referring back to

Fig. 3, the optimal result using shallow

DIPs is obtained with �excl = 0.2, where

the image mean is 0.68, but the uncer-

tainty standard deviation is only around

0.04. In practice, one can also perform

multiple runs and use the average y1 and

y2 as the final results, so as to further

decrease the uncertainty. Other than

the detailed variation of the separated

images, it is also possible for DDIP

to undergo ‘slice confusion’: since the

inputs to the generating DIPs are purely

random, they do not inform DDIP that

y1 should correspond to real features on

slice 1, and vice versa for y2 . If DDIP is

confused about the slice arrangement, it

may tend to generate the real, solid Au particles, which should

lie on slice 1, on y2 instead. According to equation (3), these

Au particles will be filtered by f1 to form I1, which is unphy-

sical; the same would apply to I2 . However, with a reasonable

�excl , this is very unlikely to happen: following the example

above, if the real Au particles appear on y2, then they will

appear unfiltered on I2 ; yet, on I 0
2 these particles are highpass

filtered, and this leads to high mismatch loss which is unfa-

vored. Therefore, the band loss of feature blending and our

unsymmetrical use of f1/2 in the forward model drive the DDIP

towards the correct slice arrangement. In our uncertainty test,

we did not see slice confusion in all of our 80 separation

results.

Both results shown in Section 3 involve two slices. In

practice, multislice ptychography may be used to reconstruct

three slices or more, and mutual crosstalk may involve more

than two slices. In that case, one may add more DIPs, so that

the number of image-generating DIPs matches the number of

mutually crosstalking slices N. Meanwhile, the input and

output channels of the weight-generating DIP may be

increased to N, and the forward model of equation (3) may

be expanded to N equations, constituting an N � N mixing

matrix. Using too many DIPs will unavoidably impair the

efficiency of the algorithm. However, in X-ray microscopy, the

number of slices is typically small due to the large DoF of

X-rays. Making the DDIP method more efficient for many-

slice problems is a future direction to explore.

5. Conclusion

Using a modified double-DIP architecture, we demonstrated

the use of deep neural networks in mitigating the crosstalk

artifacts of multislice ptychography phase retrieval. When

the slice spacing is large (many multiples of the DoF), phase

retrieval from scratch can provide slice reconstructions that

are distinct from each other but affected by crosstalk, while

post-processing using DDIP may suppress or remove the

crosstalk on each slice. Combining multislice phase retrieval

and DDIP can yield good reconstructions without XRF data in

this case. When the slice spacing is small, phase retrieval may

need the aid of XRF data in order to generate distinguishable

slice images, and the retrieved images may still contain

crosstalk artifacts without dedicated parameter tuning. One

can also use DDIP in this case to suppress the crosstalk, so

that one no longer has to spend time searching for the best

values of phase retrieval hyperparameters. In order to account

for the band loss of crosstalking features in a slice image, we

pass them through a filtering function in our forward model.

The filtering function can take the form of either a single

convolutional filter or a shallow DIP. While the former

is faster, the latter can often provide results with better

preserved details. We expect that the findings will help

improve the adaptability of multislice ptychography in

imaging thick samples beyond the DoF limit.
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Figure 6
(a)–(d) Standard deviation maps of output slice 2 (y2) of the Au/Ni dataset, calculated from 20
independent runs, for �excl = 0.04, 0.1, 0.2,0.4. (e) Plots of the mean standard deviation against �excl.
These standard deviation values measure the uncertainty of DDIP, as the input vectors to the DIPs
are randomly initialized for each run. Larger �excl results in larger uncertainty.
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