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Using the Takagi–Taupin equations, X-ray Laue dynamical diffraction in flat and

wedge multilayers is theoretically considered. Recurrence relations are obtained

that describe Laue diffraction in structures that are inhomogeneous in depth.

The influence of sectioned depth, imperfections and non-uniform distribution of

the multilayer period on the Pendellösung effect and rocking curves is studied.

Numerical simulation of Laue diffraction in multilayer structures W/Si and

Mo/Si is carried out. It is shown that the determination of sectioned depths

based on the period of the interference fringes of the experimental rocking

curves of synchrotron radiation is not always correct.

1. Introduction

Elements of multilayer X-ray optics are widely used in

synchrotron radiation installations for transporting X-ray

beams (Rack et al., 2010) and focusing radiation (Lyatun et al.,

2020), in extreme-ultraviolet lithography (Chkhalo et al., 2017)

and in astronomy (Tamura et al., 2018). Such multilayers

mainly refer to grazing-incidence reflectors or, in terms of

X-ray diffraction in crystals, to Bragg geometry (Authier,

2001).

To focus hard X-rays, it was proposed to create multilayer

Laue lenses (Maser et al., 2004), which, like Fresnel zone

plates (Kagoshima & Takayama, 2019), transport radiation in

transmission geometry. The fabrication of Laue lenses, which

are depth-sectioned and thickness-graded multilayers, is a

complex problem (Kang et al., 2007). Therefore, the first step

in the study of Laue diffraction was presented by a synchro-

tron X-ray study of laterally bounded (sectioned) multilayers

with a constant period (Kang et al., 2004, 2005).

The dynamical theory of X-ray scattering in the Laue case

is well developed for crystals, both for symmetric and asym-

metric geometry (Authier, 2001). Theoretically, asymmetric

diffraction is also possible for sectioned multilayers; however,

technologically this is a difficult problem associated with

oblique sectioning of a multilayer structure.

Dynamical X-ray Laue diffraction in a multilayer differs

compared with diffraction in grazing-incidence geometry. One

of the main features is the pendulum (Pendellösung) effect

(Authier, 2001), when the intensity of the X-ray beam of the

transmission wave is transmitted into the diffraction beam and

then, with increasing depth, to the contrary, the intensity of the

diffraction wave is transmitted into the transmission beam.

In the absence of an algorithm for simulating dynamical

Laue diffraction, the analysis of experimental results using the
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interference-fringe spacing of the rocking curve was not

entirely correct (Kang et al., 2005, 2007). Therefore, the

present work is devoted to a consistent consideration of the

Laue dynamical theory of diffraction in multilayers.

2. Dynamical Laue diffraction in a sectioned multilayer
with a constant period

Multilayer Laue lenses are graded multilayers. Unfortunately,

on the basis of the Takagi–Taupin equations (Takagi, 1962,

1969; Taupin, 1964; Afanas’ev & Kohn, 1971; Kato, 1973), in

the general case, it is impossible to obtain analytical solutions

describing Laue diffraction in structures with period variation.

Only some laws of changes in the period of the structure allow

analytical solutions; in particular, such solutions were

previously obtained for crystals with quadratic (Kolpakov &

Punegov, 1985) and exponential (Andreev, 2001) displacement

fields, and crystals with a transition layer (Chukhovskii &

Khapachev, 1985; Kato, 1990). In most cases, one has to limit

oneself to the numerical solution of the Takagi–Taupin

equations in an oblique coordinate system (Punegov, 2020;

Lomov et al., 2021), for example, using the ‘half-step deriva-

tive’ method (Epelboin, 1985).

Therefore, let us consider X-ray dynamical Laue diffraction

in a sectioned multilayer with a constant period d = dt + db,

where dt is the thickness of the upper layer and db is the

thickness of the lower layer (Fig. 1).

A plane X-ray wave is incident on the left side of the

sectioned multilayer at an angle � = �B + !, where ! is the

deviation of the X-ray beam from the Bragg angle �B (Fig. 1).

In contrast to the Ewald–Laue approach (Authier, 2001), we

will proceed from the one-dimensional Takagi–Taupin equa-

tions for the periodic structure, which in the Cartesian coor-

dinate system have the form

ð@=@xÞE0ð�; xÞ ¼ ia0E0ð�; xÞ þ ia�1 f E1ð�; xÞ;

ð@=@xÞE1ð�; xÞ ¼ iða0 þ �ÞE1ð�; xÞ þ ia1 f E0ð�; xÞ;

(
ð1Þ

where E0(�, x) and E1(�, x) are the amplitudes of the

transmission and diffraction X-ray waves, respectively,

a0 ¼ ��0=ð� cos �BÞ, a1 ¼ C��1=ð� cos �BÞ, a�1 = a1, � ¼
4� sinð�BÞ!=� is the angular parameter, � is the wavelength of

the X-ray radiation in vacuum, and C is the polarization factor.

The Fourier coefficients of the X-ray polarizability for a

structure with a two-layer period in the directions of trans-

mission �0 and diffraction �1 are written as

�0 ¼
�tdt þ �bdb

d
; �1 ¼

�t � �b

�
sin �

dt

d

� �
: ð2Þ

In relation (2), �t and �b are the Fourier coefficients of

polarizabilities and thicknesses of the upper (t) and lower (b)

layers of the period of the multilayer. X-ray polarizabilities of

chemical elements are calculated using the tabular values of

optical constants: �j = 2(�j + i�j), where �j ¼ r0ðNj�
2=2�Þ

�ðZj þ�f 0j Þ; �j ¼ �r0ðNj�
2=2�Þ�f 00j ; j = t or b, which indi-

cates the corresponding layer in the period of the multilayer;

r0 = e2/mc2 is the classical radius of an electron, where e and m

are the charge and mass of an electron, respectively; Nj is the

atomic density; Z is the number of electrons in an atom; and

�f 0j and �f 00j are dispersion corrections to the atomic ampli-

tude. Equation (1) contains an attenuation factor f, which

describes the attenuation of X-ray reflection in a multilayer.

This coefficient characterizes the disturbances in the periodic

structure of multilayers during their creation. In particular,

contribution to the attenuation factor is given by the rough-

ness of the boundaries layers in the structure (Névot & Croce,

1980; de Boer, 1994), errors in layer thickness of the structure

(Spiller & Rosenbluth, 1985, 1986), diffusion blurring of

boundaries between layers (presence of transition layers)

(Stearns, 1989), random loss in a short-period multilayer of a

heavy or light layer (Kopylets et al., 2019), local bending of

layers during polishing (Kang et al., 2007), etc.

For example, accounting for interlayer roughness in

Parratt’s method of recurrence relations (Parratt, 1954) was

considered using the Névot–Croce and Debye–Waller

attenuation factors (Bushuev & Sutyrin, 2001; Kohn, 2003).

Unfortunately, without an analysis of diffuse scattering, it is

difficult to determine the contribution of each type of defect to

the attenuation factor. Therefore, in our theoretical consid-

eration of dynamical Laue diffraction, the attenuation factor

will take on the value 0 � f � 1 without determining the

specific types of defects.

We consider the model generally accepted in the dynamical

Laue diffraction theory (Authier, 2001), in which the front of a

plane incident X-ray wave and the size of the multilayer are

spatially unrestricted in the vertical direction (Fig. 1), hence

the amplitudes of X-ray waves in equation (1) depend only on

one horizontal coordinate x. Such an X-ray diffraction model

can be considered if only the rocking curves are analyzed. In

the case where the X-ray beam incident on the multilayer is

spatially restricted, it is necessary to use the two-dimensional
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Figure 1
A schematic representation of Laue diffraction by a multilayer. Lx is the
sectioned depth and d is the multilayer period.



Takagi–Taupin equations (Punegov et al., 2017; Punegov &

Karpov, 2021). This approach allows one to analyze X-ray

reciprocal-space maps (RSMs).

The solution of coupled equation (1) for Laue diffraction

can be obtained using the boundary conditions E0ð�; 0Þ =

E in
0 = 1 and E1(�, 0) = 0. Applying these boundary conditions,

we can obtain expressions for the amplitudes of the trans-

mission E0(�, x) and diffraction E1(�, x) waves,

E0ð�; xÞ ¼ expði xÞ cos
	 x

2

� �
� i

�

	
sin

	 x

2

� �� �
ð3Þ

and

E1ð�; xÞ ¼
i2a1 f expði xÞ

	
sin

	 x

2

� �
; ð4Þ

where 	 = �(�2 + 4f 2a1a�1)1/2 and  = a0 + �/2.

2.1. Pendellösung effect in homogeneous sectioned
multilayer

Let us first consider the pendulum (Pendellösung) effect

under Laue diffraction conditions. If the exact Bragg condition

is satisfied (� = 0) and taking into account a1 = a�1, the

intensity distributions of the transmission and diffraction

X-ray waves can be written as

I0ðxÞ ¼ exp �
0 xð Þ cos2 f a01 xð Þ þ sinh2 f a001xð Þ
� �

ð5Þ

and

I1ðxÞ ¼ exp �
0 xð Þ sin2 f a01 xð Þ þ sinh2 f a001xð Þ
� �

; ð6Þ

where 
0 ¼ 2 Imða0Þ is the linear coefficient of absorption of

X-rays in the multilayer. The dynamical coefficient in equation

(1) is represented as a1 = a01 + ia001, where a01 ¼ C��r
1=ð� cos �BÞ

is a real part and a001 ¼C��Im
1 =ð� cos �BÞ is an imaginary part.

Considering �Im
1 � �r

1 and j�1j ¼ �
r
1½1þ ð�

Im
1 =�

r
1Þ

2
�
1=2
’ �r

1,

solutions (5) and (6) can be rewritten in a more visual form for

attenuation Pendellösung oscillations as

I0ðxÞ ¼ expð�
0 xÞ cos2 � x f

lPen

ð7Þ

and

I1ðxÞ ¼ expð�
0 xÞ sin2 � x f

lPen

: ð8Þ

Expressions (7) and (8) clearly describe the Pendellösung

effect of Laue diffraction when the exact Bragg condition is

satisfied. The pendulum beat period lPen ¼ �jcos �Bj=ðCj�1jÞ

for a perfect multilayer depends on the Fourier polarizability

coefficient �1, which characterizes the interaction of X-ray

waves in a periodic medium.

Fig. 2 shows the intensity distributions over the depth of a

perfect (f = 1) Mo/Si multilayer with the same thicknesses of

alternating layers, dMo = dSi = 3.5 nm, calculated using exact

solutions (5) and (6), as well as using approximate solutions

(7) and (8). In the numerical calculations, the synchrotron

radiation wavelength � = 0.1305 nm was used. The optical

constants are presented in Tables 1 and 2. The total depth of

the multilayer is Lx = 2lPen = 76.4 mm, which corresponds to

two Pendellösung distances. At an exact Bragg angle (� = 0),

the transmission intensity at a depth of x = 19.1 mm, which

corresponds to half the Pendellösung distance, almost

completely (corrected for photoelectric absorption) trans-

forms into a diffraction wave. Furthermore, the reverse

process is observed. The visible difference between the curves

of the pendulum effect in the case of exact and approximate

solutions is observed at large sectioned depths of the multi-

layer (Fig. 2).

Fig. 3 demonstrates Pendellösung oscillations for a perfect

and imperfect Mo/Si multilayer. The attenuation factor for the

defect structure is f = 0.8. It can be seen from the figure that

the period of Pendellösung oscillations increases in the case

of an imperfect multilayer. This is due to the fact that the

presence of defects in the multilayer reduces the reflectivity

of the periodic structure. A similar behavior of Pendellösung

oscillations was observed in the case of dynamical Laue

diffraction in a crystal with defects (Punegov & Pavlov, 1992).

Solutions (3) and (4) make it possible to obtain the intensity

distributions of the transmission I0ðxÞ ¼ jE0ð�!; xÞj2 and

diffraction I1ðxÞ ¼ jE1ð�!; xÞj2 waves inside the multilayer,
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Figure 2
Pendellösung oscillations in an Mo/Si multilayer for transmission (1 and
2) and diffraction (3 and 4) intensities. Curves 1 and 3 were calculated
using solutions (5) and (6). Curves 2 and 4 were obtained on the basis of
solutions (7) and (8).

Figure 3
Pendellösung oscillations in an imperfect (curves 1 and 3, attenuation
factor is f = 0.8) and perfect (curves 2 and 4, f = 1) Mo/Si multilayer.
Curves 1 and 2 are transmitted intensities, while curves 3 and 4 are
diffraction intensities.



depending on the value of the angular parameter � (Fig. 4). So,

for example, with an angular deviation of the incident X-ray

wave from the Bragg angle by ! = 0.18 mrad, a decrease in the

period of the Pendellösung oscillations is observed (Fig. 4).

The transmission X-ray wave is not completely transmitted

into the diffraction beam (Fig. 4, curve 3). Therefore, the

diffraction intensity inside the multilayer is lower than at the

exact Bragg angle (compare curves 3 and 4).

If in equation (1) a�1 = 0, this means that there is no transfer

of intensity from the diffraction beam back to the transmitted

beam, solutions (3) and (4) are transformed into expressions

corresponding to the kinematical approximation,

E0ð�; xÞ ¼ expðia0xÞ ð9Þ

and

E1ð�; xÞ ¼ ia1 f
sinð� x=2Þ

�=2
expði xÞ: ð10Þ

In the kinematical approximation, for the intensities of the

transmission and diffraction waves, we obtain

I0ðxÞ ¼ expð�
0 xÞ ð11Þ

and

I1ðxÞ ¼ expð�
0 xÞ a2
1 f 2Lð� xÞ; ð12Þ

where Lð� xÞ ¼ sin2
ð� x=2Þ=ð�=2Þ2 is the Laue interference

function (James, 1950). In the case of kinematical diffraction,

the intensity of the transmitted wave, according to equation

(11), exponentially attenuates due to photoelectric absorption

in the multilayer. The intensity of the diffraction wave has a

typical angular distribution of kinematical diffraction. Solu-

tions (9)–(12) are valid for multilayers with a very small

sectioned depth.

2.2. Rocking curves of a sectioned multilayer with constant
period

In experimental works (Kang et al., 2004, 2005, 2007),

rocking curves of Laue diffraction from sectioned multilayers

are presented as angular dependences of qx scans in reciprocal

space. In our consideration, the deviation from the Bragg

angle in solutions (3) and (4) is determined by the parameter

�, which corresponds to the qx scan in reciprocal space (Kang

et al., 2005; Punegov et al., 2014, 2016).

In Fig. 5, rocking curves of Mo/Si multilayers of different

depths Lx are shown. In the case when the depth of the

multilayer is equal to half the Pendellösung distance (Lx =

lPen /2 = 19.1 mm), the intensity of the diffraction wave,

according to Fig. 2, is maximum and is equal to

I1ð� ¼ 0Þ ¼0:6 I in
0 , where I in

0 is the intensity of the incident
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Figure 4
Pendellösung oscillations in an Mo/Si multilayer. Curves 1 and 3 show the
calculated transmission and diffraction intensities for � = 0.16 mm�1 (! =
0.18 mrad), respectively. Curves 2 and 4 show them for � = 0.

Figure 5
Rocking curves of Laue diffraction depending on the sectional depth Lx

of an Mo/Si multilayer. (a) Lx = lPen / 2, (b) Lx = 3lPen / 4 and (c) Lx = lPen.
Curve 1 is transmitted intensity, while curve 2 is diffracted intensity.



radiation. The intensity of the transmitted wave in the exact

Bragg orientation is I0(� = 0) ’ 0 [Fig. 5(a)].

The rocking curves of the transmitted and diffracted

intensities from an Mo/Si multilayer with a depth of Lx =

lPen � 3/4 = 28.7 mm are shown in Fig. 5(b). The maximum of

the diffracted intensity is I1ð� ¼ 0Þ ¼ 0:24 I in
0 . In the case

where Lx = lPen = 38.2 mm, the gap is observed in the profile of

the rocking curve of the diffraction wave at the exact Bragg

orientation [Fig. 5(c)] and the minimum of the diffracted

intensity is I1ð� ¼ 0Þ ¼ 5 � 10�6 I in
0 . This behavior of the

rocking curve is typical for all periodic media in the case of

Laue diffraction, when the depth of the sectioned structure is

equal to the Pendellösung distance.

3. Dynamical Laue diffraction in an inhomogeneous
sectioned multilayer: recurrence relations

In addition to flat multilayer Laue lenses, to improve focusing,

it has been proposed to manufacture wedged multilayer Laue

lenses (Yan et al., 2007; Conley et al., 2008), in which the period

of the structure changes not only in thickness z but also along

the depth x of the sectioned multilayer system. Equation (1) is

written for a multilayer with a constant period and does not

allow taking into account the change in the structure period

along the x coordinate. A multilayer with wedge layers is a

structure whose period varies along the x axis (Fig. 6). Since

equation (1) describes diffraction by a structure with a

constant period, we divide the wedge multilayer into vertical

elementary sections, within which the period of the structure is

constant (Fig. 6). We denote the depth of the vertical sections

in the direction of the x axis as xp
� xp�1 = l p. Here xp and xp�1

are the coordinates of the left and right boundaries of the

vertical elementary section with a number p, respectively, and

l p is the depth of this section, while the sections are numbered

from left to right (p = 0, 1, 2, . . . , P). The superscript of all

parameters corresponds to the elementary section number.

Let the diffraction in the first vertical section be described by

equation (1), then for the section with the number p instead of

the parameter � in (1) one should write �p = � + ��p, where

��p = 2� �d p/d2 and �d p = d � d p is the mismatch of the

period of the pth vertical elementary section relative to the

first vertical section with a multilayer period d1 = d.

X-ray diffraction in the pth elementary vertical section of

the multilayer is described by a system of equations of the

form

@E p
0 ð�; xÞ=@x ¼ ia0 E

p
0 ð�; xÞ þ ia�1 f p E

p
1 ð�; xÞ;

@E p
1 ð�; xÞ=@x ¼ iða0 þ �þ�� pÞE

p
1 ð�; xÞ þ ia1 f p E

p
0 ð�; xÞ:

(

ð13Þ

Let E
p�1
0 ð�; xp�1Þ and E

p�1
1 ð�; xp�1Þ represent the amplitudes

of the X-ray fields at the boundary (p � 1) of the pth vertical

elementary section. Then, taking into account these boundary

conditions, we can obtain solutions for the transmission and

diffraction waves inside the elementary section with number p,

E
p
0 ð�; xÞ ¼ B 0

1 exp i	 p
1 x� x p�1
� 	� �

� B 0
2 exp i	 p

2 x� x p�1
� 	� �

ð14Þ

and

E
p
1 ð�; xÞ ¼ B1

1 exp i	 p
1 x� x p�1
� 	� �

� B1
2 exp i	 p

2 x� x p�1
� 	� �

;

ð15Þ

where

	 p
1 ¼

ð2a0 þ �
pÞ � � p

� 	2
þ f pð Þ

24a1a�1

h i1=2

2
;

	 p
2 ¼

ð2a0 þ �
pÞ þ � p

� 	2
þ f pð Þ

24a1a�1

h i1=2

2
;

	 p ¼ 	 p
1 � 	

p
2 ¼ � � p

� 	2
þ f pð Þ

24a1a�1

h i1=2

;

’0
1 ¼

a0 � 	
p
2

	 p
;

’0
2 ¼

a0 � 	
p
1

	 p
;

’1
1 ¼

a0 þ �
p � 	 p

2

	 p
;

’1
2 ¼

a0 þ �
p � 	 p

1

	 p
;

B0
1;2 ¼ ’

0
1;2E

p�1
0 ð�; x p�1

Þ þ
a�1 E

p�1
1 ð�; xp�1Þ

	p

and
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Figure 6
A schematic representation of X-ray Laue diffraction in a wedge
multilayer.



B1
1;2 ¼ ’

1
1;2E

p�1
1 ð�; x p�1Þ þ

a�1 E
p�1
0 ð�; x p�1Þ

	 p
:

At the boundary between the pth and the (p + 1)th

elementary vertical sections, the solutions for the amplitudes

of X-ray waves have the form

E
p
0 ð�; xpÞ ¼ B 0

1 expði	 p
1 l pÞ � B 0

2 expði	 p
2 l pÞ ð16Þ

and

E
p
1 ð�; xpÞ ¼ B1

1 expði	 p
1 l pÞ � B1

2 expði	 p
2 l pÞ: ð17Þ

The amplitudes E
p
0 ð�; xpÞ and E

p
1 ð�; xpÞ serve as the boundary

conditions for diffraction in the (p + 1) elementary vertical

section. Performing sequentially the procedure of recurrent

calculations with the initial boundary conditions on the input

face, E 0
0 ð�; x0Þ ¼ 1 and E 0

1 ð�; x0Þ ¼ 0, we obtain the ampli-

tudes of the transmitted E P
0 ð�; xPÞ and diffracted E P

1 ð�; xPÞ

waves on the output face of the multilayer inhomogeneous in

depth Lx, where Lx ¼
PP

p¼0 l p.

3.1. Pendellösung effect in the case of a wedge sectioned
multilayer

To calculate the intensity distribution of the transmission

and diffraction waves in the wedge multilayer (Fig. 6), we used

the recurrence relations (16) and (17). We will consider cases

of weak and strong linear period variation. In the first case, the

period varies with the depth of the Mo/Si multilayer from

7.000 to 6.997 nm. In the case of a strong gradient, the period

changes from 7.000 to 6.986 nm. Fig. 7 shows the depth

distributions of intensities in Mo/Si multilayers with variations

in the periods. In the case of a weak gradient of the period

variation at the initial depth interval from 0 to 10 mm, the

behavior of the transmission and diffraction intensities coin-

cides with the Pendellösung effect of a multilayer with a

constant period. Furthermore, due to the gradient of the

period variation of the Mo/Si system, the classical Pendellö-

sung effect is violated. As a result, the distance of the

Pendellösung fringe decreases and the intensity of the trans-

mission wave is not completely transferred to the diffraction

beam [Fig. 7(a)]. For a strong gradient of the period variation

of the Mo/Si multilayer, the Pendellösung profiles of the

transmission and diffraction X-ray waves do not intersect. The

period of the Pendellösung fringe decreases monotonically

with the depth of the sectioned multilayer [Fig. 7(b)].

The intensity distributions of the transmission and diffrac-

tion waves also depend on the lateral disturbance gradient of

the multilayer structure. The Pendellösung effect depending

on the weak and strong gradient of the attenuation factor is

shown in Fig. 8. The attenuation factor varies linearly from 1

to 0.8 in the case of a weak gradient and from 1 to 0.6 in the

case of a strong gradient. Since the perfection of the multilayer

structure deteriorates along the depth of the Mo/Si multilayer,

the period of Pendellösung oscillations in the direction of the

x axis increases. We see that the stronger the attenuation-

factor-variation gradient, the more visible the increase in the

Pendellösung distance along the depth of the multilayer

(Fig. 8).
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Figure 7
Distributions of transmitted (curve 1) and diffracted (curve 3) intensities
inside an Mo/Si multilayer with weak (a) and strong (b) gradients of
period variation. Curves 2 and 4 correspond to a perfect Mo/Si multilayer
with a constant period. The number of elementary vertical sections for a
wedge multilayer is P = 200.

Figure 8
Distributions of transmitted (curves 1 and 2) and diffracted (3 and 4)
intensities inside an Mo/Si multilayer with weak (1 and 3) and strong
(2 and 4) attenuation-factor gradients. The number of elementary vertical
sections is P = 200.



3.2. Rocking curves of wedge sectioned multilayers

We calculated X-ray rocking curves of Mo/Si multilayers

that are nonuniform over depth x (Lx = lPen = 38.2 mm) using

the recurrent solutions (16) and (17). In Fig. 9, the rocking

curves of transmission and diffraction waves with the strong

variation gradient of the multilayer period for different

numbers of fragmentations P of the structure depth into

elementary vertical sections are shown. Starting from P = 30,

an increase in the number of fragmentations into elementary

sections does not change the rocking-curve profile.

Fig. 10 demonstrates the rocking curves of wedge Mo/Si

multilayers with weak and strong gradients of period variation

along the depth of the sectioned structure. On the profile of

the rocking curve of the diffracted wave in the case of the

weak gradient, a gap is observed [Fig. 10(a)], which is less deep

compared with the splitting of the rocking curve of a flat

multilayer [Fig. 5(c)]. The rocking curve of the multilayer with

the strong period-variation gradient has two symmetrical gaps

[Fig. 10(b)].

The influence of linearly varying attenuation factors along

the depth of the sectional Mo/Si multilayer with a constant

period d on the profiles of the rocking curves is shown in

Fig. 11. The weak gradient of the attenuation-factor variation

insignificantly affects the rocking curves [compare Fig. 11(a)

with Fig. 5(c)]. On the other hand, a strong attenuation-factor

gradient strongly changes the profile of the diffraction curve

[Fig. 11(b)].

4. Determination of the depth of sectioned multilayers

An experimental study of Laue diffraction in sectioned W/Si

and Mo/Si multilayers with hard synchrotron radiation ener-

gies (9.5 and 19.5 keV) was performed for sectioned depths

from 2 to 17 mm (Kang et al., 2005). The period of the W/Si

multilayer was 29 nm (sample A). The volume fraction of

tungsten in the W/Si period was 60%. The second Mo/Si

structure had a period of 7 nm with an equal proportion of Mo

and Si (sample B). Since in the article (Kang et al., 2005) the

results of diffraction were mainly discussed using synchrotron

radiation with a wavelength of � = 0.1305 nm (energy E =

9.5 keV), in this work numerical calculations were performed

using this wavelength for structures A and B.

The optical constants of tungsten, molybdenum and silicon

with respect to the wavelength � = 0.1305 nm of synchrotron

radiation were obtained using the X-ray Server computer

program (Stepanov, 1997, 2013; Stepanov & Forrest, 2008),
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Figure 9
Rocking curves of the transmitted (a) and diffracted (b) waves in the case
of a strong period-variation gradient of Mo/Si multilayer for different
numbers of fragmentations P into elementary vertical sections. Curve 1
corresponds to fragmentation P = 4, while curve 2 refers to the case where
P = 30. Lx = lPen = 38.2 mm.

Figure 10
Rocking curves of transmitted (curve 1) and diffracted (curve 2) waves
from an Mo/Si multilayer with weak (a) and strong (b) gradients of period
variation. The number of elementary vertical sections is P = 300, while the
sectioned depth of the multilayer is Lx = lPen = 38.2 mm.



and are shown in Table 1. Based on these data, the Fourier

coefficients of X-ray polarizability, �0 and �1, for the case of

Laue diffraction in W/Si and Mo/Si multilayers, were calcu-

lated (Table 2).

The Pendellösung distance for the W/Si multilayer is more

than four times less than the corresponding value for the Mo/

Si structure (l
MoSi=Si
Pen ¼ 38:2 mm). There are two options for

determining the sectioned depth of multilayers Lx. The first

approach is based on the fact that the depths of the sectioned

multilayers Lx are determined by measuring the period of

interference fringes on the rocking-curve profile. There are

two drawbacks to this approach. First, this method is precisely

realized within the kinematical approximation. Second, good

angular resolution is needed in the measurement of the

rocking curves. The second approach is based on the numer-

ical simulation of the rocking curves for Laue diffraction from

multilayers using dynamical diffraction solutions. Even with

the absence of information on the structural perfection of

multilayers, the second approach gives an insignificant error

in numerical simulation and subsequent comparison with

experimental measurements.

For a synchrotron radiation energy of 9.5 keV in the Laue

diffraction experiment involving W/Si and Mo/Si multilayers,

the angular distribution of the scattered intensity was inves-

tigated by scanning the scattering vector in the direction of the

projection Qx (Kang et al., 2005), which corresponds to the

angular parameter � = Qx in our consideration. The W/Si

and Mo/Si samples were wedge shaped in the y direction

perpendicular to the diffraction plane (x, z), which gave a

change in the sectioned depth Lx. The rocking curves were

calculated using solution (4) for the diffracted wave.

As in the experimental work (Kang et al., 2005), in the

numerical simulation, we used the W/Si structure with a period

d = dW + dSi = 29 nm, where dW = 17.4 nm and dSi = 11.6 nm. In

the case of the Mo/Si multilayer, the period was d = dMo + dSi =

7 nm with dMo = dSi = 3.5 nm. The optical constants of these

multilayers are presented in Table 2.

It is known that the rocking-curve profiles always have a

gap when the sectional depth of the sample is close to the

Pendellösung distance (Authier, 2001). The calculated X-ray

rocking curves of the sectioned W/Si and Mo/Si multilayers for

different depths are shown in Fig. 12.

For W/Si multilayers with depths Lx equal to 2.6, 4.4, 6.6 and

8.8 mm, the calculated rocking curves [Fig. 12(a)] are close to

the experimental data (Kang et al., 2005), with the character-

istic gap in the profile of the diffraction curve appearing for

Lx = 8.8 mm (l
W=Si
Pen ¼ 8:01 mm). For a relatively large depth

Lx = 10.7 mm, the calculated rocking curve differs from the

experimental diffraction curve (Kang et al., 2005).

The diffraction curves of the Mo/Si multilayers with small

sectioned depths of 3.9, 6.3 and 8.6 mm [Fig. 12(b)] are

consistent with experimental data (Kang et al., 2005).

However, the calculated rocking curves for sectioned depths

of 11.2 and 15.0 mm [Fig. 12(b)] differ significantly from the

experimental results (Kang et al., 2005). For example, the

experimental diffraction curve from an Mo/Si multilayer with

a depth of 15.0 mm has a gap in the middle of the rocking-

curve profile. Such a gap is only possible when the sectional

depth Lx is close in value to the Pendellösung distance

(l
MoSi=Si
Pen ¼ 38:2 mm). Thus, analysis of experimental data to

research papers

J. Synchrotron Rad. (2021). 28, 1466–1475 Vasily I. Punegov � X-ray Laue diffraction by sectioned multilayers 1473

Figure 11
Rocking curves of transmitted (curve 1) and diffracted (curve 2) waves
from an Mo/Si multilayer with weak (a) and strong (b) attenuation-factor
gradients. The number of elementary vertical sections is P = 300, while
the sectioned depth of the multilayer is Lx = lPen = 38.2 mm.

Table 1
Optical constants of silicon, molybdenum and tungsten at a synchrotron
radiation wavelength � = 0.1305 nm.

Material
Density
(gm cm�3)

Energy
(keV)

Fourier coefficients
of X-ray polarizability
�j (� 10�5)

Si – amorphous 2.0 9.5 �0.219 + i 0.00089
Mo – amorphous 4.5 9.5 �1.783 + i 0.08958
W – amorphous 19.0 9.5 �6.279 + i 0.37728

Table 2
Fourier coefficients of X-ray polarizability of Mo/Si and W/Si multilayers
at a synchrotron radiation wavelength � = 0.1305 nm.

Multilayer
d
(nm)

�
(nm)

�B

(mrad)
�0

(� 10�5)
�1

(� 10�5)

Mo/Si 7 0.1305 2.25 �1.465 + i 0.058 �0.341 + i 0.0267
W/Si 29 0.1305 9.32 �4.152 + i 0.228 �1.626 + i 0.107



determine the sectioned depth L
�0
x ¼ 2�=�0 (Kang et al.,

2005) using the value of the interference-fringe spacing �0 is

not always justified. For example, for the depth Lx = 15.0 mm

and �0 = 0.42 mm�1, and for Lx = 38.2 mm and �0 = 0.165 mm�1.

The question then arises: why for small sectioned depths of

multilayers are the calculated and experimental rocking

curves close to each other, but for large Lx they are signifi-

cantly different? Fig. 13 shows the calculated rocking curves

of the Mo/Si multilayer structure for the sectioned depth Lx =

38.2 mm with different angular resolutions. We also show the

influence of the instrumental function on X-ray diffraction

from multilayers in the Laue geometry (curves 2, Fig. 13). In

our calculations, we used a diffraction scheme containing a

four-bounces Ge(220) monochromator and a three-bounces

Ge(220) analyzer.

In the case of a large depth Lx, interference oscillations are

located close to each other; therefore, all oscillations are

observed only at a high angular resolution �� = 0.02 mm�1

[Fig. 13(a)] and the period of oscillations is �0 = 0.1646 mm�1.

In the case of a low resolution, for example, �0 = 0.335 mm�1,

not all interference oscillations are registered; therefore, in

this case, the distance between the oscillations is �0 =

0.335 mm�1 [Fig. 13(b)]. From this value, we can obtain the

sectioned depth Lx = 18.8 mm, which is approximately two

times less than in the case of high angular resolution. Conse-

quently, the analysis of the experimental data of X-ray Laue

diffraction to determine the sectional depth of multilayer

structures is possible only under the condition of a high

angular resolution of the rocking curves.
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Figure 13
Calculated rocking curves (curve 1) from an Mo/Si multilayer with sectioned multilayer depth Lx = lPen = 38.2 mm. The diffraction curves (curve 2) are
also presented, taking into account the instrumental function. The angular resolutions (a) are �� = 0.02 mm�1 and (b) �� = 0.1 mm�1, while the periods
of the interference fringes are (a) �0 = 0.1646 mm�1 and (b) �0 = 0.335 mm�1.

Figure 12
Calculated diffraction rocking curves in the Laue geometry from W/Si (a)
and Mo/Si (b) multilayers with different sectioned depths Lx. The
diffracted intensities are offset by factors of 102 for clarity.



5. Concluding remarks

We have theoretically investigated in detail X-ray Laue

diffraction in multilayers in the case of an incident plane wave.

The influence of sectional depth, imperfections (defects) and

non-uniform distribution of the period of multilayers on the

Pendellösung effect and rocking curves has been shown.

However, more complete information on the structure of

multilayers is provided by the use of triple-axis diffractometry

(Iida & Kohra, 1979; Punegov, 2015). Therefore, the next step

will be to consider the Laue diffraction in the case of restricted

X-ray beams (Punegov et al., 2017; Punegov & Karpov, 2021).

This will make it possible to calculate RSMs in Laue geometry,

as well as compare the calculated qx and qz sections of RSMs

with experimental data (Kang et al., 2005).
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