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The temperature and wavenumber dependence of the extended X-ray

absorption fine-structure (EXAFS) oscillation of hexagonal close-packed

(h.c.p.) crystals have been calculated and analyzed under the effect of the

non-ideal axial ratio c/a. The anharmonic EXAFS oscillation is presented in

terms of the Debye–Waller factor using the cumulant expansion approach up to

the fourth order. An effective calculation model is expanded and developed

from the many-body perturbation approach and correlated Debye model using

the anharmonic effective potential. This potential, depending on the non-ideal

axial ratio c/a, is obtained from the first-shell near-neighbor contribution

approach. A suitable analysis procedure is performed by evaluating the

influence of EXAFS cumulants on the phase shift and amplitude reduction of

the anharmonic EXAFS oscillation. The numerical results for crystalline zinc

are found to be in good agreement with those obtained from experiments and

other theoretical methods at various temperatures. The obtained results show

that the present theoretical model is essential and effective in improving the

accuracy for analyzing the experimental data of anharmonic EXAFS signals of

h.c.p. crystals with a non-ideal axial ratio c/a.

1. Introduction

Extended X-ray absorption fine-structure (EXAFS) signals

can be used to define the structural parameters and dynamic

properties of many materials (Lytle et al., 1975; Beni &

Platzman, 1976; Greegor & Lytle, 1979), so it has developed

into a powerful technique and is the method of choice in many

investigations in materials science (Yokoyama et al., 1996;

Yokoyama, 1998; Lytle, 1999). However, thermal disorders in

a crystal lattice cause anharmonicity that results in additional

terms in the EXAFS oscillation (Eisenberger & Brown, 1979;

Lee et al., 1981; Tranquada & Ingalls, 1983), leading to non-

negligible errors if these terms are ignored in structural

parameters (Hung & Rehr, 1997; Rehr & Albers, 2000).

Usually, the anharmonic corrections lead to revisions of the

Gaussian distribution form of the Debye–Waller (DW) factor.

This DW factor can be viewed as a result of averaging the

single-scattering EXAFS formula over many near-neighbor

pairs with a given radial pair distribution (RD) function

(Tröger et al., 1994; Rehr & Albers, 2000). The expanded DW

factor is also described in detail using the moments of the

RD function (or cumulants) in the ratio method (cumulant

expansion approach) (Bunker, 1983; Crozier et al., 1988). This

method consists of the separate analysis of phase and ampli-

tude of the EXAFS signal at each temperature, taking a low-

temperature spectrum as reference (Bunker, 1983; Dalba et

al., 1993). It is particularly suited to studying temperature-

dependent variations of the first-shell parameters since it is

mainly independent of theoretical inputs and allows a direct
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estimation of the quality of experimental data (Abd El All et

al., 2013; Fornasini et al., 2001; Fornasini & Grisenti, 2015).

Usually, for disorders that are not too large, the ratio method

can reproduce the asymmetric bond length distribution in the

first coordination shell for many different materials (Sanson,

2010; Fornasini et al., 2017; Vila et al., 2018). And the first four

cumulants can suffice to reproduce the complex bond-length

distribution and have been confirmed for both crystalline and

amorphous materials (Yokoyama et al., 1996, Yokoyama, 1998;

Dalba et al., 1995, 1999; Fornasini & Grisenti, 2015, Fornasini

et al., 2017).

In many cases, the DW approximation is inadequate in

disordered systems (Dalba & Fornasini, 1997), and standard

treatment of such vibrational and configurational disorder

must often rely on a simpler model and phenomenological

approximations (Dalba et al., 1998;Rehr & Albers, 2000). In

these typical approaches, an anharmonic correlated Einstein

(ACE) model (Hung & Rehr, 1997) is completed based on the

correlated Einstein (CE) model (Sevillano et al., 1979) using

the anharmonic effective (AE) potential. This AE potential

(Hung & Rehr, 1997) has taken into account the anharmonic

effects and is based on the first-shell near-neighbor contribu-

tion (FSNNC) approach (Duc et al., 2018a). The ACE model

can be performed based on the quantum statistical theory

(Frenkel & Rehr, 1993) (hereafter called the QACE model)

(Hung & Rehr, 1997) or the classical statistical theory (Stern

et al., 1991) (hereafter called the CACE model) (Hung et al.,

2014), which is successfully applied to investigate the anhar-

monic EXAFS cumulants of many various crystals (Hung &

Fornasini, 2007; Hung et al., 2008, 2014, 2017a,b, 2019; Tien et

al., 2019; Duc, 2020; Tien, 2020a, 2021a). The QACE model

has recently been developed based on the ACE model and the

first-order perturbation by Tien (2020b). This QACE model

has been successfully used to analyze the anharmonic EXAFS

amplitude and phase of face-centered cubic crystals in a

suitable procedure. Still, it has not yet been used to review the

wavenumber dependence of the anharmonic EXAFS oscilla-

tion in detail. Moreover, the ACE models (QACE and CACE

models) describe the atomic vibrations by the phonons having

a unique correlated Einstein frequency, so they cannot mimic

the acoustic phonon branches presenting in lattice crystals

(Grimvall, 1999; Grosso & Parravicini, 2000). Also, an

anharmonic correlated Debye (ACD) model was completed

based on the correlated Debye (CD) model (Beni & Platzman,

1976) using the AE potential (Hung & Rehr, 1997) and many-

body perturbation (MBP) approach (Mahan, 1990) by Hung

et al. (2010). This model can effectively treat the acoustic

phonons branches present in lattice crystals because it

describes the atomic vibrations by the phonons propagating

with the speed of sound and having frequencies varying from 0

to the correlated Debye frequency. It was effectively used to

investigate the anharmonic EXAFS spectra of body-centered

cubic (b.c.c.) crystals (Hung et al., 2016) and face-centered

cubic (f.c.c.) crystals (Duc et al., 2017, 2018b). Still, the ACD

model has not yet been used for analyzing the anharmonic

EXAFS oscillation and optimized for the expressions of

cumulants, especially in the low-temperature limit.

In recent years, many metals of hexagonal close-packed

(h.c.p.) structure have been widely used to make advanced

materials in science and technology, such as beryllium (Be),

cobalt (Co), cadmium (Cd), magnesium (Mg), ruthenium

(Ru), zinc (Zn), zirconium (Zr), titanium (Ti) and yttrium (Y)

crystals (Vérité et al., 2007; Connétable et al., 2011; Podolskaya

& Krivtsov, 2012; Ghorai, 2018). These h.c.p. crystals have

lower symmetry and isotropy than other cubic crystals such

as f.c.c. crystals, b.c.c. crystals and diamond (DIA) crystals

(Vérité et al., 2007; Podolskaya & Krivtsov, 2012). The

anharmonic EXAFS cumulants of h.c.p. crystals have also

been obtained using the CACE model, QACE model (for the

first three cumulants) and experimental EXAFS data by Hung

et al. (2008, 2014, 2017b). However, the previous works only

calculate approximately for h.c.p. crystals using an ideal axial

ratio c/a’ (8/3)1/2 (Hung et al., 2008, 2014, 2017b). This means

that the effect of the non-ideal axial ratio c/a on the anhar-

monic EXAFS oscillation has not been taken into account

in the previous calculations. Therefore, the calculation and

analysis of the effect of the non-ideal axial ratio c/a on the

anharmonic EXAFS oscillation of h.c.p. crystals using an

extended ACD model and a suitable procedure will be a

necessary addition to data analysis in the EXAFS technique.

The purpose of the present work is to expand and develop

an effective model in calculating and analyzing the tempera-

ture and wavenumber dependence of the anharmonic EXAFS

oscillation of h.c.p. crystals under the effect of the non-ideal

axial ratio c/a. The primary objective is to demonstrate that

the effect of the non-ideal axial ratio c/a is significant and

necessary to be considered in the anharmonic EXAFS oscil-

lation analysis of h.c.p. crystals. In this work, the effect of the

non-ideal axial ratio c/a has been taken into account in the AE

potential that depends on the structure parameters of h.c.p.

crystals and obtained from the FSNNC approach, in which the

Morse potential characterizes the interaction between a pair

of atoms. An effective calculation-model is perfected based

on the extended ACD model to calculate the anharmonic

EXAFS cumulant. The anharmonic EXAFS oscillation is

presented in terms of the DW factor using the cumulant

expansion approach up to the fourth-order. A suitable analysis

procedure is performed by evaluating the influence of cumu-

lants on the phase shift and amplitude reduction to analyze the

temperature and wavenumber dependence of the anharmonic

EXAFS oscillation. Our numerical results for Zn are

compared with those obtained from the ACE models and

experiments (Hung et al., 2008, 2014, 2017b) at various

temperatures. From these obtained results, we discuss the

meaning and role of cumulants in analyzing the anharmonic

EXAFS oscillation of h.c.p. crystals under the effect of the

non-ideal axial ratio c/a, especially for high-order cumulants

(third and fourth cumulants).

This article is organized as follows. The basic formulae of

the anharmonic EXAFS oscillation and the calculation model

are presented in Section 2. Section 3 calculates the effect of

the non-ideal axial ratio c/a on the AE potential and the first

four anharmonic EXAFS cumulants of h.c.p. crystals using the

extended ACD model. The numerical results in analyzing the
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anharmonic EXAFS oscillation for Zn are compared and

discussed with experiments and other theoretical methods in

Section 4. Section 5 gives the main conclusions about the

present investigation.

2. Basic formulae of the anharmonic EXADS oscillation

The K-edge EXAFS oscillation includes non-Gaussian

disorder for a polycrystalline material and is described within

the framework of the single scattering and plane-wave

approximations by (Tranquada & Ingalls, 1983; Crozier et al.,

1988; Tien, 2020b)

� kð Þ ¼
NS 2

0 ðkÞ

k
FðkÞ Im

exp½�2r=� kð Þ�

r2
expð2ikrÞ

� �
exp½i�ðkÞ�

� �
ð1Þ

where k is the photoelectron wavenumber, S 2
0 ðkÞ is an

amplitude reduction factor due to the many-body effect, F(k)

is the atomic backscattering amplitude, N is the coordination

number, the angular bracket h . . . i is the average value in

considering variations in bond lengths both due to thermal

effects as well as static distortions, �(k) is the net phase shift,

�(k) is the electron effective mean free path, and r is the

instantaneous bond length between backscattering and

absorbing atoms and depends on the temperature T.

The influence of temperature on the K-edge EXAFS

oscillation of Zn is represented in Fig. 1. It can be seen that

the thermal vibrations significantly influence the amplitude

reduction and phase shift of the anharmonic EXAFS oscilla-

tion, as well as the decrease of the peak heights and their shifts

to the left as the temperature T increases, especially at higher

temperatures.

Following the approach proposed by Freund et al. (1989),

we expand the angular brackets hexp½�2r=�ðkÞ� expð2ikrÞ=r2i

in equation (1) in a Taylor series about R = hri to second-order

and rewrite the thermal averages hexpð2ikrÞi in terms of

anharmonic EXAFS cumulants using the cumulant expansion

approach (Bunker, 1983; Crozier et al., 1988). Approximating

to the fourth cumulant for small and moderate disorders and

neglecting the small-term yields from the mean free path in

the obtained expression, the K-edge EXAFS oscillation in the

form �(k, T) = Aðk;TÞ sin �ðk;TÞ is written as

�ðk;TÞ ’
NS 2

0 ðkÞ exp½�2R=�ðkÞ�

kR2

� FðkÞ exp �2k2�2
þ

2k4

3
�ð4Þ

� �

� sin

�
2kr0 þ 2k�ð1Þ � 4k�2 1

R
þ

1

�ðkÞ

� �

�
4k3

3
�ð3Þ þ �ðkÞ

�
; ð2Þ

where the coefficients �(n)(T) are nth-order cumulants and

can be presented in terms of the power moments of the true

RD function �(T, r) (Fujikawa & Miyanaga, 1993; Tröger et

al., 1994), and r0 is the equilibrium distance between the

backscattering and absorbing atoms (Tranquada & Ingalls,

1983; Yokoyama et al., 1989, 1996).

It can be seen that the amplitude A(k, T) and phase �(k, T)

of the anharmonic EXAFS oscillation depend on both

the temperature T and wavenumber k. From equation (2),

the logarithm of the amplitude ratio M(k, T1, T2) =

ln½Aðk;T2Þ=Aðk;T1Þ� and the linear phase difference

��(k, T1, T2) = �(k, T2) � �(k, T1) between temperatures

T2 and T1 can be inferred in the form

M k;T1;T2ð Þ ’ � 2k2 �2 T2ð Þ � �
2 T1ð Þ

� 	
þ

2k4

3
�ð4Þ T2ð Þ � �

ð4Þ T1ð Þ
� 	

; ð3Þ

�� k;T1;T2ð Þ ’ 2k �ð1Þ T2ð Þ � �
ð1Þ T1ð Þ

� 	
� 4k

1

r0

þ
1

�ðkÞ

� �
�2 T2ð Þ � �

2 T1ð Þ
� 	

�
4k3

3
�ð3Þ T2ð Þ � �

ð3Þ T1ð Þ
� 	

; ð4Þ

where the quantities S 2
0 ðkÞ, F(k), �(k) and �(k) in equation (2)

are assumed to be the same at temperatures T1 and T2

(Tranquada & Ingalls, 1983; Sanson, 2010; Fornasini et al.,

2017), the contribution of the term�2f½RðT2Þ � RðT1Þ�=�ðkÞ +
ln½RðT2Þ=RðT1Þ�g is considered negligible in equation (3)

(Dalba et al., 1993; Tröger et al., 1994; Tien, 2020b), and the

approximate expression 1/R(T) ’ 1/r0 is used in equation (4)

(Crozier et al., 1988; Rehr & Albers, 2000; Tien, 2020b).

Thus, the cumulants are critical for the quantitative treat-

ment of the anharmonic EXAFS oscillation. The odd-order

cumulants contribute primarily to the phase shift, and the

even-order cumulants contribute to the amplitude reduction,

as seen in equations (3) and (4). This means that the correct

calculation of anharmonic EXAFS cumulants using a suitable

model is essential to define the material structure accurately.
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Figure 1
The K-edge EXAFS oscillations k3�(k) of Zn were obtained from the
experimental EXAFS signals at 77 K (dashed-dotted blue line) and 300 K
(solid red line) (Hung et al., 2008).



3. Calculation of the anharmonic EXAFS cumulants
using the extended ACD model

This section calculates the first four anharmonic EXAFS

cumulants of h.c.p. crystals under the effect of the non-ideal

axial ratio c/a using the extended ACD model, where the AE

potential depends on the structural parameter of h.c.p. crystals

obtained from the FSNNC approach.

3.1. AE potential within FSNNC approach

In order to specify thermodynamic parameters of a material

structure, it is necessary to determine the interatomic inter-

action potential and local force constants (Yokoyama et al.,

1996; Hung & Rehr, 1997). Let us consider an AE potential

expanded up to the fourth-order around its minimum position

as a function of the displacement of interatomic distance from

equilibrium (Hung et al., 2008, 2014, 2017a; Tien et al., 2019). If

ignoring the constant term, the AE potential is written as

VeffðxÞ ¼
1

2
k0x2 � k3x3 þ k4x4; x ¼ r� r0 ; ð5Þ

where x is the displacement, k0 is the effective force constant,

k3 and k4 are force constants describing the anharmonicity and

bias in the RD function, and these local force constants are

assumed to be temperature independent.

In relative vibrations of the backscattering and absorbing

atoms, the AE potential (Hung & Rehr, 1997) in the center of

mass frame of the single bond pair of these atoms is given by

VeffðxÞ ¼ ’ðxÞ þ
X

i¼ 1;2

X
j 6¼ 1;2

’ "ixR̂R
0
R̂Rij


 �
; "i ¼

�

mi

; ð6Þ

where � = m1m2/(m1 + m2) is the reduced mass of an atomic

pair, mi is the mass of the ith atom, sum i is over absorber

(i = 1) and backscatterer (i = 2), sum j is over their nearest-

neighbor atoms, R̂Rij is the unit vector along with bond between

the ith and jth atoms, and R̂R0 is the direction unit vector linking

absorber and backscatterer.

In the model of h.c.p. crystal structure, each atom in the first

shell is bonded to 12 other surrounding atoms, and the

conventional unit cell is usually described by two lattice

constants a and c, as seen in Fig. 2. The ratio of the c-axis to a-

axis is written as e = c/a, where a is the basal plane edge length

and c is the height. This ratio characterizes the degree of

asymmetry and anisotropy of the crystal structure. For

monatomic crystals, all atoms are similar with mass mi = m, so

the values of parameters e1, e2, "1 and "2 are calculated as e1 =

e2 = e and "1 = "2 = 1/2.

Considering the backscattering and absorbing atoms and

their nearest-neighbor atoms to calculate the AE potential of

this crystal structure from equation (6), we obtain the result as

VeffðxÞ ¼ ’ðxÞ þ 4’ð0Þ þ 2’ �
1

2
x

� 
þ 4’ �

1

4
x

� 
þ 4’

1

4
x

� 

þ 4’ �

ffiffiffi
3
p

2 3e2 þ 4ð Þ
1=2

x

� 
þ 4’

ffiffiffi
3
p

2 3e2 þ 4ð Þ
1=2

x

� 
: ð7Þ

The Morse potential (Morse, 1929; Girifalco & Weizer, 1959)

is often applied validly to determine the pair interaction

potential of cubic metals, and it can be expressed in expanding

around its minimum (position x = 0) up to the fourth-order in

the form as

’ðxÞ ffi �DþD�2x2
�D�3x3

þ 7D�4x4=12; ð8Þ

where � describes the width of the pair interaction potential,

and D is the dissociation energy.

Using the Morse potential equation (8) to calculate the AE

potential of h.c.p. crystals from equation (7) and if the overall

constant in the result is ignored, the obtained result is

VeffðxÞ ¼ 2
3e2 þ 7

3e2 þ 4

� 
D�2x2 �

5

4
D�3x3

þ
7 333e4 þ 888e2 þ 736ð Þ

384 3e2 þ 4ð Þ
2

D�4x4: ð9Þ

The local force constants k0, k3 and k4 of h.c.p. crystals are

deduced from comparing equation (5) with equation (9) as

follows,

k0 ¼4
3e2 þ 7

3e2 þ 4

� 
D�2; k3 ¼

5

4
D�3;

k4 ¼
7 333e4 þ 888e2 þ 736ð Þ

384 3e2 þ 4ð Þ
2

D�4: ð10Þ

Note that the contribution of the h.c.p. crystal structure with

non-ideal axial ratio c/a to the AE potential in equation (9)

and the local force constants in equation (10) are obtained

from the FSNNC approach (Duc et al., 2018a). In this

approach, the influence of nearest surrounding atoms on the

thermal vibrations of backscattering and absorbing atoms is

determined by the projection of their pair interaction along

the bonding direction (Negele & Orland, 1972). Moreover, the

calculated expressions of the AE potential and local force

constants of the h.c.p. crystals are similar to that of the

f.c.c. crystal if the h.c.p. crystals have an ideal axial ratio

c/a = (8/3)1/2.

Thus, the effect of the non-ideal axial ratio c/a on thermo-

dynamic parameters of h.c.p. crystals is described via the

dependence of the AE potential and local force constants on

the structural parameter e, as seen in equations (9) and (10).

The present calculation model took into account three-
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Figure 2
Model of the h.c.p. crystal structure.



dimensional interactions, even though it only uses a simple

approach with the one-dimensional model.

3.2. Correlated Debye frequency and temperature

The ACD model is derived from the dualism of an

elementary particle in quantum theory and is perfected based

on the CD model (Beni & Platzman, 1976) using the AE

potential (Hung & Rehr, 1997) and MBP approach (Mahan,

1990). In this model, the atomic vibrations can be quantized

and treated as phonons, and the anharmonicity is the result

of the phonon–phonon interactions (Beni & Platzman, 1976;

Feynman, 1998). Therefore, the atomic vibrations of the

crystal lattice can be described as a system consisting of many

phonons, each of which corresponds to a wave that has

frequency !(q) with wavenumber q varying in the first

Brillouin zone (Kittel, 2004; Hung et al., 2010; Duc et al.,

2018a, Tien, 2021b),

!ðqÞ ¼ 2
k0

m

� 1=2

sin
qa

2


 ���� ���
¼ 4�

3e2 þ 7ð ÞD

3e2 þ 4ð Þm

� �1=2

sin
qa

2


 ���� ���; jqj � 	

a
; ð11Þ

where q is the phonon wavenumber, a is the lattice constant in

one-dimensional systems, and the effective force constant k0 is

given by equation (10).

The wavenumber dependence of the frequency of h.c.p.

crystals is represented in Fig. 3. It can be shown that the

frequency is maximum at the bounds of the first Brillouin zone

of the linear chain with the values of the wavenumber as

q = �	/a (Hung et al., 2016). Hence, the correlated Debye

frequency !D and temperature 
D are derived from equation

(20) as follows,

!D ¼ 4�
3e2 þ 7ð ÞD

3e2 þ 4ð Þm

� �1=2

;


D ¼
h- !D

kB

¼
4h- �

kB

3e2 þ 7ð ÞD

3e2 þ 4ð Þm

� �1=2

;

ð12Þ

where !D can be treated using the formula !D = cqD , kB is the

Boltzmann constant and h- is the reduced Planck constant.

Thus, the thermal vibrations of atoms are described by N

phonons that propagate with the sound speed c and the

frequencies varying from 0 to the correlated Debye

temperature frequency !D in the crystal lattice having volume

V. The effect of the non-ideal axial ratio c/a on the correlated

Debye temperature 
D and frequency !D of h.c.p. crystals can

be described via the structural parameter e, as seen in equa-

tion (12).

3.3. Anharmonic EXAFS cumulants within the extended
ACD model

The Hamiltonian includes the anharmonic effects of a

system written as a summation of the harmonic and anhar-

monic components (Yokoyama et al., 1996; Feynman, 1998;

Hung et al., 2010),

H ¼ H0 þHa; ð13Þ

where

H0 ¼ �
h- 2

2�

d2

dx2
þ

1

2
k0x2

is the harmonic Hamiltonian term and Ha =�k3x3 + k4x4 is the

anharmonic Hamiltonian term.

In the ACD model, the displacement x of the nth atom is

related to the displacement operator Aq of phonons and can

be expressed via the displacement un of a one-dimensional

chain (Horner, 1974; Miyanaga & Fujikawa, 1994; Hung et al.,

2016; Duc et al., 2018a, Tien, 2021b),

x ¼ unþ1 � un ¼
X

q

expðiqanÞ f ðqÞAq; ð14Þ

where the function f(q) and displacement operator Aq are

defined with the following properties,

f ðqÞ ¼
h-

2Nm!ðqÞ

� �1=2�
expðiqaÞ � 1

�
; Aq ¼ Aþ�q;

Aq;Aq0

� �
¼ 0: ð15Þ

Then the moments hxk
i can be calculated with the aid of the

MBP approach (Mahan, 1990) and are given by

xk
� �
¼

P
q1;q2;...;qk

f q1ð Þ f q2ð Þ . . . f qkð Þ Aq1
Aq2

. . . Aqk S �ð Þ
� �

0

S �ð Þ
� �

0

;

ð16Þ

where the function S(�) is written via the anharmonic

Hamiltonian ĤHað�Þ in an interactive representation as

Sð�Þ ¼
X1
n¼ 0

�1ð Þn

n!

Z�
0

d�1 . . .

Z�
0

d�1 T ĤHa �1ð Þ . . . ĤHa �nð Þ
� �

;

ĤHa �ð Þ ¼ exp �H0ð ÞHa exp ��H0ð Þ; � ¼ 1=kBT: ð17Þ

Following the approach proposed by Hung et al. (2010, 2016),

using the Wick theorem for the T-product in the integral

for the harmonic phonon Green function and properties of the
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Figure 3
Wavenumber dependence of the frequency of h.c.p. crystals in the ACD
model.



phonon displacement operator Aq, we calculate the moments

hxk
i according to the procedures depicted in equations (13)–

(17). After using the local force constants k0, k3 and k4 of h.c.p.

crystals given from equation (10) and converting from variable

q to variable p by the formula

p ¼ qa=2; ð18Þ

we calculate the temperature dependence of the first four

EXAFS cumulants and obtain the following results.

The first cumulant describes the net thermal expansion

(NTE) or the lattice disorder (Crozier et al., 1988; Tröger et al.,

1994) in the form

�ð1ÞðTÞ ¼ rh i � r0 ¼ xh i ð19Þ

¼
15h-

64	D�

3e2 þ 4

3e2 þ 7

� 2 Z	=2

0

dp !ðpÞ
1þ ZðpÞ

1� ZðpÞ
:

The second cumulant describes the parallel mean-square

relative displacement (MSRD) �2 that relates to the projected

vibrational density of states (VDOS) �(!) (Crozier et al., 1988;

Tröger et al., 1994) in the form

�2ðTÞ 	 �2 ¼ r� Rð Þ
2

� �
¼ x2
� �
� xh i2

¼
h-

4	D�2

3e2 þ 4

3e2 þ 7

�  Z	=2

0

dp !ðpÞ
1þ ZðpÞ

1� ZðpÞ
: ð20Þ

The third cumulant is the mean cubic relative displacement

(MCRD) and describes the asymmetry of the RD function

(Crozier et al., 1988; Dalba et al., 1995, 1998) in the form

�ð3ÞðTÞ ¼ r� Rð Þ
3

� �
¼ x� xh ið Þ

3
� �

¼
5h- 2

64	2D2�3

3e2 þ 4

3e2 þ 7

� 3

�

Z	=2

0

dp1

Z	=2�p1

�	=2

dp2

! p1ð Þ! p2ð Þ! p1 þ p2ð Þ

! p1ð Þ þ ! p2ð Þ þ ! p1 þ p2ð Þ

�

(
1þ 6

! p1ð Þ þ ! p2ð Þ

! p1ð Þ þ ! p2ð Þ � ! p1 þ p2ð Þ

�
Z p1ð ÞZ p2ð Þ � Z p1 þ p2ð Þ

Z p1ð Þ � 1
� �

Z p2ð Þ � 1
� �

Z p1 þ p2ð Þ � 1
� �

)
: ð21Þ

The fourth cumulant characterizes the anharmonic contribu-

tion to the EXAFS amplitude and describes the flatness of the

RD function from a harmonic Gaussian shape (Crozier et al.,

1988; Dalba et al., 1995, 1998, 1999) in the form

�ð4ÞðTÞ ¼ r� Rð Þ
4

� �
� 3 �2

� �2
¼ x� xh ið Þ

4
� �

� 3 �2
� �2

’
21h- 3

	3D3�4

333e4 þ 888e2 þ 736ð Þ 3e2 þ 4ð Þ
2

16384 3e2 þ 7ð Þ
4

�

Z	=2

0

dp1 �

Z	=2�p1

0

dp2

�

Z	=2� p1þp2ð Þ

�	=2

dp3

! p1ð Þ! p2ð Þ! p3ð Þ! p1 þ p2 þ p3ð Þ

! p1ð Þ þ ! p2ð Þ þ ! p3ð Þ þ ! p1 þ p2 þ p3ð Þ

�
1þ

8
Z p1ð ÞZ p2ð ÞZ p3ð Þ � Z p1 þ p2 þ p3ð Þ

Z p1ð Þ � 1
� �

Z p2ð Þ � 1
� �

Z p3ð Þ � 1
� �

Z p1 þ p2 þ p3ð Þ � 1
� �

�
! p1ð Þ þ ! p2ð Þ þ ! p3ð Þ

! p1ð Þ þ ! p2ð Þ þ ! p3ð Þ � ! p1 þ p2 þ p3ð Þ

þ 6
Z p1ð ÞZ p2ð Þ � Z p3ð ÞZ p1 þ p2 þ p3ð Þ

Z p1ð Þ � 1
� �

Z p2ð Þ � 1
� �

Z p3ð Þ � 1
� �

Z p1 þ p2 þ p3ð Þ � 1
� �

�
! p3ð Þ þ ! p1 þ p2 þ p3ð Þ

! p1ð Þ þ ! p2ð Þ � ! p3ð Þ � ! p1 þ p2 þ p3ð Þ

�
; ð22Þ

where the frequency !(p) is given from equation (11),

and the function Z(p) is identified as ZðpÞ = expf�h- !ðpÞg
with p = qa/2.

To calculate the anharmonic EXAFS cumulants in the high-

temperature (HT) and low-temperature (LT) limits and at the

zero point (ZP) from equations (19)–(22) based on the ACD

model, we use the approximations Z(p) 
 1 + �h- !(p) in the

HT limit (T ! 1), 1/Zn(p) 
 0 with n > 1 in the LT limit

(T! 0), and 1/Zn(p) 
 0 with n > 0 at the ZP (T = 0).

The obtained expressions using the present ACD model in

the LT and HT limits and at the ZP of the first four EXAFS

cumulants of h.c.p. crystals taking into account the effect of

non-ideal axial ratio c/a are given in Fig. 4. These expressions

describe the anharmonicity contribution of thermal vibrations

to the EXAFS oscillation in the HT limit and the influence

of quantum effects on the EXAFS oscillation in the LT limit.

Also, they describe the contribution of zero-point energy to

the EXAFS oscillation at the ZP. In the case of h.c.p. crystals

with ideal axial ratio c/a = (8/3)1/2, our obtained expressions of

the first four EXAFS cumulants in the HT limit are �ð1Þ =

3kBT=20D�, �ð2Þ = kBT=5D�2, �ð3Þ = 3ðkBTÞ
2=50D2�3 and

�ð4Þ = 133ðkBTÞ
3=5000D3�4. It can be seen that the first three

cumulants �(1), �(2) and �(3) are similar to those calculated

from the obtained expressions of the QACE (Hung et al., 2008,

2017b) and CACE (Hung et al., 2014) models, and the fourth

cumulant �(4) is slightly smaller than the result �ð4Þ =

137ðkBTÞ
3=5000D3�4 obtained from the CACE model (Hung

et al., 2014). Our obtained expressions of the first four EXAFS

cumulants at the ZP are �ð1Þ ’ 3h- =2	ð5DmÞ
1=2, �ð2Þ ’

2h- =	�ð5DmÞ
1=2, �ð3Þ ’ 88h- 2=375	2�Dm, and �ð4Þ ’

1976h- 3=1875
ffiffiffi
5
p
	3�m3=2D3=2. It can be seen that the first three

cumulants �(1), �(2) and �(3) are smaller than the results �(1)
’

3h- /4(10Dm)1/2, �ð2Þ ’ h- =�ð10DmÞ1=2 and �ð3Þ ’ h- 2=20�Dm,

respectively, calculated from the obtained expressions of the

QACE model (Hung et al., 2008, 2017b). Meanwhile, the first

four cumulants �(1), �(2), �(3) and �(4) obtained from the
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CACE model (Hung et al., 2014) progress gradually to zero

because this model cannot calculate quantum effects. The

small difference between the present ACD and QACE (Hung

et al., 2008, 2017b) models in the obtained results is because

the present ACD model took into account the dispersion

relation of thermal vibrations, while the QACE model (Hung

et al., 2008, 2017b) only uses an effective frequency to describe

these thermal vibrations.

Note that the present ACD model has taken into account

the effect of the non-ideal axial ratio c/a on the EXAFS

oscillation of h.c.p. crystals. In contrast, the ACE models

(Hung et al., 2008, 2014, 2017b) do not consider this effect

because they only use an approximation of the ideal axial ratio

c/a 
 (8/3)1/2. Moreover, as can be seen in equations (19)–

(22), using the present ACD model with converting variable

p = qa/2 to calculate the anharmonic EXAFS cumulants, we

have obtained expressions independent of the lattice constant

a in one-dimensional systems. Also, we have calculated

expressions of the first four cumulants at the ZP in explicit

forms and optimized expressions of the third and fourth

cumulants in the LT limit, as seen in Fig. 4. Meanwhile, other

ACD models in the previous works (Hung et al., 2010, 2016;

Duc et al., 2017, 2018b) have not yet performed calculations

for these expressions.

Thus, a calculation model of the anharmonic EXAFS

cumulants of h.c.p. crystals has been perfected based on the

extended ACD model (hereafter cited as the EACD model).

The effect of the non-ideal axial ratio c/a on the first four

anharmonic EXAFS cumulants is described via their depen-

dence on the structural parameter e. The obtained tempera-

ture-dependent expressions using the present EACD model of

the first four EXAFS cumulants can satisfy all their funda-

mental properties. These expressions have described both

the influences of anharmonic effects at high temperatures on

the classical limit and that of the quantum effects at low

temperatures on the zero-point energy.

4. Numerical results and discussions

In order to discuss the effectiveness and development of the

present theoretical model for calculating and analyzing the

effect of the non-ideal axial ratio c/a on the temperature and

wavenumber dependence of the anharmonic EXAFS oscilla-

tion of h.c.p. crystals in this work, we use the formulae in

Section 2 and the obtained expressions in Section 3 to calcu-

late numerical results for Zn. Firstly, we use the physical

parameters of Zn to calculate the local force constants, the

correlated Debye temperature and frequency, and the first
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Figure 4
The dependence on the structural parameter e of the first four anharmonic EXAFS cumulants of h.c.p. crystals in the LT and HT limits and at the ZP
obtained using the present ACD model.



four EXAFS cumulants in the temperature range from 0 K to

700 K. Then, we analyze the anharmonic EXAFS oscillation

via the phase differences and the logarithm of amplitude ratios

in the temperature range from 100 K to 700 K with reference

values at 100 K and in the wavenumber range from 0 Å�1 to

20 Å�1. Our results are obtained using the EACD model in

both cases with and without considering the effect of the non-

ideal axial ratio c/a. These results are compared with each

other as well as with the corresponding results obtained from

the QACE and CACE models by Hung et al. (2008, 2014,

2017b). Moreover, our numerical results are also compared

with experimental data measured at the Hamburg Synchro-

tron Radiation Laboratory (HASYLAB), German Electron

Synchrotron (DESY) (Hamburg, Germany) and beamline 8

(BL8), Synchrotron Light (SLRI) (Nakhon Ratchasima,

Thailand) by Hung et al. (2014, 2017b). In these comparisons,

the obtained results using the ACE models (Hung et al., 2008,

2014, 2017b) are in the temperature range from 0 K to 700 K,

the measured values at HASYLAB (Hung et al., 2014) are at

77 K and 300 K, and the measured values at SLRI (Hung et al.,

2017b) are at 300 K, 400 K, 500 K and 600 K. Herein, the error

values of measurements at SLRI have been determined from

re-analysis of original EXAFS data provided by Hung et al.,

and they have also not been published

in previous articles. Lastly, we evaluate

the advancement of the present theo-

retical model in calculating and

analyzing the anharmonic EXAFS

oscillation of h.c.p. crystals under the

effect of the non-ideal axial ratio c/a.

In calculations of Zn, we use the

atomic mass m = 65.3771 (Marinenko

& Foley, 1975), lattice constants a =

2.6594 Å, c = 4.9368 Å and e = 1.8563

(Jette & Foote, 1935), and Morse

potential parameters D = 0.1698 eV, � =

1.7054 Å�1 and r0 = 2.7931 Å (Hung et

al., 2008). Using the EACD model and

taking into account the effect of the

non-ideal axial ratio c/a = 1.8563 to

calculate the thermodynamic para-

meters of Zn from equations (10) and

(12), we obtain the local force constants

k0 = 2.3887 eV Å�2, k3 = 1.0528 eV Å�3

and k4 = 0.9871 eV Å�4, and the corre-

lated Debye frequency !D =

3.7552 � 1013 Hz and temperature 
D =

286.8415 K. It can be seen that our

obtained results have a clear difference

in comparison with the corresponding

results obtained from ACE models with

approximating the ideal axial ratio c/a’

(8/3)1/2 (Hung et al., 2008, 2014). More-

over, in comparison with experimental

values (Hung et al., 2008, 2014), our

obtained results also agree better than

those obtained from these ACE models.

This means that the effect of the non-ideal axial ratio c/a

should still be taken into account in the calculations of the

thermodynamic parameters of h.c.p. crystals, especially when

the deviation of the axial ratio c/a compared with (8/3)1/2

is large.

The temperature dependences of the (a) first cumulant

�(1)(T), (b) second cumulant �2(T), (c) third cumulant �(3)(T)

and (d) fourth cumulant �(4)(T) of Zn are shown in Fig. 5. Our

obtained results using the EACD model are calculated by

equations (19)–(22) in both cases with and without taking into

account the effect of the non-ideal axial ratio c/a. The results

taking into account the effect of the non-ideal axial ratio c/a

on the anharmonic EXAFS oscillation are calculated using

the value e = 1.8563. Meanwhile, the obtained results without

considering this effect are approximately calculated using the

value e ’ (8/3)1/2 as the ideal axial ratio c/a. As can be seen in

Fig. 5, our results agree well with those obtained from the

CACE model within the LTrange and experiment (Hung et al.,

2014), and the QACE model and another experiment (Hung et

al., 2017b) for the first three cumulants, in which the ACE

models (Hung et al., 2014, 2017b) do not consider the effect

of the non-ideal axial ratio c/a. Also, in comparison with

experimental values (Hung et al., 2017b), the obtained results
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Figure 5
Temperature dependence of the (a) first, (b) second, (c) third and (d) fourth cumulants of Zn
obtained using the EACD model with non-ideal (solid blue lines) and ideal (dashed-dotted green
lines) axial ratios c/a, the CACE model (dashed red lines) and experiment (full yellow diamonds)
(Hung et al., 2014), and the QACE (dotted magenta lines) model and another experiment (full red
hexagrams with red error bars) (Hung et al., 2017b).



using the EACD model taking into account the effect of the

non-ideal axial ratio c/a agree better than those obtained from

other models, as seen in Fig. 5.

The values of the first four EXAFS cumulants of Zn at 0 K,

77 K, 300 K, 400 K, 500 K, 600 K and 700 K are given in

Table 1, in which our results are calculated using the EACD

model with non-ideal and ideal axial ratios c/a. The suitable

agreement of our values in comparison with those obtained

from the CACE model (Hung et al., 2014) within the LT range,

the QACE model (Hung et al., 2017b) and experiments (Hung

et al., 2014, 2017b) can be clearly seen. Still, there is a signif-

icant difference between the obtained values with the non-

ideal axial ratio c/a and those obtained with the ideal axial

ratio c/a. The effect of the non-ideal axial ratio c/a clearly

increases the values of low-order cumulants (first and second

cumulants) and significantly increases the value of high-order

cumulants, especially at high temperatures. Moreover, the

obtained values with the non-ideal axial ratio c/a are a better

agreement with experimental values (Hung et al., 2014, 2017b)

than those obtained with the ideal axial ratio c/a, especially

compared with experimental values obtained by Hung et al.

(2017b), as seen in Table 1.

Herein, there is a limitation in comparing the experimental

values measured at HASYLAB and SLRI by Hung et al., as

seen in Fig. 5 and Table 1. The measured values at HASYLAB

(Hung et al., 2014) were published without error values, and

we also have not received the original data from Hung et al.

in order to redefine these values. Meanwhile, the error values

of measurements at SLRI (Hung et al., 2017b) have been

determined from re-analysis of the original EXAFS data

provided by Hung et al., but these error values are quite large

at 500 K and 600 K, especially for the third EXAFS cumulant

(uncertainties are about 21% and 19%). The characterization

of the magnitude of these errors can also be found in some

experimental results for other materials (Stern et al., 1991;

Dalba et al., 1993, 1999; Yokoyama, 1998; Fornasini &

Grisenti, 2015).

Comparisons with the above experimental values can

influence the evaluated results on the suitability of results

obtained from different methods if their difference is not great

enough, as in this study. However, for evaluating the behavior

of theoretical calculation models, comparisons based mainly

on the average values of the experiment can still obtain the

necessary scientific values (Yokoyama et al., 1989; Dalba et al.,

1990; Strauch et al., 1996; Hung & Rehr, 1997; Hung &

Fornasini, 2007; Beccara & Fornasini, 2008; Fornasini et al.,

2017). This is because the average value characterizes the

probability of obtaining results close to this value for the

plurality of the measurements taken (Xia et al., 2000; Lira &

Wöger, 2001).

Therefore, the obtained evaluations for the present calcu-

lation model in comparison with other methods are valid,

although there are still certain limitations in using the above

experimental values in this work.

The wavenumber dependence of (a) the logarithm of

amplitude ratios Mðk;TÞ = ln½Aðk;TÞ=Aðk; 100 KÞ� and (b)

the phase differences ��(k, T) = �(k, T) � �(k, 100 K) of

Zn at T = 300 K and T = 500 K are shown in Fig. 6. Our

obtained results using the EACD model are calculated using

equations (3) and (4) in both cases with and without taking

into account the effect of the non-ideal axial ratio c/a, in which

the anharmonic EXAFS cumulants are given by equations
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Table 1
The first four anharmonic EXAFS cumulants of Zn obtained using the EACD model with non-ideal and ideal axial ratios c/a, the QACE and CACE
models, and experiments.

Cumulant T (K) EACD model† EACD model‡ QACE model§ CACE model} Experiment} Experiment§

�(1) (�10�2 Å) 0 0.42 0.40 0.46 0
77 0.53 0.50 0.53 0.34 0.53
300 1.44 1.35 1.39 1.34 1.40 1.43 � 0.09
400 1.89 1.77 1.82 1.79 1.89 � 0.10
500 2.34 2.20 2.26 2.23 2.32 � 0.26
600 2.80 2.62 2.70 2.68 2.79 � 0.29

�(2) (�10�2 Å2) 0 0.33 0.32 0.36 0
77 0.42 0.41 0.41 0.27 0.41
300 1.12 1.09 1.09 1.05 1.08 1.13 � 0.07
400 1.47 1.43 1.43 1.40 1.49 � 0.08
500 1.83 1.77 1.77 1.74 1.85 � 0.21
600 2.19 2.11 2.11 2.09 2.23 � 0.24

�(3) (�10�4 Å3) 0 0.07 0.06 0.10 0
77 0.22 0.21 0.22 0.19 0.2
300 3.10 2.81 2.81 2.80 2.9 3.0 � 0.4
400 5.51 4.99 4.99 4.98 6.0 � 0.7
500 8.60 7.79 7.79 7.79 9.0 � 1.9
600 12.39 11.22 11.22 11.22 12.0 � 2.3

�(4) (�10�5 Å4) 0 0.01 0.01 0
77 0.03 0.02 0.02 0.1
300 1.26 1.11 1.14 1.3
400 2.99 2.64 2.71
500 5.83 5.15 5.29
600 9.98 8.89 9.14

† Calculation with the non-ideal axial ratio c/a in this work. ‡ Calculation with the ideal axial ratio c/a in this work. § Hung et al. (2017b). } Hung et al. (2014).



(19)–(22). The effect of the non-ideal

axial ratio c/a on the anharmonic

EXAFS oscillation is described by

comparing the results obtained with the

non-ideal axial ratio c/a with those

obtained with the ideal axial ratio c/a.

The comparison results show that the

effect of the non-ideal axial ratio c/a on

the logarithm of amplitude ratio and the

phase difference is significant at high

temperatures and large wavenumbers,

especially for the phase difference, as

seen in Fig. 6.

The values of the logarithm of the

amplitude ratios M(k, T) and the phase

differences ��(k, T) of Zn are given in

Table 2. Our results are calculated using the EACD model

with non-ideal and ideal axial ratios c/a at T = 300 K and 500 K

with k = 10 Å�1 and 20 Å�1. It can be clearly seen that the

values of M(k, T) and ��(k, T) decrease with increasing

temperature T and decrease rapidly with increasing wave-

number k. Also, the effect of the non-ideal axial ratio c/a

significantly increases the value of M(k, T) and clearly reduces

the value of ��(k, T) with increasing temperature T and

wavenumber k. However, the effect of the non-ideal axial

ratio c/a on the values of M(k, T) is smaller and changes faster

than this effect on the values of ��(k, T), as seen in Table 2.

Thus, the effect of the non-ideal axial ratio c/a is significant

and is necessarily taken into account in analyzing the anhar-

monic EXAFS oscillation of h.c.p. crystals, especially at high

temperatures and large wavenumbers. This effect is stronger

and the deviation of the ratio c/a compared with (8/3)1/2 is

larger, which also increases the logarithm of the amplitude

ratio and reduces the phase difference of the anharmonic

EXAFS oscillation. This means that the effect of the non-ideal

axial ratio c/a clearly reduces the EXAFS amplitude reduction

and significantly increases the EXAFS phase shift, especially

with the axial ratio c/a being much different from (8/3)1/2.

The temperature and wavenumber dependence of (a) the

logarithm of the amplitude ratio M(k, T) and (b) the phase

difference ��(k, T) with their component terms of Zn are

shown in Fig. 7. These surfaces are presented to visually

describe the role and variation with increasing temperature

and wavenumber of the components containing the cumulants

that contribute to the amplitude reduction and phase shift of

the anharmonic EXAFS oscillation. Our results are obtained

using the EACD model taking into account the effect of the

non-ideal axial ratio c/a. Herein, M1(k, T) and M2(k, T) are

denoted as contributions to M(k, T) of terms containing the

second and fourth cumulants in equation (3), respectively.

Likewise, ��1(k, T), ��2(k, T) and ��3(k, T) are denoted

as contributions to ��(k, T) of terms containing the first,

second and third cumulants in equation (4), respectively. As

can be seen in Fig. 7(a), both M1(k, T) and M2(k, T) contribute

primarily to the result of M(k, T), in which the variation with

temperature and wavenumber of M2(k, T) is faster than that

of M1(k, T). Still, M1(k, T) reduces the value of M(k, T), and

M2(k, T) increases the value of M(k, T). Also, the contribution

of ��3(k, T) to the result of ��(k, T) is the largest even

though the contributions of ��1(k, T) and ��2(k, T) to the

result of ��(k, T) are significant. This is because the contri-

bution of ��1(k, T) to the value of ��(k, T) is an opposite
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Figure 6
Wavenumber dependence of (a) the logarithm of amplitude ratios and
(b) the phase differences of Zn with non-ideal (solid blue lines) and ideal
(red crosses signs) axial ratios c/a obtained using the EACD model at
300 K and 500 K with reference values at 100 K.

Table 2
The logarithm of amplitude ratios M(k, T) and the phase differences ��(k, T) of Zn with non-ideal
and ideal axial ratios c/a are calculated using the EACD model.

Quantity T (K) k (Å�1)
Ideal axial
ratio c/a

Non-ideal
axial ratio c/a

Value
change

Percentage
change

M(k, T) 300 10 �1.22 �1.18 + 0.04 �3.28
300 15 �2.54 �2.43 + 0.11 �4.33
300 20 �4.01 �3.78 + 0.23 �5.74
500 10 �2.35 �2.24 + 0.11 �4.68
500 15 �4.29 �4.02 + 0.27 �6.29
500 20 �5.15 �4.54 + 0.61 �11.84

��(k, T) 300 10 �0.31 �0.34 �0.03 + 9.68
300 15 �1.07 �1.18 �0.11 + 10.28
300 20 �2.60 �2.91 �0.31 + 11.92
500 10 �0.95 �1.05 �0.10 + 10.53
500 15 �3.29 �3.66 �0.37 + 11.25
500 20 �7.86 �8.84 �0.98 + 12.47



sign and not much larger than that of ��2(k, T) to the value

of ��(k, T), as seen in Fig. 7(b).

Thus, the contribution of M1(k, T) to the value of M(k, T)

and the contributions of ��1(k, T), ��2(k, T) and ��3(k, T)

to the value of ��(k, T) of Zn (h.c.p. crystal) are similar to

the corresponding contributions of Mo (b.c.c. crystal) (Tien,

2020a), Cu and Ni (f.c.c. crystal) (Tien, 2020b, Tien, 2021a) and

Ge (diamond crystal) (Tien, 2021b). However, the contribu-

tion of M2(k, T) to the value of M(k, T) of Zn (h.c.p. crystal) is

significantly stronger than this corresponding contribution of

Mo (b.c.c. crystal) (Tien, 2020a), Cu and Ni (f.c.c. crystal)

(Tien, 2020b, 2021a), and Ge (diamond crystal) (Tien, 2021b).

The values of the logarithm of the amplitude ratios M(k, T)

and the phase differences ��(k, T), and their component

terms of Zn are given in Table 3. Our results are calculated

using the EACD model with non-ideal axial ratio c/a at T =

200 K, 400 K and 600 K with k = 10 Å�1 and 20 Å�1. It can be

clearly seen that the ratio M2ðk;TÞ=M1ðk;TÞ is negative, and

its absolute value increases sharply to a sizable one with fast-

increasing temperature T and increasing wavenumber k, in

which M1(k, T) has the same sign as M(k, T) and M2(k, T) has

the opposite sign as M(k, T). Meanwhile, the absolute values

of the ratios ��1ðk;TÞ=�ðk;TÞ and ��2ðk;TÞ=�ðk;TÞ

gradually decrease to approximately the same value with fast-

increasing temperature T and increasing wavenumber k, in

which the ratio ��1ðk;TÞ=�ðk;TÞ is negative and the ratio

��2ðk;TÞ=�ðk;TÞ is positive. This results in the value of the

ratio ��3ðk;TÞ=�ðk;TÞ gradually progressing to 100% with

fast-increasing temperature T and increasing wavenumber k,

as seen in Table 3.

Thus, the term M2(k, T) increases the value and contributes

significantly to calculating the logarithm of the amplitude ratio

M(k, T), and the term ��3(k, T) reduces the value and

contributes mainly to calculating the phase difference

��(k, T). The influences of M2(k, T) on M(k, T) and

��3(k, T) on ��(k, T) are stronger at the higher tempera-

tures and larger wavenumbers. The influence caused by the

wavenumber is stronger than that caused by the temperature.

This means that the fourth cumulant has a strong influence

on the amplitude reduction, and the third cumulant has the

greatest influence on the phase shift, especially at high

temperatures and large wavenumbers. This result is essential

and useful to analyze the anharmonic EXAFS oscillation from

experimental data.

Currently, using the FEFFIT program suite and other

theoretical fitting standards in the experimental XAFS data

analysis technique is being performed and developed in many

laboratories worldwide using properly established processes

(Vila et al., 2018; Kas et al., 2020; Ravel & Newville, 2020).

In these processes, a non-linear best fit to the experimental

XAFS data by a suitable theoretical code is capable of
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Figure 7
Temperature and wavenumber dependence of (a) the logarithm of the
amplitude ratio M(k, T) and (b) the phase difference ��(k, T) with their
component terms of Zn obtained using the EACD model with the non-
ideal axial ratio c/a in the following cases: calculating all of the terms in
equations (3) or (4) (blue mesh-surfaces) and calculating only the term
containing the first cumulant in equation (4) (green mesh-surface), the
second cumulant in equations (3) or (4) (magenta mesh-surfaces), the
third cumulant in equation (4) (cyan mesh-surface), and the fourth
cumulant in equation (3) (red mesh-surface).

Table 3
The logarithm of the amplitude ratios M(k, T), the phase differences ��(k, T) and their component terms of Zn are calculated using the EACD model
with the non-ideal axial ratio c/a.

T (K)
k
(Å�1) M1 M2 M

M2=M1

(%)
��1

(rad)
��2

(rad)
��3

(rad)
��
(rad)

��1=��
(%)

��2=��
(%)

��3=��
(%)

200 10 �0.62 0.02 �0.60 �3.23 0.08 �0.06 �0.14 �0.12 �66.67 40.00 116.67
200 15 �1.39 0.11 �1.28 �8.59 0.12 �0.09 �0.47 �0.44 �27.28 20.45 106.81
200 20 �2.47 0.35 �2.12 �14.17 0.16 �0.13 �1.09 �1.06 �15.09 12.26 102.83
400 10 �2.00 0.19 �1.81 �9.50 0.26 �0.21 �0.69 �0.64 �40.63 32.81 107.82
400 15 �4.51 0.98 �3.53 �27.76 0.39 �0.32 �2.35 �2.28 �17.11 14.04 103.07
400 20 �8.00 3.13 �4.87 �39.13 0.51 �0.42 �5.49 �5.40 �9.44 7.78 101.67
600 10 �3.42 0.67 �2.75 �19.59 0.44 �0.36 �1.64 �1.56 �28.21 23.08 105.13
600 15 �7.70 3.31 �4.49 0.66 �0.54 �5.41 �5.29 �12.48 10.21 102.27
600 20 �13.69 10.69 �3.00 �78.89 0.88 �0.72 �13.15 �12.99 �6.77 5.54 101.23



extracting reliable information of the structural parameters

and dynamic properties of materials (Newville, 2001; Bunker,

2010). For EXAFS spectra, single scattering is dominant

because the main contribution to the anharmonic EXAFS

oscillation is given by the first shell (Rennert & Hung, 1988;

Stern et al., 1991). This is why, in theoretical fitting standards,

only the K-edge EXAFS oscillation of the first shell is used to

analyze measurement results of the experimental EXAFS

signals (Bunker, 2010; Ravel & Newville, 2020).

The IFEFFIT program suite (Newville, 2001; Newville &

Ravel, 2020) has many outstanding features and is designed to

fit experimental EXAFS data to theoretical calculations from

the well known FEFF code (Rehr et al., 1991; Kas et al., 2020)

that yields atomic scattering amplitudes and phase shifts used

in many EXAFS fitting models, as well as various other

properties (Zabinsky et al., 1995; Ankudinov et al., 1998). This

program suite enables extracting data from experimental data,

Fourier transforms, Fourier filter and fitting the data to

reference data from experiment or theory (Bunker, 2010).

The fitting can be done in k or R space, with a wide range of

options given for modeling EXAFS data (Jorissen & Rehr,

2013). This includes a full suite of tools and methods for

EXAFS analysis, including functions for pre-edge removal and

normalization of EXAFS data, background removal using the

Autobk method, and fitting EXAFS oscillation with theore-

tical calculations for scattering amplitudes and phase shifts

(Newville & Ravel, 2020).

Usually, the scattering path formalism and cumulant

expansion from the FEFF code are used as the basic building

blocks of EXAFS data analysis to give a flexible and robust

parameterization of most problems (Newville, 2001), in which

these theoretical scattering factors and anharmonic EXAFS

cumulants are provided to refine the fitting model and the

extracted information from experimental data of Ravel &

Newville (2005). However, the reliability of the obtained

results depends on the accuracy of the theoretical calculations

and physical approximations implemented in the FEFF code

(Fornasini & Grisenti, 2015).

The wavenumber dependence of the K-edge EXAFS

oscillation k2�(k) of Zn at 300 K is shown in Fig. 8. Our

obtained results using the EACD model taking into account

the effect of the non-ideal axial ratio c/a is derived from

modifying equation (2) in the FEFF code for the anharmonic

EXAFS cumulants given by equations (19)–(22). It can

be seen that our results agree with those obtained from the

QACE model and experiment (Hung et al., 2017b) and

another experiment (Hung et al., 2008), in which the QACE

model does not consider the effect of the non-ideal axial ratio

c/a and the fourth EXAFS cumulant. Also, in comparison with

experimental EXAFS signals (Hung et al., 2008, 2017b), the

obtained results using the EACD model taking into account

the effect of the non-ideal axial ratio c/a agree better than

those obtained from the QACE models, especially for the

large wavenumber range and in comparison with experimental

EXAFS signals obtained by Hung et al. (2017b), as seen in

the peak heights and their shifts of the anharmonic EXAFS

signals obtained from experiments and other theoretical

models in Fig. 8. This is because the fourth EXAFS cumulant

increases the amplitude, as seen in equation (2), and the effect

of the non-ideal axial ratio c/a tends to reduce the amplitude

reduction and increase the phase differences of the anhar-

monic EXAFS oscillation, as seen from the evaluation results

in Fig. 6 and Table 2. The obtained results also show that the

ratio method is able to reproduce the K-edge EXAFS signal

in the first coordination shell of Zn using the IFEFFIT

program suite.

Therefore, ignoring the effect of the non-ideal axial ratio

c/a on the anharmonic EXAFS oscillation will lead to non-

negligible errors in the obtained results from the analysis

procedures using the FEFF code. The calculated expressions

of the first four cumulants, the logarithm of amplitude ratios,

and the phase differences taking into account the effect of the

non-ideal axial ratio c/a are a necessary addition to modifying

the anharmonic EXAFS oscillation of h.c.p. crystals in the

FEFF code. The obtained results using the present theoretical

model for the temperature and wavenumber dependence of

the anharmonic EXAFS oscillation of h.c.p. crystals can be

effectively used to complete and modify the calculation toolkit

of the FEFF code. These additions can improve the accuracy

of the anharmonic EXAFS data analysis of h.c.p. crystals

under the effect of the non-ideal axial ratio c/a in the EXAFS

data fitting models using the IFEFFIT program suite.

Here, in the h.c.p. structure of Zn, the effect of the non-ideal

axial ratio c/a causes a distorted structure. As a result, the first

coordination shell is split into two sub-shells, each one

composed of six atoms. In this distorted structure, Zn–Zn

distances for the six bonds in the (aa) plane are 2.6594 Å, and

Zn–Zn distances for the other six bonds distorted along with

the direction of the c-axis are 2.9069 Å (the distortion between

these bond distances is less than 10%).

The appropriate approaches must be based on these char-

acteristics to treat the distorted structure of Zn in investiga-

tions on the anharmonic EXAFS spectra. In the usual
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Figure 8
The K-edge EXAFS oscillation k2�(k) of Zn at 300 K obtained using the
EACD model taking into account the effect of the non-ideal axial ratio
c/a (solid blue lines), the QACE model (dotted red lines) and
experimental EXAFS signals (dashed-dotted green lines) (Hung et al.,
2017b), and other experimental EXAFS signals (dashed-dotted magenta
lines) (Hung et al., 2008).



approach, the cumulant expansion can describe deviations

from a distorted Gaussian distribution of the RD function by

taking into account contributions on both of the Zn–Zn paths

corresponding to the above two bond distances.

In this work, we used another approach in the present

theoretical model to treat the distorted structure of Zn. This

approach considers and calculates an effective path of Zn–Zn

in the cumulant expansion to describe deviations from a

distorted Gaussian distribution of the RD function using the

AE potential model that takes into account the contribution

of both Zn–Zn distances for the bonds in the distorted

structure of Zn. The obtained results of Zn in this work have

also presented the suitability of the present approach in

investigating the effect of the non-ideal axial ratio c/a on

anharmonic of h.c.p. crystals. This approach has also been used

by Dalba et al. (1995) to effectively treat the local disorder in

amorphous germanium with various bond distances using an

effective pair potential in the cumulant expansion.

Thus, the above analysis has shown the effective applic-

ability of cumulant expansion with a suitable approach to

describing EXAFS oscillations of distorted materials such as

Zn with the non-ideal axial ratio c/a in the h.c.p. structure.

5. Conclusions

In this work, we have extended and developed an effective

model to calculate and analyze the effect of the non-ideal axial

ratio c/a on the temperature and wavenumber dependence

of the anharmonic EXAFS oscillation of h.c.p. crystals. The

thermal vibrations of the crystal lattice are described as a

system consisting of many phonons, each of which corresponds

to a wave that has a frequency !(q) with a wavenumber q

varying in the first Brillouin zone. The AE potential of h.c.p.

crystals depending on the non-ideal axial ratio c/a is obtained

from the FSNNC approach that can describe the contribution

of the nearest-neighbor atoms to the pair interaction potential

of backscattering and absorbing atoms. The EACD model has

been perfected based on the extended ACD model to calcu-

late the temperature dependence of the anharmonic EXAFS

cumulant effectively.

The obtained temperature-dependent expressions using the

EACD model of the first four EXAFS cumulants of h.c.p.

crystals can satisfy all their fundamental properties. These

expressions can describe both the influences of the quantum

effects at low temperatures on the zero-point energy and that

of the anharmonic effects at high temperatures on the classical

limit. The analytical results of the effect of the non-ideal axial

ratio c/a have indicated that this effect increases the logarithm

of the amplitude ratio and reduces the phase difference of the

anharmonic EXAFS oscillation. The magnitude of this effect

is significant and is necessarily taken into account in analyzing

the anharmonic EXAFS oscillation of h.c.p. crystals, especially

with the axial ratio c/a being much different from (8/3)1/2. The

analytical results of the influence of the cumulants on the

anharmonic EXAFS oscillation have also indicated the role of

high-order cumulants. The third cumulant plays a crucial role

in the phase shift calculation, and the fourth cumulant plays an

important role in the amplitude reduction calculation. These

obtained results are essential and effective in analyzing the

experimental data of anharmonic EXAFS signals.

The numerical results for Zn obtained using the present

theoretical model are found to be in good agreement with

those obtained from experiments and other theoretical

methods at various temperatures. This agreement shows the

efficiency of the present theoretical model in analyzing the

wavenumber and temperature dependence of EXAFS oscil-

lation of h.c.p. crystals under the effect of the non-ideal axial

ratio c/a. It can improve the accuracy of the anharmonic

EXAFS data analysis of h.c.p. crystals under the effect of the

non-ideal axial ratio c/a based on addition and modification

for the calculation toolkit of the FEFF code in the EXAFS

data fitting models using the IFEFFIT program suite. The

present theoretical model can also be applied to treat other

distorted crystals that have low symmetry and isotropy with

multiple acoustic phonons.
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Lira, I. & Wöger, W. (2001). Meas. Sci. Technol. 12, 1172–1179.
Lytle, F. W. (1999). J. Synchrotron Rad. 6, 123–134.

Lytle, F. W., Sayers, D. E. & Stern, E. A. (1975). Phys. Rev. B, 11,
4825–4835.

Mahan, G. D. (1990). Many-Particle Physics, 2nd ed. New York:
Plenum.

Marinenko, G. & Foley, R. T. (1975). J. Res. Natl. Bur. Standards A,
79A, 747–759.

Miyanaga, T. & Fujikawa, T. (1994). J. Phys. Soc. Jpn, 63, 1036–1052.
Morse, P. M. (1929). Phys. Rev. 34, 57–64.
Negele, J. & Orland, H. (1972). Quantum Many-Body Systems. New

York: Perseus Books.
Newville, M. (2001). J. Synchrotron Rad. 8, 96–100.
Newville, M. & Ravel, B. (2020). International Tables for Crystal-

logrphy, Volume I, https:// doi: 10.1107/S1574870720003407.
Podolskaya, E. A. & Krivtsov, A. M. (2012). Phys. Solid State, 54,

1408–1416.
Ravel, B. & Newville, M. (2005). J. Synchrotron Rad. 12, 537–541.
Ravel, B. & Newville, M. (2020). International Tables for Crystal-

logrphy, Volume I, https://doi.org/10.1107/S1574870720003353.
Rehr, J. J. & Albers, R. C. (2000). Rev. Mod. Phys. 72, 621–654.
Rehr, J. J., Mustre de Leon, J., Zabinsky, S. I. & Albers, R. C. (1991). J.

Am. Chem. Soc. 113, 5135–5140.
Rennert, P. & van Hung, N. (1988). Phys. Status Solidi B, 148, 49–61.
Sanson, A. (2010). Phys. Rev. B, 81, 012304.
Sevillano, E., Meuth, H. & Rehr, J. J. (1979). Phys. Rev. B, 20, 4908–

4911.
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