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One of the inescapable realities of im-
aging techniques is called the "phase 
problem," which simply refers to the loss of 
phase information inherent in the nature of 
imaging methods such as x-ray diffraction.  
Although inconvenient, it can be dealt with 
by using mathematical methods to retrieve 
the phase data from the image with in-
verse computation.  Such methods, how-
ever, are not only time-consuming but re-
quire a great deal of computer power.  A 
group of researchers working at the APS 
has demonstrated a new approach to this 
obstacle by using a deep-learning neural 
network trained and to perform fast three-
dimensional (3-D) nanoscale imaging from 
coherent x-ray data.               

Investigators confronted this problem 
by using explicitly “physics-aware” training 
of neural networks that incorporates atom-
istic simulation data to create diverse train-
ing sets based on the physics of the mate-
rial under study (Fig.1).  The neural network 
predictions are then further refined in the 
final stage.  The research team validated 
this 3-D convolutional encoder-decoder 
network (3D-CDI-NN) on 3-D coherent x-
ray diffraction data of gold nanoparticles 
performed at the APS. 

To enhance the accuracy of 3D-CDI-
NN, the team added a refinement that uses 
a reverse-mode automatic differentiation 
(AD) technique on the strain predictions 
and diffraction data.  This proved espe-
cially effective in recovering details of 
structural strain within the examined crys-
tal samples without oversampled data, as 
when using AD techniques. 
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The researchers demonstrated the ef-
fectiveness of the trained 3D-CDI-NN 
model with real-world data by imaging 
gold nanoparticles.  Although the initial 
predictions showed some underestimation 
of surface details and local strain, these 
details were recovered after the AD refine-
ment procedure.  The 3D-CDI-NN frame-
work was demonstrated to be about 4 
times faster compared to typical iterative 
phase retrieval methods. 

When the upgraded APS come online 
in the near future, with ever brighter and 
more versatile beams and capable of gen-
erating extremely large datasets, faster 
and more efficient phase retrieval tech-
niques will be essential.  The research 
team notes that machine-learning neural 
network approaches can be trained to sur-
pass traditional phase retrieval techniques 
by hundreds of times in speed while plac-
ing far lesser demands on scarce comput-
ing resources.  Such automated methods 
can also be effectively scaled to different 
requirements and can even operate on 
datasets as they are still being collected. 

― Mark Wolverton 
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Better-Educated Neural Networks for 
Nanoscale 3-D Coherent X-ray Imaging

Fig. 1. Schematic of physics-aware framework for 
phase retrieval in 3-D coherent diffraction imaging. 
The main component of the framework is a neural 
network model (3D-CDI-NN) that is trained offline 
using 3-D data (simulated diffraction pattern, crystal 
shape, and local strain) derived from atomistic simu-
lations that capture physics of the material. Once 
trained, the 3D-CDI-NN model can perform real-time 
prediction of crystal shape and local strain from 
experimentally measured diffraction pattern. The 
prediction can then be refined using a gradient-
based optimization procedure. From H. Chan et al., 
Appl. Phys. Rev. 8, 021407 (2021). ©2021 Author(s). 
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