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In order to maintain a constant monochromatic synchrotron X-ray beam

height for all energies, the separation between the crystals of a double-crystal

monochromator is typically adjusted, via translation of the second crystal, while

X-ray energy is varied, via rotation of the crystal pair. The ability to accurately

translate the second crystal requires precise knowledge of the separation

between the two crystals and, when present, crystal miscuts. Here, a simple

method for calibrating the crystal gap from measured variation in the X-ray

beam height that eliminates error in the fixed beam offset is provided.

1. Introduction

X-ray absorption fine-structure (XAFS) spectroscopy is a

characterization technique that can be used to determine

valence (Wilke et al., 2001; Dau et al., 2003; Manceau et al.,

2012; Hall et al., 2012), bond lengths (Mikkelsen & Boyce,

1982; Woicik, 2014; Sterbinsky et al., 2012), coordination

(Kemner et al., 1994; Clark-Baldwin et al., 1998; Frenkel, 2012;

Hahn et al., 2020), and disorder (Lee et al., 1981; Crozier &

Seary, 1981; Booth et al., 1998) in materials. It is employed in

numerous areas of research including chemistry and catalysis,

condensed matter physics, biology, and earth science (Wilke et

al., 2001; Dau et al., 2003; Manceau et al., 2012; Hall et al., 2012;

Mikkelsen & Boyce, 1982; Woicik, 2014; Sterbinsky et al., 2012;

Kemner et al., 1994; Clark-Baldwin et al., 1998; Frenkel, 2012;

Hahn et al., 2020; Lee et al., 1981; Crozier & Seary, 1981; Booth

et al., 1998). While versatile, XAFS also requires great care in

measurement and analysis to prevent artifacts and misinter-

pretation. In particular, sample inhomogeneity can lead to

distortion of the absorption spectra (Goulon et al., 1982;

Babanov et al., 2001; Manceau et al., 2002). Ensuring the X-ray

beam remains at the same position on the sample can help

to minimize the effect of inhomogeneity. Therefore, XAFS

beamlines are typically designed to sustain a stable beam

position over large energy ranges. A fixed-exit mono-

chromator engineered to maintain a constant beam height as

X-ray energy is changed is a key component in stabilizing the

beam position.

At a hard and/or tender X-ray absorption spectroscopy

beamline, a double-crystal monochromator (DCM) with two

independent diffracting crystals is typically employed to select

and scan the X-ray energy (Golovchenko et al., 1981; Mills &

King, 1983; Frahm, 1989; Heald et al., 1999; Segre et al., 2000;

Richwin et al., 2001; Fischetti et al., 2004; Proux et al., 2006;

Kropf et al., 2010; Prestipino et al., 2011; Liu et al., 2012; Sutton

et al., 2017). Monochromators that use two diffracting surfaces

from a single channel-cut crystal (Tolentino et al., 1998; Frahm
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et al., 2005; Stötzel et al., 2010; Khalid et al., 2011; Nonaka et

al., 2012; Müller et al., 2015; Müller et al., 2016) or four

diffracting crystal surfaces (Sayers et al., 1983; Heald, 1984,

1988; Heald et al., 1986; Trela et al., 1988; Heald & Sayers,

1989; Tolentino & Rodrigues, 1992; Hrdý, 1995; Tolentino et

al., 1995; Kraft et al., 1996; Krumrey, 1998; Krumrey et al.,

1998; Hayama et al., 2018) are also sometimes employed. In

a DCM, the incident X-rays diffract from a first and then a

second crystal such that the incident and outgoing X-ray

beams are parallel. Energy is varied by adjusting the angle of

the crystals with respect to the incident X-ray beam according

to Bragg’s law. Adjusting the angle of the crystals will also

change the separation between incoming and outgoing beams,

and in many DCMs the X-ray beam exit height is maintained

constant during energy scanning by synchronously changing

the distance, or gap, between the crystals. At each energy, a

unique value of the crystal gap will provide the desired fixed

offset between incoming and outgoing beams. Thus, to effec-

tively maintain a constant exit height, the true value of the

crystal gap must correspond to exactly this unique setpoint

value with minimal error. Because the actual crystal gap is not

necessarily well known, its presumed value may differ from its

true value, and when attempting to set the crystal gap to the

unique setpoint required at a given energy, the error present

will result in motion of the X-ray beam at the sample. Such

motion is particularly dramatic at relatively low energies

where the movements of the monochromator crystals needed

to obtain an incremental change in energy are largest. This is

illustrated in Fig. 1(a), which shows the change in beam height

as a function of energy due to an error, �g, in the crystal gap.

Changes in the exit beam height can also be caused by

unwanted monochromator crystal asymmetry or errors in the

miscut, �, of asymmetric crystals, as illustrated in Fig. 1(e). In

this paper, we present a simple method for first measuring and

then correcting errors in the crystal gap calibration.

2. Method

A DCM consists of two single crystals maintained in positions

that satisfy the diffraction conditions of both crystals for a

given energy while also directing the beam to the location of

the sample under study. The crystal surfaces are polished to

align with a selected crystallographic plane, and in order to

meet the diffraction condition of both crystals, these surfaces

are kept parallel or near parallel by a motorized mechanical

assembly often referred to as the crystal cage or crystal stage.

In some cases, the diffraction planes are inclined with respect

to the crystal surface, which is referred to as a miscut or

asymmetry. The implications of using such crystals will be

discussed later, but first symmetric crystals will be considered.

The crystal cage imparts multiple motions to the crystals.

They can be rotated as a pair, typically about an axis of

rotation on the surface of the first crystal. Other axes of

rotation are also sometimes selected (Golovchenko et al.,

1981; Mills & King, 1983). Rotation of the crystals sets the

angle at which the X-ray beam is incident on the crystal

diffraction planes (�), as illustrated in Fig. 2. In addition, the

second crystal pitch (��) and roll (�) can be adjusted inde-

pendently. While necessary for correction of possible crystal

misalignment, the second crystal pitch can also be used to
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Figure 1
Change of the exit beam height, �h, of a Si (111) DCM between 2.1 and 20.0 keV (a–d) due to an error, �g, in the crystal gap calibration, as determined
from equation (4) and (e–h) due to a miscut, �, that is not taken into account when setting the crystal gap, as determined from equation (11).
Multiplication of the value on the vertical axis by �g for (a–d) and hf� for (e–h) gives �h, where �h is the difference between h(�) at the value of (a, e)
energy, (b, f ) cosð�Þ, (c, g) cotð�Þ, or (d, h) � given on the horizontal axis and h(�) at 2.1 keV.



intentionally misalign, or detune, the crystals, which can

provide rejection of higher-order harmonics in the X-ray

beam. In some monochromators, the second crystal has the

ability to translate parallel to the first crystal surface within the

scattering plane of the X-rays. This motion is not necessary

if the second crystal is made sufficiently long to receive the

X-ray beam at all allowed � angles. Finally, the second crystal

can be translated in the direction perpendicular to the first

crystal surface by either an independent motion or by

mechanical coupling to the � motion. As noted above, the

adjustable crystal gap is used to maintain a constant or fixed

offset between the incoming and outgoing X-ray beams so that

the beam height does not vary at the sample position during

acquisition of an absorption spectrum.

2.1. Symmetric crystals

For symmetric crystals, the separation between the X-ray

beams entering and exiting the monochromator, h(�), is given

by the equation

hð�Þ ¼ 2gð�Þ cosð�Þ; ð1Þ

where g(�) is the distance between the crystal surfaces and

referred to here as the crystal gap. The crystal gap is

perpendicular to the surface and relevant diffraction planes

of the first crystal, which are parallel to those of the second

crystal when both crystals meet the diffraction condition. A

schematic of X-ray diffraction from a DCM that illustrates the

crystal gap, beam offset height, and incident angle is shown in

Fig. 2. Additionally, while equation (1) is well known, a deri-

vation is provided in Appendix A for the interested reader. To

find the value of g needed to obtain a given offset, one needs

only to solve equation (1) for g(�) and substitute the desired

value of the fixed offset for h(�). The value of g found in this

way is the setpoint (gs) used to set the crystal gap when

scanning the monochromator energy, and we can write

gsð�Þ ¼
hf

2 cos �
; ð2Þ

where hf is the desired fixed value of the X-ray beam offset.

Use of equation (2) to fix the exit beam height will work

well when g(�) becomes equal to gs(�) upon setting the crystal

gap. However, let us consider the case where the absolute

value of g is not well known. Such errors could be introduced

when mounting the monochromator crystals in the crystal cage

for example. Let us also assume that relative changes in g are

accurately known and controlled, as can be expected for

translation driven by a stepper motor, especially when an

encoder is included. Then the error in g is constant, and the

relationship between g(�) and gs(�) can be written

gð�Þ ¼ gsð�Þ þ �g; ð3Þ

where �g is the error or difference between the true and

desired values of g. By substituting equation (3) and then

equation (2) into equation (1), one finds

hð�Þ ¼ hf þ 2�g cos �: ð4Þ

Equation (4) shows that when there is a difference between

the actual and setpoint values of g, the offset will not be fixed

to the desired value and will instead continue to change with �.

A means for correcting the error is also indicated by

equation (4). It shows that the beam height is a linear function

of cos � with a slope of 2�g, as illustrated in Fig. 1(b). Thus, by

measuring h(�), the error can be determined and then taken

into account. However, direct determination of h through

measurement of both incoming and outgoing beam heights

may not be possible because in many DCMs the first crystal

cannot be removed from the incoming beam path, preventing

access to the incoming beam at any location downstream

of the DCM where beam-height measurement is typically

feasible. Instead, the beam height is more readily measured

with respect to some arbitrary reference point as illustrated in

Fig. 2. Therefore, h(�) can be written
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Figure 2
Schematic of the two crystals of a DCM diffracting an X-ray beam, shown
as the thick red line, incident on the first crystal at an angle, �, (a) less than
�/4, (b) equal to �/4, and (c) greater than �/4.



hð�Þ ¼ rð�Þ � r0; ð5Þ

where r(�) is the beam height measured with respect to an

arbitrary reference and r0 is the difference between the

reference position and the height of the incoming beam.

Substituting r(�) � r0 for h(�) in equation (4), one finds

rð�Þ ¼ hf þ r0ð Þ þ 2�g cos �: ð6Þ

Equation (6) represents a line having the dependent variable

r, the independent variable cos �, a slope 2�g, and an intercept

(hf + r0). Thus, the error is readily found from the slope of a

linear fit to the beam height measured as a function of cos �.
Once obtained, the error can be taken into account by reca-

librating the motor that controls the crystal gap such that the

position corresponding to 0 is changed to correspond to �g .

Because the motor is unlikely to have the ability to fully close

the crystal gap, calibration will likely be carried out at some

other motor position corresponding to some attainable

setpoint value, gs. Then the motor position that corresponds to

gs must be recalibrated to have a value g0s such that

g0s ¼ gs þ �g: ð7Þ

2.2. Asymmetric crystals

Aside from error in the calibration of the crystal gap,

changes in the exit height can also result from miscut, or

asymmetric, DCM crystals, where the asymmetry may be due

to errors in crystal polishing or intentionally introduced.

As with symmetric crystals, the exit height from a DCM with

asymmetric crystals can be fixed by adjusting the crystal gap to

account for changes in the angle of incidence, which depends

on both the miscut and �. However, a crystal may not be

known to have a miscut or the exact miscut angle may not be

precisely known. Therefore, one would be unable to correctly

account for the asymmetry, resulting in beam motion. With

small source sizes and highly focused X-rays, even small errors

in the miscut can cause variation of the exit height. As with

errors in the crystal gap, errors in the miscut can be deter-

mined from the variation of the beam height with � and then

taken into account when adjusting the crystal gap to eliminate

beam motion.

With the gap between the crystal faces, g, being perpendi-

cular to the first crystal surface but not the crystal diffraction

planes, equation (1) is no longer valid for miscut crystals, and

the angle-dependent beam height is instead expressed by

hð�Þ ¼ gð�Þ
cosð�� �Þ sinð2�Þ

sinð� þ �Þ
; ð8Þ

where � is the angle of incidence on the first and second crystal

diffraction planes, which are maintained parallel to meet the

diffraction condition on both crystals, and � and � are the

differences between � and the incident angles on the second

and first crystal surfaces, i.e. the miscut angles, respectively

(Frahm et al., 2019). A schematic of X-ray diffraction

from a DCM with asymmetric crystals is given in Fig. 3,

and a derivation of equation (8) based thereupon is given in

Appendix B.

For asymmetric crystals, the crystal gap needed to fix the

exit height is dictated by equation (8). By solving for g and

substituting the desired value of the fixed height, hf, for h(�),

one finds that for miscut crystals the crystal gap must be set

according to

gsð�Þ ¼ hf

sinð� þ �Þ

cosð�� �Þ sinð2�Þ
: ð9Þ

If the asymmetry is ignored and the setpoint is selected using

equation (2), then the beam height will continue to change

with � according to

hð�Þ ¼ hf

cosð�� �Þ sin �

sinð� þ �Þ
; ð10Þ

which is found by substituting the right-hand side of equation

(2) for g(�) and 2 sin � cos � for sinð2�Þ in equation (8) (Frahm

et al., 2019). For small � and �, equation (10) becomes

hð�Þ ¼ hfð1� � cot �Þ: ð11Þ

Unlike equation (4), which is linear in cos �, equation (11) is

linear in cot �, as shown in Fig. 1(g). Thus, an error in the

height due to the presence of a miscut can be readily distin-

guished from an error due to a difference in the actual and

setpoint values of the crystal gap. In Figs. 1(e) and 1( f), the

beam height calculated from equation (11) is plotted as a

function of energy and cos �, respectively. It illustrates that

beam height changes more at larger values of cos � and is

nearly linear in energy. This is markedly different from the

larger changes in height at lower energies that occur due to a

difference in the actual and setpoint values of g.

In principle, if a miscut of unknown angle is present, it could

be determined from the angular variation in height. When

measured with respect to an arbitrary reference, as described

by equation (5), equation (11) becomes

rð�Þ ¼ hf þ r0ð Þ � hf � cot �: ð12Þ

Thus, � can be determined from the slope of a linear fit to the

measured beam height versus cot �. Note that while a residual

error in � will cause the fixed offset to deviate slightly from the
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Figure 3
Schematic of the two crystals of a DCM diffracting an X-ray beam, shown
as the thick red line, incident on the diffraction planes of the crystals at an
angle �. The diffraction planes, indicated on the crystals by blue lines, are
inclined with respect to the first and second crystal surfaces by angles of �
and �, respectively.



desired value, this deviation will not change with �, and beam

motion will not occur. Therefore, for the purpose of elim-

inating beam motion, one can generally assume that � has the

same value as �. Furthermore, in some cases, � may be too

large for equation (11) to sufficiently approximate equation

(10). In such cases, the true value of � can be considered as the

sum of a value used to set the crystal gap, �s, and an error in

this value, �� , and the small-angle approximation can then be

applied to �� rather than �. This scenario is discussed further

in Appendix C.

When both errors due to a miscut and miscalibration of the

crystal gap are present, the beam height will vary according to

hð�Þ ¼ cosð�� �Þ
hf sin � þ �g sinð2�Þ

sinð� þ �Þ
; ð13Þ

which is found by substituting equation (3) and then equation

(2) into equation (8) and again utilizing the relationship

2 sin � cos � = sinð2�Þ. For small � and � this becomes

hð�Þ ¼ ð1� � cot �Þ hf þ 2�g cos �
� �

: ð14Þ

Combining with equation (5), the beam height measured with

respect to an arbitrary reference is found to be

rð�Þ ¼ ð1� � cot �Þ hf þ 2�g cos �
� �

þ r0: ð15Þ

The measured angle dependence of the height can be fit with

equation (15) to determine � and �g.

Due to potential correlations between fit variables, several

iterations may be needed to ensure a successful correction,

and one may wish to separately determine � and �g . This can

be accomplished by measuring the � dependence of the height

two times, where after the first measurement an additional

error (�0g) is intentionally added to g by recalibrating the motor

that controls the crystal gap such that 0 becomes �0g . Then, for

the second measurement, the beam height is given by

rð�Þ ¼ ð1� � cot �Þ
�
hf þ 2 �g þ �

0
g

� �
cos �

�
þ r0: ð16Þ

The difference between the second and first measurements is

�rð�Þ ¼ 2�0g cos �ð1� � cot �Þ; ð17Þ

and, in equation (17), � is the only remaining unknown. After

� is determined by fitting the difference between the second

and first series of measurements, �g can be determined by

fitting the measured values of r with equation (15) or (16),

making sure to take proper account of �0g . After finding �g , the

motor that controls the crystal gap can be recalibrated as

described by equation (7). A fixed offset can then be effec-

tively maintained by using equation (9) to set the crystal gap,

where both � and � can be set to the value of � determined

from fitting of �r(�) with equation (17).

3. Application

We have applied the method described above to mitigate error

in the fixed offset of the Si(111) DCM at beamline 9-BM of the

Advanced Photon Source (APS). The distances between the

bending magnet source and all relevant beamline components

are given in Table 1. The DCM is located 26.6 m from the

bending magnet source and can maintain a fixed offset, h, at

any value between 20 and 25 mm over its full energy range.

The exit beam height was measured at values of cos � from

0.3828 to 0.9948 in intervals of 0.006. This corresponds to an

energy range from 2140 eV to 19350 eV, which spans the K-

edges of P to Nb. At each cos � value, a phosphor screen

located 28.1 m from the source and mounted on a stepper-

motor-driven linear-motion stage was translated through the

beam. The beam intensity incident on the screen was moni-

tored by measuring the total electron yield from the screen,

which was biased by a 24 V battery. The beam intensity after

the screen was detected with a helium-filled ion chamber

located approximately 57 m from the source. Both detection

methods yield similar results. An upward-bounce Rh-coated

toroidal focusing mirror was located 29.4 m from the source,

which is downstream of both the phosphor screen and DCM

and upstream of the ion chamber. A roughly 10 mm-thick

aluminium foil was placed in front of the screen to absorb

low-energy, i.e. ultraviolet, synchrotron radiation, which can

contribute to the electron yield signal. The foil will also absorb

most of the radiation from the fundamental reflections of

the Si (111) crystals at the lowest energies at which the beam

height was measured. However, sufficient intensity from

higher-order harmonics is present for measurement.

The X-ray beam intensity was monitored as a function of

the fluorescence screen height, I(rsc), as the screen was

translated through the beam at each cos � value. The beam

height, r, was determined by taking the center of mass of a

Gaussian fit to the first derivative of I(rsc). Figure 4 shows

I(rsc) measured at � = 48.8� and illustrates the typical behavior

of I(rsc) where the intensity is seen to drop as the screen passes

through the beam. The derivative of I(rsc), which is peaked

about the point where the screen passes through the beam,

and the value of r(48.8�) determined therefrom are also shown

in Fig. 4. Before each scan of the screen through the X-ray

beam, the second crystal pitch was scanned to obtain the

double-crystal rocking curve, as shown for example in the inset

to Fig. 4, and then set to the position that maximized the beam

intensity. At each cos � value, the second crystal roll was also

scanned and set to the position that centered the beam on a

horizontal slit located in front of the ion chamber.

Measured values of rðcos �Þ are shown in Fig. 5. In the initial

measurement (red circles), r increases linearly with cos �, as

expected for symmetric crystals. Also as expected from the

relationship between � and X-ray energy, most of the height
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Table 1
Distance from the bending magnet source to relevant components of
beamline 9-BM.

Beamline component Distance to source (m)

White-beam slit 25.7
DCM 26.6
Al foil 28.0
Phosphor screen 28.1
Focusing mirror 29.4
Mono-beam slit 56.7
Ion chamber 57.0



change occurs at the lowest X-ray energies examined, as

shown in the inset to Fig. 5. A linear fit to rðcos �Þ, shown by

the black line, has a slope of 428(3) mm. According to equation

(6), �g is equal to half of the slope, which is 214 mm. Following

equation (7), the motor that controls the crystal gap was

recalibrated such that any position previously having a value

gs now has a value g0s = gs + 214 mm. After calibration, the

beam height was measured again and is now relatively

constant compared with before calibration, as shown by the

blue–green isotoxal stars in Fig. 5.1

4. Additional considerations

Energy-dependent changes of the angle at which the beam

exits the monochromator may also be present, if, due to other

instrumental errors, the second crystal pitch at which intensity

is maximized varies with �. This could result from parasitic

motion of the second crystal pitch with changes in �. It could

also result from dispersion introduced by different lattice

parameters of the two crystals, which will occur when they are

at different temperatures. For a given energy, the Bragg angles

of the two crystals would then differ, and the X-ray beam

would exit the monochromator at an angle of 2�� with respect

to the incoming beam, where �� is the difference in Bragg

angles of the two crystals. Because the first crystal receives

the full energy spectrum of the X-ray source and is therefore

typically actively cooled, while the second crystal receives only

the monochromatic beam created by the first crystal and is not

typically cooled, some temperature differential is likely. For a

small difference in Bragg angles between the two crystals, the

monochromator exit angle will vary with � as (Proux et al.,

2006)

2�� ¼ �2 tanð�Þ �d=d; ð18Þ

where d is the spacing between crystal diffraction planes.2

Furthermore, depending on the finite thermal conductivity of

the crystal and active cooling capacity, variation in the local

crystal temperature can occur with changes in �, resulting in an

additional � dependence of �d in equation (18). These effects

can result in a loss of the tuning of the second crystal pitch, i.e.

a change in its position on the double-crystal rocking curve,

and motion of the X-ray beam as energy is scanned over the

roughly 1 keV energy range of an extended X-ray absorption

fine-structure (EXAFS) spectrum, even when the crystal gap

is well calibrated.

Mechanical instabilities of the monochromator can also

change the beam exit angle during energy scanning, and while

typically small, these changes become significant for highly

focused X-ray beams (Tucoulou et al., 2008). The focal posi-

tion of a toroidal mirror or Kirkpatrick–Baez (KB) mirror

depends on the source position, and changes of the incident
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Figure 4
Intensity (I) of the monochromatic synchrotron X-ray beam as a function
of phosphor screen position (rsc) at � = 48.8� and its derivative. The
intensity was measured by a helium-filled ion chamber downstream of the
screen as the screen was translated through the X-ray beam. The beam
height, r, determined from the scan is shown by the vertical blue dotted
line. [Inset] Double-crystal rocking curve. The second crystal pitch was set
to the angle that maximizes I before measuring I(rsc).

Figure 5
X-ray beam height (r) exiting the DCM measured as a function of the
cosine of the incident angle on the first crystal (�). [Inset] Change in X-ray
beam height (�r) with energy before and after crystal gap calibration.

1 � is estimated to be 0.004(1)� from fitting of r(�) measured after calibration
with equation (12).

2 Equation (18) is found by taking the derivative of Bragg’s law with respect to
d, where the exit angle is two times the difference in Bragg angles.



angle at which the beam strikes the mirror are equivalent to

virtual motion of the source (Tucoulou et al., 2008). In the

presence of errors that change the beam’s exit angle from the

DCM, the angle of incidence upon the mirror will become a

function of �, and the location of the focal point will therefore

change with energy. This can result in changes of the beam

position as well as the beam shape and size on the sample

during an EXAFS scan. If the motion is small, use of a vertical

slit in front of the sample will minimize this effect, though

with the drawback of a reduction in X-ray flux (Heald &

Hastings, 1981).

Angular errors can be readily corrected by a feedback

system that adjusts the second crystal pitch (Prestipino et al.,

2011; Mills & Pollock, 1980; Golovchenko et al., 1981; Fischetti

et al., 2004; Proux et al., 2006; Stoupin et al., 2010; van Silfhout

et al., 2014; Zohar et al., 2016a,b). Furthermore, when angular

errors resulting from parasitic motion of the second crystal are

present and dispersion is negligible, a feedback system that

keeps the intensity of the X-ray beam maximized will also

maintain the vertical position of the X-ray beam if and only

if the crystal gap is well calibrated. However, such a system

could prevent detuning of the crystals or limit detuning

to specific positions on the double-crystal rocking curve

(Golovchenko et al., 1981). To allow the crystals to be arbi-

trarily detuned from the maximum of the double-crystal

rocking curve, feedback on a position-sensitive detector can

be used. A feedback system that adjusts the second crystal

pitch to maintain the beam position will also maintain the

crystal tuning and beam intensity if the crystal gap is well

calibrated, again for the case where angular errors result from

parasitic motion of the second crystal and dispersion is

negligible.

When a crystal-temperature differential is present, angular

errors due to dispersion will remain even when the second

crystal pitch is optimally tuned, and the beam height will vary

by 2z��, where z is the distance between the sample and DCM.

Thus, to avoid beam motion, feedback using a position-

sensitive detector may be preferred. In this case, the tuning

will vary as energy is changed, which is acceptable as long as

sufficient flux is maintained. When dispersion is large enough

to degrade the flux over the range of an EXAFS scan, intensity

feedback in combination with other strategies to retain the

position of the beam on the sample may be optimal. One such

strategy is synchronous adjustment of the sample position

while scanning energy (Proux et al., 2006).

Appropriate adjustment of the crystal gap can also be used

as a strategy to correct for beam motion due to dispersion. The

beam height at the sample will vary according to

hð�Þ ¼ 2gð�Þ cos � � 2z tanð�Þ �d=d; ð19Þ

with respect to the height of the beam entering the DCM.

Solving for g, one finds the crystal-gap setpoint is given by

gs ¼
dhfs þ 2z�d tan �

2d cos �
; ð20Þ

where the desired fixed height at the sample, hfs, has been

substituted for h(�). Setting the crystal gap according to

equation (20) will prevent beam motion at the sample.

However, because the angle of the outgoing beam will still

vary with �, vertical beam motion will be present away from

the sample with beam-height variation being largest at the

DCM. Thus, if such a strategy were employed, consideration

should also be given to the impact of beam motion on other

optical elements such as mirrors and slits.

In aggregate, the above considerations illustrate that accu-

rate calibration of the crystal gap has advantages even when

feedback systems are used to maintain the beam position or

intensity.

5. Summary and conclusion

In order to fix the height of the X-ray beam exiting a DCM,

the true separation between the crystals must accurately

correspond to the setpoint value. Error in the calibration of

the crystal gap will lead to unwanted motion of the X-ray

beam as energy is adjusted or scanned. Additionally,

unwanted monochromator crystal asymmetry or errors in the

miscut of asymmetric crystals will also lead to changes in beam

height as energy is varied. Here, we show how these errors

relate to and can be extracted from the variation in X-ray

beam height with monochromator crystal Bragg angle. Over a

range of incident angles, we determine the height of the X-ray

beam at a XAFS beamline from the position at which a screen

translated vertically through the beam alters the measured

intensity. From this, the error in the crystal gap is obtained.

After correcting for the error, the height variation with energy

is found to be negligible. Along with measures to correct other

errors in the motions of a DCM, such as feedback, careful

calibration of the crystal gap by the simple method presented

here produces robust position and intensity stability of the

delivered beam at a XAFS beamline.

APPENDIX A
X-ray beam height of a DCM with symmetric crystals

The crystals of a DCM with the X-ray beam striking the first

crystal at angles of incidence less than �/4, equal to �/4, and

greater than �/4, are illustrated in Figs. 2(a), 2(b) and 2(c),

respectively. In going from the first to the second crystal, the

X-ray beam travels a distance l and, when the first and second

crystal diffraction planes are parallel, strikes the second

crystal at the angle �. The minimum separation between the

crystals, g, is related to the distance l and the angle of inci-

dence on the second crystal by

g ¼ l sinð�Þ: ð21Þ

From inspection of Fig. 2, this holds for all �.
The first crystal deflects the X-ray beam by an angle of 2�

with respect to the path of the incoming beam. From inspec-

tion of Fig. 2(a), the separation between the incoming and

outgoing beams (h) is related to the beam path length and

deflection angle by

h ¼ l sinð2�Þ; ð22Þ
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when the incident angle is less than �/4.

For an angle of incidence equal to �/4, inspection of Fig. 2(b)

indicates

h ¼ l: ð23Þ

Substitution of �/4 into equation (22) also gives this result.

Thus equation (22) holds true for � = �/4.

For an incident angle greater than �/4, inspection of Fig. 2(c)

shows that h is related to the path length and deflection angle

by

h ¼ l sinð�� 2�Þ: ð24Þ

From the mirror symmetry of the sine function about the angle

�/2, sinð�� 2�Þ = sinð2�Þ, and upon substitution into equation

(24), one obtains equation (22). Thus equation (22) holds true

for all �.

To relate h to g, one can then solve equation (21) for l and

substitute into equation (22), which gives

h ¼
g

sinð�Þ
sinð2�Þ ¼

g

sinð�Þ
2 sinð�Þ cosð�Þ ¼ 2g cosð�Þ: ð25Þ

This is exactly equation 1.

APPENDIX B
X-ray beam height of a DCM with asymmetric crystals

Figure 3 shows the crystals of a DCM with the X-ray beam

striking the diffraction planes of the first crystal at an angle �
and the first crystal surface at an angle � � �, where � is the

miscut angle of the first crystal. The first crystal diffracts the

X-ray beam by an angle of 2� with respect to the incoming

beam path and an angle of � + � with respect to the first crystal

surface. Thus, the angle between the first crystal surface

normal and the diffracted beam is �/2 � (� + �). The

diffracted beam strikes the second crystal diffraction planes,

which are parallel to those of the first crystal, at an angle � and

the second crystal surface at an angle � + �, where � is the

miscut angle of the second crystal. The crystal gap originates

from the first crystal surface at the point where the incident

X-ray beam strikes and extends perpendicular to the first

crystal surface until reaching that of the second crystal.

Therefore, the crystal gap, the second crystal surface, and the

beam path between the first and second crystals form a

triangle from which the angle between the crystal gap and

second crystal surface is found to be �/2 � � + �. From the law

of sines, the distance the beam travels from the first to the

second crystal, l, is then determined to be

l ¼ g
sin½ð�=2Þ � �þ ��

sinð� þ �Þ
¼ g

cosð�� �Þ

sinð� þ �Þ
: ð26Þ

The outgoing beam height is related to l by equation (22), and

upon substituting the right-hand side of equation (26) for l in

equation (22), one finds

h ¼ g
cosð�� �Þ sinð2�Þ

sinð� þ �Þ
; ð27Þ

which is exactly equation (8).

APPENDIX C
Error in the X-ray beam height of a DCM with crystals
having a large asymmetry

In some cases, the crystal miscut may be too large for equation

(11) to provide a sufficient approximation of equation (10).

The specific value of � at which the equation fails will depend

on how much error in beam height a specific beamline can

tolerate, which is determined by the specific details of the

beamline such as source size and focusing optics. In cases

where a sufficient correction is not achieved using the value

of � determined from equation (11), or more generally when

the crystal gap is being set using equation (9), the value of

� can be found by considering the error in � in a way similar

to which the error in the crystal gap was considered in

Section 2.1. To do so, � is expressed in terms of the value used

to set the crystal gap (�s) and an error in this value (��) such

that

� ¼ �s þ ��: ð28Þ

Similarly, � can be written

� ¼ �s þ ��; ð29Þ

where the setpoint value of � is chosen to be equal to that of �.

The crystal gap is then set using �s in place of � and � in

equation (9), which gives

gsð�Þ ¼ hf

sinð� þ �sÞ

sinð2�Þ
: ð30Þ

Substituting the respective right-hand sides of equations (28),

(29) and (30) for �, �, and g(�) in equation (8) gives

hð�Þ ¼ hf

cosð�� � ��Þ sinð� þ �sÞ

sinð� þ �s þ ��Þ
: ð31Þ

For small �� and ��, this becomes

hð�Þ ¼ hf

�
1� �� cotð� þ �sÞ

�
: ð32Þ

Finally, the height measured with respect to an arbitrary

reference position, as given by equation (5), is

rð�Þ ¼ ðhf þ r0Þ � hf �� cotð� þ �sÞ; ð33Þ

which can be used in the same manner as equation (12) to

determine �� and thereby �.

When an error in the crystal gap calibration is present in

addition to an error in �, the monochromatic beam exit height

is given by

hð�Þ ¼
hf sinð� þ �sÞ þ �g sinð2�Þ

sinð� þ �sÞ þ �� cosð� þ �sÞ
; ð34Þ

which is found by substituting equations (3), (28) and (29) and

then equation (30) into equation (8) and then applying the

small-angle approximation for �� and �� . When measured with

respect to an arbitrary reference point, the beam height is then

rð�Þ ¼
hf sinð� þ �sÞ þ �g sinð2�Þ

sinð� þ �sÞ þ �� cosð� þ �sÞ
þ r0: ð35Þ

As discussed in Section 2.2, to independently determine � and

�g, an additional error of known magnitude, �0g, can be added
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to the crystal gap setpoint, the beam height can be measured a

second time, and the two beam height measurements can be

subtracted. When applied using equation (35), this gives

�rð�Þ ¼
�0g sinð2�Þ

sinð� þ �sÞ þ �� cosð� þ �sÞ
; ð36Þ

where �� is the only unknown. After determining �� from

�r(�), �g can be found from r(�) using equation (35).
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Kraft, S., Stümpel, J., Becker, P. & Kuetgens, U. (1996). Rev. Sci.
Instrum. 67, 681–687.

Kropf, A. J., Katsoudas, J., Chattopadhyay, S., Shibata, T., Lang, E. A.,
Zyryanov, V. N., Ravel, B., McIvor, K., Kemner, K. M., Scheckel,
K. G., Bare, S. R., Terry, J., Kelly, S. D., Bunker, B. A., Segre, C. U.,
Garrett, R., Gentle, I., Nugent, K. & Wilkins, S. (2010). AIP Conf.
Proc. 1234, 299–302.

Krumrey, M. (1998). J. Synchrotron Rad. 5, 6–9.
Krumrey, M., Herrmann, C., Müller, P. & Ulm, G. (1998). J.

Synchrotron Rad. 5, 788–790.
Lee, P. A., Citrin, P. H., Eisenberger, P. & Kincaid, B. M. (1981). Rev.

Mod. Phys. 53, 769–806.
Liu, H., Zhou, Y., Jiang, Z., Gu, S., Wei, X., Huang, Y., Zou, Y. & Xu,

H. (2012). J. Synchrotron Rad. 19, 969–975.
Manceau, A., Marcus, M. A. & Grangeon, S. (2012). Am. Mineral. 97,

816–827.
Manceau, A., Marcus, M. A. & Tamura, N. (2002). Rev. Mineral.

Geochem. 49, 341–428.
Mikkelsen, J. C. & Boyce, J. B. (1982). Phys. Rev. Lett. 49, 1412–1415.
Mills, D. & Pollock, V. (1980). Rev. Sci. Instrum. 51, 1664–1668.
Mills, D. M. & King, M. T. (1983). Nucl. Instrum. Methods Phys. Res.

208, 341–347.
Müller, O., Lützenkirchen-Hecht, D. & Frahm, R. (2015). Rev. Sci.

Instrum. 86, 093905.
Müller, O., Nachtegaal, M., Just, J., Lützenkirchen-Hecht, D. &

Frahm, R. (2016). J. Synchrotron Rad. 23, 260–266.
Nonaka, T., Dohmae, K., Araki, T., Hayashi, Y., Hirose, Y., Uruga, T.,

Yamazaki, H., Mochizuki, T., Tanida, H. & Goto, S. (2012). Rev. Sci.
Instrum. 83, 083112.

Prestipino, C., Mathon, O., Hino, R., Beteva, A. & Pascarelli, S.
(2011). J. Synchrotron Rad. 18, 176–182.

Proux, O., Nassif, V., Prat, A., Ulrich, O., Lahera, E., Biquard, X.,
Menthonnex, J.-J. & Hazemann, J.-L. (2006). J. Synchrotron Rad.
13, 59–68.

Richwin, M., Zaeper, R., Lützenkirchen-Hecht, D. & Frahm, R.
(2001). J. Synchrotron Rad. 8, 354–356.

Sayers, D. E., Heald, S. M., Pick, M. A., Budnick, J. I., Stern, E. A. &
Wong, J. (1983). Nucl. Instrum. Methods Phys. Res. 208, 631–635.

Segre, C. U., Leyarovska, N. E., Chapman, L. D., Lavender, W. M.,
Plag, P. W., King, A. S., Kropf, A. J., Bunker, B. A., Kemner, K. M.,
Dutta, P., Duran, R. S. & Kaduk, J. (2000). AIP Conf. Proc. 521,
419–422.

Silfhout, R. van, Kachatkou, A., Groppo, E., Lamberti, C. & Bras, W.
(2014). J. Synchrotron Rad. 21, 401–408.

Sterbinsky, G. E., Ryan, P. J., Kim, J.-W., Karapetrova, E., Ma, J. X.,
Shi, J. & Woicik, J. C. (2012). Phys. Rev. B, 85, 020403.
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