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Tomographic algorithms are often compared by evaluating them on certain

benchmark datasets. For fair comparison, these datasets should ideally (i) be

challenging to reconstruct, (ii) be representative of typical tomographic

experiments, (iii) be flexible to allow for different acquisition modes, and (iv)

include enough samples to allow for comparison of data-driven algorithms.

Current approaches often satisfy only some of these requirements, but not all.

For example, real-world datasets are typically challenging and representative of

a category of experimental examples, but are restricted to the acquisition mode

that was used in the experiment and are often limited in the number of samples.

Mathematical phantoms are often flexible and can sometimes produce enough

samples for data-driven approaches, but can be relatively easy to reconstruct

and are often not representative of typical scanned objects. In this paper, we

present a family of foam-like mathematical phantoms that aims to satisfy all

four requirements simultaneously. The phantoms consist of foam-like structures

with more than 100000 features, making them challenging to reconstruct and

representative of common tomography samples. Because the phantoms are

computer-generated, varying acquisition modes and experimental conditions

can be simulated. An effectively unlimited number of random variations of the

phantoms can be generated, making them suitable for data-driven approaches.

We give a formal mathematical definition of the foam-like phantoms, and

explain how they can be generated and used in virtual tomographic experiments

in a computationally efficient way. In addition, several 4D extensions of the

3D phantoms are given, enabling comparisons of algorithms for dynamic

tomography. Finally, example phantoms and tomographic datasets are given,

showing that the phantoms can be effectively used to make fair and informative

comparisons between tomography algorithms.

1. Introduction

In tomographic imaging, an image of the interior of a scanned

object is obtained by combining measurements of some form

of penetrating wave passing through the object. Tomographic

imaging is routinely used in a wide variety of application fields,

including medical imaging (Goo & Goo, 2017), materials

science (Salvo et al., 2003), biomedical research (Metscher,

2009), and industrial applications (De Chiffre et al., 2014). To

extract relevant information from the acquired data, the

measurements are often processed by several mathematical

algorithms in a processing pipeline. Common processing steps

include tomographic reconstruction (Kak et al., 2002; Marone

& Stampanoni, 2012; Ravishankar et al., 2020), artifact

removal (Barrett & Keat, 2004; Münch et al., 2009; Miqueles

et al., 2014), and image segmentation (Iassonov et al., 2009;

Foster et al., 2014; Perciano et al., 2017). Because of the

importance of tomography in practice, a wide variety of

algorithms have been developed for these processing steps,

and tomographic algorithm development remains an active
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research field. In addition to classical image processing algo-

rithms, the use of data-driven machine learning algorithms has

become popular in tomography in recent years (Jin et al., 2017;

Yang et al., 2017; Pelt et al., 2018; Adler & Öktem, 2018; Liu et

al., 2020; Yang et al., 2020).

To properly assess the available algorithms, it is essential to

compare them with each other in a fair, reproducible, and

representative way. Such comparisons are important for

algorithm developers to understand how newly developed

algorithms compare with existing approaches. Proper

comparisons are also important for end users of tomographic

imaging to learn which algorithms to use for certain experi-

mental conditions, and to know what results to expect from

each available algorithm. A common approach to compare

tomography algorithms is to take a set of tomographic data-

sets, apply several algorithms to the data, and compare results.

To make this approach as informative as possible, the chosen

datasets should ideally satisfy the following requirements:

(i) The datasets should be challenging: it should not be

trivial to obtain accurate results for them.

(ii) The datasets should be representative of typical objects,

experimental conditions, and data sizes that are used in

practice.

(iii) The datasets should be flexible with respect to object

complexity and experimental properties, making it possible

to explore the capabilities and limitations of each algorithm

for different acquisition modes, experimental conditions, and

object complexities.

(iv) The datasets should include enough samples to allow

for the comparison of data-driven algorithms that require a

large number of similar samples for training and testing.

The datasets that are used to compare algorithms in the

current literature typically satisfy some of the requirements

above, but not all. For example, real-world datasets from

public databases (Hämäläinen et al., 2015; McCollough et al.,

2017; Jørgensen et al., 2017; Singh et al., 2018; De Carlo et al.,

2018; Der Sarkissian et al., 2019) are often used for compar-

ison. While these datasets are both challenging and repre-

sentative since they are obtained in actual tomographic

experiments, they are typically not flexible as it is impossible

to change the acquisition mode and experimental conditions

that were used in the experiment. In addition, while some

datasets are specifically designed for data-driven applications

(McCollough et al., 2017; Der Sarkissian et al., 2019), other

real-world datasets are often not suitable for data-driven

approaches, since the number of scanned samples is often

limited.

A common alternative to comparing results for real-world

datasets is to use computer-generated phantom images for

which virtual tomographic datasets are computed. One

advantage of using such mathematical phantoms is that the

true object is readily available, allowing one to compute

accuracy metrics with respect to an objective ground truth.

Another advantage is that this approach is flexible: since the

tomographic experiment is performed virtually, different

acquisition modes and experimental conditions can be easily

simulated.

Popular examples of phantoms used in tomography include

the Shepp–Logan head phantom (Shepp & Logan, 1974), the

FORBILD head phantom (Yu et al., 2012), and the MCAT

phantom (Segars & Tsui, 2009). In addition to predefined

phantom images, several software packages have been

recently introduced that allow users to design their own

custom mathematical phantoms and generate simulated

tomography datasets for them (Ching & Gürsoy, 2017; Faragó

et al., 2017; Kazantsev et al., 2018). The main disadvantage of

popular mathematical phantoms is that they typically consist

of a small number of simple geometric shapes (i.e. less than

100). As a result, the phantoms are often not representative

of real-world objects, which typically contain a much larger

number of more complicated features. Several often-used

phantoms, e.g. the Shepp–Logan head phantom, consist of

large uniform regions and can therefore be relatively easy to

reconstruct accurately using certain algorithms, making it

difficult to compare algorithms using these phantoms. Finally,

predefined phantoms usually consist of only a single sample

and manually defined phantoms require considerable time to

design, making it difficult to effectively use them for data-

driven approaches that require multiple samples for training.

Because of the aforementioned disadvantages of both real-

world datasets and mathematical phantoms, a hybrid approach

is used in practice as well (Adler & Öktem, 2018; Leuschner et

al., 2019; Hendriksen et al., 2020). In this approach, recon-

structed images of real-world tomographic datasets are

treated as phantom images for which virtual tomographic

datasets are computed. In this way, different acquisition

modes and experimental conditions can be simulated for

realistic phantom images. However, the approach has several

disadvantages when comparing algorithms with each other.

First, the reconstructed images have to be represented on a

discretized voxel grid and often include various imaging arti-

facts, resulting in inaccurate representations of the actual

scanned objects. Second, the approach can lead to the ‘inverse

crime’, i.e. when the same image formation model is used for

both data generation and reconstruction, which can lead to

incorrect and misleading comparison results (Guerquin-Kern

et al., 2012). Finally, since imaging artifacts such as noise and

data sampling artifacts are present in the phantom images,

artifact-free objective ground truth images with which to

compute accuracy metrics are not readily available.

To summarize, new datasets are needed that satisfy all

requirements given above for improved comparisons between

tomography algorithms. In this paper, we present a family of

mathematically defined phantoms that aim to satisfy all

requirements. The phantoms consist of three-dimensional

foam-like structures and can include more than 100000

features. Since foam-like objects are often investigated using

tomography (Babin et al., 2006; Roux et al., 2008; Hangai et al.,

2012; Raufaste et al., 2015; Evans et al., 2019), the proposed

phantoms are representative of a popular class of objects.

Furthermore, foam-like objects are typically challenging to

accurately reconstruct and analyze due to the fact that they

exhibit both large-scale and fine-scale features (Brun et al.,

2010), making them well suited for comparing tomography
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algorithms. Tomographic datasets can be computed for the

proposed phantoms for a wide variety of experimental

conditions and acquisition modes and with data sizes that are

common in real-world experiments, making the approach both

flexible and representative. Finally, an effectively unlimited

number of random variations of samples can be generated,

enabling comparisons of data-driven algorithms that require

multiple samples for training.

The proposed family of simulated foam phantoms has

already been used for comparing algorithms in several papers

from various research groups (Pelt et al., 2018; Hendriksen et

al., 2019, 2020; Liu et al., 2020; Etmann et al., 2020; Marchant

et al., 2020; Renders et al., 2020; Ganguly et al., 2021). In this

paper, a formal definition of the phantoms is given, and

mathematical and computational details about both the

phantom generation and tomographic experiment simulation

are discussed. This paper is structured as follows. In Section

2.1 a mathematical description of the foam phantoms is given,

and in Section 2.2 we introduce an algorithm that can compute

such phantoms efficiently. We explain how, given a generated

foam phantom, tomographic projections can be computed in

Section 2.3. Several 4D (i.e. dynamic) variations of the

proposed phantoms are introduced in Section 2.4. In Section 3,

several experiments are performed to investigate the influence

of various parameters on the generated phantoms, the

computed projection data, and the final tomographic recon-

struction. Furthermore, we discuss the required computation

time for generating phantoms and computing projection data.

In Section 4, we give a few concluding remarks.

2. Method

In this section, we give the mathematical definition of the

proposed family of phantoms, and describe how such phan-

toms can be efficiently generated. In addition, we explain how

projection images can be computed for both parallel-beam

and cone-beam geometries. As explained above, the main

inspiration for the design of these phantoms is the continued

popularity of investigating a wide variety of real-world foam

samples using tomography. In Fig. 1, two examples are given of

such samples, in addition to an example of a foam phantom

from the proposed family of phantoms, showing the simila-

rities in features between the proposed foam phantoms and

real-world foam samples.

2.1. Mathematical description

In short, each phantom from the foam phantom family

consists of a single-material cylinder with a large number (e.g.

>100000) of non-overlapping spheres of a different material

(or multiple different materials) inside. A more detailed

explanation follows. Each phantom is defined in continuous

3D space R3. In all phantoms, a cylinder is placed in the origin,

parallel to the z-axis (the rotation axis). This cylinder has an

infinite height and a radius of 1, with all other distances

defined relative to this unit radius. Inside the main cylinder, N

non-overlapping spheres are placed, which will be called voids

in the rest of this paper. Each void i has a radius ri 2 R

and a position pi 2 R
3 with pi = (xi , yi , zi). The area outside

the main cylinder consists of a background material that

does not absorb any radiation, i.e. all positions (x, y, z) with

(x2 + y2)1/2 > rC where rC is the radius of the main cylinder

(defined to be rC = 1). The foam itself, i.e. all positions that are

within the main cylinder but not inside a void, consists of a

single material with an attenuation coefficient of 1, with all

other attenuation coefficients defined relative to this. Each

separate void in the phantom can be filled with a different

material, each with its own user-defined attenuation coeffi-

cient ci 2 R. In the default settings, all voids are filled with

the background material. To summarize, each void i can

be completely characterized by a vector si 2 R
5 with five

elements: its position xi , yi , and zi , its radius ri, and its

attenuation coefficient ci . Similarly, each foam phantom is

completely characterized by the set of si vectors of all voids

S = {s1, s2, . . . , sN}. The definition of a foam phantom is shown

graphically in Fig. 2.

The vertical size of a phantom is controlled by ensuring that

the zi position of each void i satisfies

jzij � zmax, with a maximum position

zmax 2 R. In addition, no part of any

void is allowed to exist outside the main

cylinder, i.e. ðx2
i þ y2

i Þ
1=2 + ri � 1 for

all voids. Also, no part of any void is

allowed to overlap with any other void,

i.e. d(pi , pj) � ri + rj for all voids i and j,

where d(a, b) is the Euclidian distance

between points a and b. Finally, the size

of the voids is controlled by choosing a

maximum radius rmax and ensuring that

ri � rmax for all voids.

2.2. Phantom generation

Foam phantoms are generated by

starting with the main cylinder and

repeatedly adding voids until N voids

computer programs
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Figure 1
Two examples of X-ray computed tomography images of foam samples (left, middle), and an
example of a computer-generated phantom from the proposed foam phantom family (right). In all
three images, a cropped region of the entire sample is shown. A graphite foam sample (Evans et al.,
2019; Evans, 2019) is shown on the left, and a liquid foam sample (Raufaste et al., 2015), available at
Tomobank (De Carlo et al., 2018), is shown in the middle.



are placed. When placing the ith void at position pi , the radius

of the new void is limited by three considerations: (1) the

distance to the outside of the main cylinder, 1� ðx2
i þ y2

i Þ
1=2,

(2) the distance to the closest edge of any existing void, i.e.

min j¼ 1;...;i�1½dð pi; pjÞ � rj�, and (3) the maximum allowed

radius rmax. The final radius ri is chosen to be as large as

possible, meaning that

ri ¼ min

�
1� ðx2

i þ y2
i Þ

1=2; min
j

�
dð pi; pjÞ � rj

�
; rmax

�
: ð1Þ

Since placed voids are made as large as possible, the size of

newly placed voids naturally becomes smaller during the

generation of the phantom: at the end of phantom generation,

not much room is left for any new voids, resulting in smaller

sizes. Another consequence is that each void i either touches

the outside of the main cylinder, i.e. ðx2
i þ y2

i Þ
1=2
þ ri = 1, or

touches at least one other void, i.e. d(pi , pj) = ri + rj for some j.

As a result, the radius of none of the voids can be increased

without either making the void overlap another void or having

part of the void outside the main cylinder.1

We found empirically that realistic looking phantoms (see

Fig. 1) are obtained when new voids are placed in positions

that allow for the largest possible void size out of all possible

positions. Finding such optimal positions given a partial set of

voids is not trivial, since the number of possible positions is, in

theory, infinite. We note that it might be possible to determi-

nistically find an optimal position in a computationally effi-

cient way by using a plane sweep algorithm approach

(Nievergelt & Preparata, 1982). However, we propose to use a

much simpler approach: a set of Np randomly picked trial

points is available at all times, in which each trial point is a

valid position where a void could be placed (i.e. inside the

main cylinder but not inside an existing void). Then, out of all

trial points, a void is placed at the point that results in the

largest void. There are several advantages to this approach:

(1) it is relatively simple to implement, (2) it is random in

nature, enabling the generation of an infinite number of

different phantoms, and (3) it is computationally efficient,

allowing generation of phantoms with many voids within

reasonable time.

To summarize, the algorithm to generate foam phantoms

works as follows:

(1) Create a list of Np trial points, randomly placed within

the main cylinder and satisfying the maximum height zmax.

(2) Pick the trial point that results in the largest void (if

multiple exist, randomly select one) and remove it from the

list.

(3) Add a void at the picked trial point with the largest

possible radius [equation (1)].

(4) Remove trial points that are inside the newly placed

void from the list.

(5) Add new trial points to the list until the list has Np points

again, each randomly placed at a valid position (inside the

main cylinder, outside any existing void, and satisfying the

maximum height zmax).

(6) Repeat steps (2) to (5) until N voids are placed.

Note that each foam phantom can be recreated determi-

nistically given the following values: the number of voids N,

the number of trial points Np, the maximum void size rmax , the

maximum height zmax , and the random seed used for the

random number generator.

There are several implementation tricks that can improve

the computational performance of generating phantoms in

practice. For example, the maximum possible radius [equation

(1)] of each trial point can be precomputed and stored in a

sorted data structure such as a skip list (Pugh, 1990) to enable

fast access to the trial point with the largest possible radius.

After placing a new void, the maximum radii have to be

updated and reinserted in the sorted data structure, which can

be efficiently done during step (4) above. For more details

about these implementation tricks, we refer to the computer

code that is available under an open-source license (Pelt,

2020).

2.3. Computing projections

The foam phantoms presented in this paper were developed

for use in tomography research. As such, it is important that

tomographic projections of these phantoms can be computed

accurately and efficiently. Here, we assume that the projec-

tions are formed by the Radon transform: a measurement

Pi 2 R is computed by taking a line integral of the attenuation

coefficients of the sample over the virtual X-ray i. The orien-

tation and direction of the virtual ray depends on the tomo-

graphic acquisition geometry that is simulated. Measurements

collected by 2D pixels with a certain area, which often

represent real-world experiments better than individual rays,

computer programs
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Figure 2
Schematic representation of a foam phantom, with an axial (i.e.
horizontal) slice shown on the left, and a sagittal (i.e. vertical) slice
shown on the right. The radius of the main cylinder is fixed to 1, with all
other distances defined relative to this radius. Similarly, the attenuation
coefficient of the main cylinder is fixed to 1 as well. Each void is
characterized by its position xi, yi, and zi, its radius ri, and its attenuation
coefficient ci. For one highlighted void, these parameters are shown in the
figure. The vertical size of the phantom is defined by zmax. Note that zmax

limits the position of the center of each void, which means that parts of a
void can exist at positions larger than zmax or smaller than �zmax.

1 In rare cases, voids with the maximum size rmax can exist that touch neither
the outside of the main cylinder nor another void. However, the radius of
these voids cannot be increased as well, since their radius would become larger
than the maximum allowed radius.



can be approximated by supersampling, i.e. averaging the

measurements of multiple rays within a single pixel.

In many tomographic experiments, projections are formed

by rotating the sample in front of a 2D detector (or, equiva-

lently, rotating the detector around the sample) and acquiring

separate 2D projection images at different angles. In these

cases, the projection data are naturally described by a set of

2D projection images, each taken at a specific angle � 2 R.

Depending on the experimental setup, incoming rays of a

single projection image are often assumed to be either parallel

to each other (parallel-beam geometries) or to originate from

a point source (cone-beam geometries).

In many existing comparisons between algorithms in which

tomographic experiments are simulated, projections are

formed by first discretizing the object on a discrete voxel grid

and computing line integrals for the discrete object afterwards.

As mentioned above, this approach can lead to the ‘inverse

crime’, which can produce incorrect and misleading compar-

ison results (Guerquin-Kern et al., 2012). For the proposed

foam phantoms, we prevent the inverse crime by computing

projections analytically in the continuous domain, using the

exact intersection between a ray and the phantom. Specifically,

simulated X-ray projections of the proposed foam phantom

are computed ray-by-ray. The line integral of the sample over

a certain ray is computed by first computing the intersection of

the main cylinder with that ray and subsequently subtracting

the intersections with all voids, taking into account their

attenuation factors. If we denote the intersection of ray i with

the main cylinder by Li and the intersection of ray i with void j

by l(i, j), we can describe the projection Pi of ray i mathe-

matically by

Pi ¼ Li �
XN

j¼ 1

1� cj

� �
l ði; jÞ; ð2Þ

where cj is the attenuation factor of void j, as described above.

Note that for each void we have to both subtract the inter-

section that was counted in Li and add the attenuation of the

void itself, resulting in a factor of (1 � cj).

In parallel-beam geometries, the intersection Li of the main

cylinder with ray i can be computed by

Li ¼
2 1� dz2

ið Þ
1=2
; if dzi � 1;

0; otherwise;

�
ð3Þ

where dzi is the shortest distance between any point along ray

i and the z-axis (the rotation axis). The computation of this

intersection is shown graphically in Fig. 3. For cone-beam

geometries, it is also possible to analytically compute the

intersection between a ray and the main cylinder, although it is

more complicated than equation (3). For the sake of brevity,

we refer to the computer code (Pelt, 2020) for more details

about this computation.

The computation of intersections between rays and voids is

similar to that of the main cylinder,

l ði; jÞ ¼ 2 r 2
j � dvði; jÞ

2
� �1=2

; if dvði; jÞ � rj;
0; otherwise;

�
ð4Þ

where dv(i, j) is the shortest distance between the center of

void j and any point along ray i, and rj is the radius of void j, as

described above. The derivation of equation (4) is based on

Fig. 3, extended to three dimensions. For more details about

the analytic expression of the Radon transform of a sphere, we

refer to Toft (1996). Note that shortest distances dv(i, j) can be

computed efficiently by projecting the center pj of void j along

the direction of ray i. For parallel-beam geometries, all rays of

a single projection image are parallel to each other, which

enables precomputing the projections of all void centers for

each projection image, significantly reducing the required

computation time.

Detector noise can be simulated by applying Poisson noise

to each measurement. First, a virtual photon count Ii for

measurement i is computed using the Beer–Lambert law: Ii =

I 0 expð��PiÞ, where I 0 is the number of incoming photons and

� is a factor that controls the amount of radiation absorbed by

the phantom. Afterwards, a noisy photon count ÎIi is computed

by sampling from a Poisson distribution with Ii as the expected

value. The noisy photon count is transformed back to a noisy

measurement P̂Pi = ���1 log ÎIi=I 0. In real-world tomographic

experiments, other artifacts are often present in the measured

data in addition to Poisson noise, for example due to source

characteristics [e.g. beam hardening (Barrett & Keat, 2004)],

additional photon interactions [e.g. free space propagation

(Moosmann et al., 2011)], optical effects (Ekman et al., 2018),

and detector defects (Miqueles et al., 2014). Simulating such

additional artifacts is not yet supported in the current version

of the computer code. However, we note that it might be

possible to include such artifacts in the future, either during

the computation of projections within the code or as a post-

processing step afterwards, possibly taking advantage of

existing software packages that support them (Allison et al.,

2016; Faragó et al., 2017).

2.4. 4D extensions

In recent years, improvements in radiation sources and

detector equipment have increased interest in dynamic

tomography of time-evolving samples (dos Santos Rolo et al.,

2014; Maire et al., 2016; Garcı́a-Moreno et al., 2018). In these

applications, samples are four-dimensional (4D) in nature,

consisting of three spatial dimensions and one time dimension.

computer programs
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Figure 3
Schematic representation of the computation of the intersection (red) of
a ray (black) and the main cylinder or a void (gray). The radius of the
cylinder or void is given by r, and the closest distance between the ray and
the center of the cylinder or void is given by a. The length of the
intersection is then equal to 2(r2

� a2)1/2.



To enable quantitative comparisons between algorithms for

dynamic tomography (Kazantsev et al., 2015; Mohan et al.,

2015; Van Nieuwenhove et al., 2017; Nikitin et al., 2019), 4D

phantoms are needed. Similar to 3D phantoms, these phan-

toms should be challenging, representative, flexible, and

suitable for data-driven applications. Here, we introduce such

4D phantoms by adapting the 3D foam phantoms described

above, adding time-evolving aspects in different ways.

Currently, the computer code includes three types of 4D

extensions, which are described below. Additional 4D exten-

sions are planned for future inclusion.

The first 4D extension is a moving phantom, in which the

voids move along the z-axis. All voids move with the same

velocity, but the velocity changes randomly during the

experiment. The second extension is an expanding phantom,

in which the size of all voids increases during the experiment.

The third extension is an infiltration phantom, in which the

voids are slowly filled by a material with a different attenua-

tion coefficient than the initial void material. Specifically, all

voids at a certain chosen height are filled at the start of the

experiment. Then, each unfilled void with an edge close to a

filled void is filled after a randomly chosen interval. This

process is repeated until all voids are filled. Example phan-

toms for the three 4D extensions are shown in Fig. 6.

For all 4D extensions, several parameters can be chosen to

adjust the time evolutions of the generated phantoms. After

generating each 4D phantom, a dynamic tomography experi-

ment can be simulated by virtually rotating the phantom

during its time evolution, and computing projections as

described in Section 2.3. Changes within the sample that

happen during the acquisition of a single projection can be

modeled by supersampling in time.

3. Experiments

3.1. Implementation details

Computer code to generate the proposed foam phantoms

and simulate tomographic experiments is available as the

open-source foam_ct_phantom software package (Pelt, 2020).

The code is available for the Windows, MacOS, and Linux

operating systems, and can be installed using the Conda

package management system:

ThecodeisimplementedinthePython3(VanRossum&Drake,2009)programminglanguage.PartsofthecodewithahighcomputationalcostareimplementedintheCprogramminglanguage(Kernighan&Ritchie,1988),usingOpenMP(Dagum&Menon,1998)forparallelization.Projectionsforcone-beamgeometriescanalsobecomputedusingNVidiaGraphicProcessorUnits(NVidia,SantaClara,CA,USA),which significantlyreducesthe requiredcomputationtime.TheGPUcodeisimplementedusingtheNumbapackage(Lametal. ,2015).

Generated phantoms and projection datasets are stored in

HDF5 file containers (Folk et al., 2011), using a simple custom

data format that includes metadata about how the phantom

or dataset was generated. A skip list (Pugh, 1990) is used to

enable fast access to the trial point with the largest possible

radius during generation of phantoms, and random numbers

are generated using the Mersenne Twister algorithm (Matsu-

moto & Nishimura, 1998). The experiments in this paper were

performed on a workstation with an AMD Ryzen 9 3900X

CPU (AMD, Santa Clara, CA, USA), running the Fedora 32

Linux operating system. Experiments involving GPU

computations were performed using a server with four NVidia

GeForce RTX 2080 Ti GPUs (NVidia, Santa Clara, CA,

USA), running the Fedora 30 Linux operating system.

3.2. Code examples

Below, we give a few code examples to show how the

computer code can be used in practice to generate new

phantoms, simulate tomographic experiments, and reconstruct

projection data. First, new foam phantoms can be generated

using the following Python code:

Here, the five parameters that determine the phantom

shape (see Section 2.2) are given by nspheres,

ntrial points, random seed, rmax, and zmax.

Once a phantom has been generated, parallel-beam

projection data can be computed by the following Python

code:

Here, the supersampling parameter controls the

number of rays that are simulated within each pixel. Specifi-

cally, supersampling2 (i.e. supersampling -squared)

rays are simulated within each pixel, evenly distributed

over the area of the pixel in a supersampling �

supersampling grid. The measured projection of a pixel is

then the average value of the measurements of all rays within

that pixel. For cone-beam projection data, only the geometry

specification has to be changed to

Here, sod and odd denote the source–object distance and

object–detector distance, respectively.

The computer code also includes utility functions to assist

in reconstructing the generated projection data using existing

tomography toolboxes such as the ASTRA toolbox (Van

Aarle et al., 2016) and TomoPy (Gürsoy et al., 2014). For the

ASTRA toolbox, functions are included to convert defined

geometries to equivalent ASTRA geometries:

computer programs
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More code examples are included in the source code of the

foam_ct_phantom package.

3.3. Phantom examples

In this section, we present several examples of generated

phantoms, and investigate the effect of the various generation

parameters on the phantom characteristics. As explained in

Section 2.2, each phantom is defined by the number of voids N,

the number of trial points Np, the maximum void size rmax, and

the maximum height zmax. In the following, the values used for

generating phantoms are N = 150000, Np = 106, rmax = 0.2, and

zmax = 1.5 and all voids are filled with the background material,

unless stated otherwise. Note that the code supports filling

voids with other materials as well, making it possible to

simulate objects with various characteristics, e.g. with low-

contrast features. In Fig. 4, generated phantoms are shown for

various numbers of included voids N. Since the other para-

meters are identical for all shown phantoms, the figure also

shows how a phantom is generated by increasing the number

of included voids. As expected, phantoms with a small number

of voids mostly include relatively large voids, while the void

size decreases with increasing numbers of included voids. In

addition, the figures show both the large-scale and fine-scale

features that are present phantoms with relatively large

numbers of voids.

In Fig. 5, generated phantoms are shown for three

maximum void sizes rmax and N = 150000. The results show

that the phantom features depend significantly on the choice

of rmax: for a relatively large maximum void size (rmax = 0.8),

there are a few large voids present in the phantom and a large

number of relatively small voids, as the large voids restrict the

available space for the remaining voids. For a relatively small

maximum void size (rmax = 0.05), most voids in the phantom

have a similar size. The phantom with an intermediate

maximum void size (rmax = 0.2) exhibits both characteristics to

a lesser degree. These results show that the proposed phantom

family can be used to simulate a wide variety of foam struc-

tures. Examples of the phantoms generated by the 4D

extensions described in Section 2.4 are shown in Fig. 6.

3.4. Projection data and reconstruction
examples

In this section, we present several

examples of generated projection data

and compare reconstruction results

using several popular tomographic

reconstruction algorithms. In all cases,

we use the foam phantom generated

with N = 150000, Np = 106, rmax = 0.2,

and zmax = 1.5. Parallel-beam projec-

tions are computed for a detector with

2560 � 2160 pixels and 16 rays per pixel

(i.e. 4 � 4 supersampling), mimicking a

PCO.edge 5.5 sCMOS detector (PCO,

Kelheim, Germany) that is commonly

used at synchrotron tomography

beamlines (Mittone et al., 2017). The

width and height of a detector pixel was

set to 3/2560, resulting in a detector

computer programs
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Figure 5
Generated foam phantoms with various values of the maximum possible
void radius rmax. Given are the central axial slice and central sagittal (i.e.
vertical) slice. A small region, indicated in red, is shown enlarged in the
top right corner of each image.

Figure 4
Generated foam phantoms with various numbers of voids. Given are the central axial slice and
central sagittal (i.e. vertical) slice. A small region, indicated in red, is shown enlarged in the top right
corner of each image.



width of 3, with the sample (which has a fixed radius of 1)

projecting on two-thirds of the detector width. Projections

were computed for four imaging scenarios: ‘high-dose’, with a

large number of noise-free projections; ‘noise’, with a large

number of projections with a significant amount of Poisson

noise applied; ‘few projections’, with a relatively low number

of noise-free projections; and ‘limited range’, with a large

number of noise-free projections acquired over less than 180�.

Specific details about scenarios are given in Table 1, and

example projection data are shown in Fig. 7.

We compare results for several popular tomographic

reconstruction algorithms: the filtered backprojection method

(FBP) (Kak et al., 2002), SIRT (Kak et al., 2002), CGLS

(Scales, 1987), SART (Andersen & Kak, 1984), and SIRT and

SART with additional nonnegativity constraints on the pixel

values (Elfving et al., 2012). All reconstruction images were

computed using the optimized GPU implementations of the

ASTRA toolbox (Van Aarle et al., 2016). We compare the

reconstructed images using three popular image quality

metrics, the root mean square error (RMSE), peak signal-to-

noise ratio (PSNR), and the multiscale structural similarity

index (MS-SSIM) (Wang et al., 2003). We also compare the

images using two segmentation metrics, in which the images

are segmented using thresholding, and Dice scores (Bertels et

al., 2019) are computed for voxels inside large voids (with radii

ri � 0.1) and small voids (with radii ri < 0.05). All metrics are

computed with respect to a ground truth image that consists

of a discretization of the foam phantom with the same number

of voxels as the reconstructions and using 64 (4 � 4 � 4)

sampling points per voxel. For the iterative algorithms, the

number of iterations that minimizes the RMSE is used, which

is determined using the Nelder–Mead method (Nelder &

Mead, 1965) for CGLS and a simple grid search for all other

algorithms.

In Table 2, the quality metrics are given for the central slice

of the phantom and the four projection data scenarios given

above. The results show that in most cases FBP produces

images with the highest RMSE and lowest MS-SSIM values,

the three unconstrained iterative methods (SIRT, CGLS, and

SART) produce images with lower RMSE and higher MS-

SSIM than FBP, and the iterative methods with nonnegativity

constraints produce images with the lowest RMSE and highest

MS-SSIM. However, the segmentation-based metrics show

more nuanced results. For example, in the ‘limited range’

scenario, the Dice score for large voids

of the FBP reconstruction is close to the

Dice scores of the iterative algorithms,

even though the RMSE is significantly

higher and MS-SSIM significantly

lower. This shows that, if the specific

application of tomography would

require only the analysis of large voids,

the FBP algorithm would be sufficient,

even though its image metrics are

significantly worse than other methods.

Similar results are shown in Fig. 8,

in which a few selected reconstructed

images are shown. Such results partly

explain the continued popularity of

computer programs
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Figure 6
Examples of 4D extensions to the static 3D foam phantoms. In each case, an early time-point is shown on the left, and a later time-point is shown on the
right. Given are an example of a moving phantom, in which the foam moves vertically, an expanding phantom, in which the voids grow in size, and an
infiltration phantom, in which the voids fill with a different material over time.

Table 1
Details of the projection datasets used for comparing reconstruction
algorithms.

50% absorption means that the � parameter for noise generation was chosen
such that the sample absorbed roughly 50% of the incoming photons.

Geometry Noise (Section 2.3)

Number of
projections Range I0 Absorption

High-dose 1024 180� N/A N/A
Noise 1024 180� 250 50%
Few projections 128 180� N/A N/A
Limited range 682 120� N/A N/A

Figure 7
Example of the generation of parallel-beam projection data. Shown are the central sagittal (i.e.
vertical) slice of a foam phantom (left), a parallel-beam projection of the phantom (middle), and a
sinogram of the central axial (i.e. horizontal) slice (right). A small region, indicated in red, is shown
enlarged in the top right corner of each image.



FBP-like methods in practice (Pan et al.,

2009).

In Fig. 9, the PSNR of FBP, SIRT, and

SIRT with a nonnegativity constraint is

given as a function of both the number

of projection angles and the number of

voids in the phantom. In each case, data

were generated with a low amount of

Poisson noise (I0 = 107) and a foam

material that corresponds to an average

absorption of 10% of virtual photons

for a phantom with 150000 voids. The

results show how the behavior of each

reconstruction algorithm depends on

the complexity of the scanned sample

and the amount of acquired data. For

example, the results show that the

accuracy of FBP does not depend

significantly on the complexity of the

phantoms, while the accuracy of the

SIRT algorithms is significantly

improved for low-complexity samples

compared with high-complexity

samples. We note here that the

proposed family of foam phantoms is

computer programs
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Table 2
Reconstruction results for various simulated experimental conditions (see Table 1). Additional nonnegativity constraints are indicated by ‘>0’. Metrics
within 2% of the best metric in each column are shown in bold.

RMSE MS-SSIM Dice score RMSE MS-SSIM Dice score

Full image Full image Large voids Small voids Full image Full image Large voids Small voids

High-dose FBP 0.035 0.901 1.000 0.999 Noise 0.394 0.335 0.938 0.922
SIRT 0.034 0.940 1.000 0.998 0.115 0.668 0.999 0.985
SIRT>0 0.012 1.000 1.000 1.000 0.079 0.939 0.999 0.987
CGLS 0.033 0.936 1.000 0.998 0.111 0.692 0.999 0.974
SART 0.033 0.939 1.000 0.998 0.178 0.397 0.998 0.962
SART>0 0.012 1.000 1.000 1.000 0.095 0.883 1.000 0.994

Few projections FBP 0.275 0.271 0.978 0.968 Limited range 0.174 0.741 0.998 0.973
SIRT 0.141 0.547 0.999 0.961 0.135 0.774 0.999 0.989
SIRT>0 0.030 0.998 1.000 0.998 0.079 0.967 1.000 0.995
CGLS 0.139 0.545 0.999 0.962 0.134 0.769 0.999 0.988
SART 0.139 0.545 0.999 0.962 0.135 0.775 0.999 0.989
SART>0 0.030 0.998 1.000 0.998 0.080 0.967 1.000 0.995

Figure 8
Reconstructed images of the central slice of a foam phantom, for various simulated experimental
conditions (see Table 1). Given are results for FBP, SIRT, and SIRTwith an additional nonnegativity
constraint (SIRT>0).

Figure 9
PSNR of reconstructed images of the central slice of a foam phantom as a function of the number of voids in the sample and the number of projection
angles. Solid and dashed lines represent contour lines at 30 and 20 PSNR, respectively. Given are results for FBP, SIRT, and SIRT with an additional
nonnegativity constraint (SIRT>0).



especially well suited for performing such detailed compar-

isons, as the phantoms exhibit features at multiple scales, the

level of complexity is tunable, and complete ground-truth

information about the void positions and sizes is known. For

another example of a detailed task-based analysis that uses the

foam phantoms, we refer to Marchant et al. (2020).

3.5. Computation time

In this section, we present results for measurements of the

required computation time for generating a foam phantom

and computing projection data. A theoretical analysis of the

required computation time for phantom generation is tech-

nically complicated due to the random nature of placing trial

points. However, we hypothesize that, for large numbers of

voids, the most time-consuming part is step (5) of the algo-

rithm described in Section 2.2, and that the required compu-

tation time scales with N 3N 2
p log Np, where N is the number of

voids and Np the number of trial points used during genera-

tion. The various terms come from the fact that the required

time for inserting an item in a skip list scales with Np log Np,

the number of new trial points that have to be placed scales

with Np, the number of voids that have to be checked for

overlap for each new trial point scales with N, the number of

required random trials until a valid position is found scales

with N (since the available space decreases when more voids

are placed), and step (5) has to be evaluated N times. The

required computation time for simulating a projection scales

with Nr N, where Nr is the number of simulated rays, which

depends on the size of the detector and the amount of

supersampling used.

In Fig. 10, the computation time required to generate a

phantom with rmax = 0.2 is given as a function of the number of

included voids. The results show that phantoms with a large

number of voids, e.g. 100000 voids, can be generated within a

few minutes. The results also show that using multiple CPU

cores can significantly reduce the required computation time,

especially for large numbers of voids. It is interesting to note

that three different phases can be identified in Fig. 10. We

hypothesize that different parts of the algorithm are dominant

within each phase. During generation of the first 100 voids, we

expect that most time is spent inserting newly placed trial

points in the linked list data structure, which is not parallelized

in the current implementation. Between 100 and around 105

voids, we expect that most time is spent updating the

maximum possible radius of each trial point, which is highly

parallelizable. Finally, for more than 105 voids, we expect that

most time is spent finding valid positions while randomly

placing new trial points, which is not parallelized in the current

implementation as well. It may be possible to use such

observations to reduce computation time for generating

phantoms in the future.

In Fig. 11, the computation time for generating projections

is given as a function of the number of rows and columns in

each projection, for a phantom with 150000 voids and rmax =

0.2. The results show that it is possible to compute a parallel-

beam projection with common high-resolution numbers of

pixels, e.g. 1024 � 1024 pixels, in less that a tenth of a second

using a modest multi-core CPU system. This computational

efficiency makes it possible to generate full tomographic

datasets within a few minutes. As explained in Section 2.3,

computing cone-beam projections is more computationally

demanding than computing parallel-beam projections. This is

indeed visible in Fig. 11, which shows that even when using

multiple CPU cores, generating a cone-beam projection can

take considerable time. However, multiple GPUs can be used

to significantly speed up these computations, reducing the

required computation time to a few seconds per projection for

common detector sizes.

4. Conclusion

In this paper, we introduced a family of foam-like phantoms

for comparing the performance of tomography algorithms.

The generated phantoms are challenging to reconstruct,

representative of typical tomography experiments, and flex-

ible, as projections can be calculated for various acquisition

modes. In addition, an unlimited number of varying foam-like

phantoms can be generated, enabling comparisons of data-

computer programs
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Figure 10
The required computation time for generating a foam phantom as a
function of the number of voids in the phantom. The number of voids of
the phantom that was used in most experiments in this paper (150 000
voids) is indicated by the vertical dashed line.

Figure 11
The required computation time for generating a tomographic projection
for a phantom with 150 000 voids as a function of the number of detector
rows and columns. Results are given for using a single CPU core, eight
CPU cores, a single GPU, and four GPUs.



driven algorithms. The phantoms consist of a main cylinder

with a large number of randomly placed voids (e.g. more

than 100000), resulting in foam-like structures with both large-

scale and fine-scale features. We also introduced several 4D

extensions to the static 3D phantoms, resulting in time-evol-

ving phantoms for comparing algorithms for dynamic tomo-

graphy.

Computationally efficient ways of both generating a

phantom and simulating projection data for a given phantom

were discussed, and a software package that implements these

algorithms, the foam_ct_phantom package (Pelt, 2020), was

introduced. Experimental results show that it is possible to

generate phantoms on a modest workstation within a few

minutes, and that projection data can be simulated for

common high-resolution detector sizes within a few minutes

as well. Comparisons between common reconstruction algo-

rithms for several experimental settings show that it is possible

to perform detailed analyses of algorithm performances using

the proposed phantom family. These results show that the

phantoms can be effectively used to make fair and informative

comparisons between tomography algorithms.
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Hämäläinen, K., Harhanen, L., Kallonen, A., Kujanpää, A., Niemi, E.
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Synchrotron Rad. 21, 1333–1346.
Mittone, A., Manakov, I., Broche, L., Jarnias, C., Coan, P. & Bravin,

A. (2017). J. Synchrotron Rad. 24, 1226–1236.
Mohan, K. A., Venkatakrishnan, S., Gibbs, J. W., Gulsoy, E. B., Xiao,

X., De Graef, M., Voorhees, P. W. & Bouman, C. A. (2015). IEEE
Trans. Comput. Imaging, 1, 96–111.

Moosmann, J., Hofmann, R. & Baumbach, T. (2011). Opt. Express, 19,
12066–12073.

Münch, B., Trtik, P., Marone, F. & Stampanoni, M. (2009). Opt.
Express, 17, 8567–8591.

Nelder, J. A. & Mead, R. (1965). Comput. J. 7, 308–313.
Nievergelt, J. & Preparata, F. P. (1982). Commun. ACM, 25, 739–747.
Nikitin, V. V., Carlsson, M., Andersson, F. & Mokso, R. (2019). IEEE

Trans. Comput. Imaging, 5, 409–419.
Pan, X., Sidky, E. Y. & Vannier, M. (2009). Inverse Probl. 25, 123009.
Pelt, D. M. (2020). dmpelt/foam_ct_phantom, https://doi.org/10.5281/

zenodo.3726909.
Pelt, D. M., Batenburg, K. J. & Sethian, J. A. (2018). J. Imaging, 4, 128.

Perciano, T., Ushizima, D., Krishnan, H., Parkinson, D., Larson, N.,
Pelt, D. M., Bethel, W., Zok, F. & Sethian, J. (2017). J. Synchrotron
Rad. 24, 1065–1077.

Pugh, W. (1990). Commun. ACM, 33, 668–676.
Raufaste, C., Dollet, B., Mader, K., Santucci, S. & Mokso, R. (2015).

EPL (Europhysics Lett), 111, 38004.
Ravishankar, S., Ye, J. C. & Fessler, J. A. (2020). Proc. IEEE, 108, 86–

109.
Renders, J., Sijbers, J. & De Beenhouwer, J. (2020). Proceedings of

the 6th International Conference on Image Formation in X-ray
Computed Tomography, 3–7 August 2020, Regensburg, Germany,
pp. 154–157.

Roux, S., Hild, F., Viot, P. & Bernard, D. (2008). Composites Part A,
39, 1253–1265.

Salvo, L., Cloetens, P., Maire, E., Zabler, S., Blandin, J. J., Buffière,
J.-Y., Ludwig, W., Boller, E., Bellet, D. & Josserond, C. (2003). Nucl.
Instrum. Methods Phys. Res. B, 200, 273–286.

Santos Rolo, T. dos, Ershov, A., van de Kamp, T. & Baumbach, T.
(2014). Proc. Natl Acad. Sci. USA, 111, 3921–3926.

Scales, J. A. (1987). Geophysics, 52, 179–185.
Segars, W. P. & Tsui, B. M. (2009). Proc. IEEE, 97, 1954–1968.
Shepp, L. A. & Logan, B. F. (1974). IEEE Trans. Nucl. Sci. 21, 21–43.
Singh, K., Menke, H., Andrew, M., Rau, C., Bijeljic, B. & Blunt, M. J.

(2018). Sci. Data, 5, 180265.
Toft, P. A. (1996). The Radon Transform-Theory and Implementation.

PhD thesis, Technical University of Denmark, Denmark.
Van Nieuwenhove, V., De Beenhouwer, J., Vlassenbroeck, J.,

Brennan, M. & Sijbers, J. (2017). Opt. Express, 25, 19236–19250.
Van Rossum, G. & Drake, F. L. (2009). Python 3 Reference Manual.

Scotts Valley, CA: CreateSpace.
Wang, Z., Simoncelli, E. P. & Bovik, A. C. (2003). Proceedings of

the Thirty-Seventh Asilomar Conference on Signals, Systems and
Computers, 2003, 9–12 November 2003, Pacific Grove, CA, USA,
Vol. 2, pp. 1398–1402. IEEE.

Yang, X., De Carlo, F., Phatak, C. & Gürsoy, D. (2017). J. Synchrotron
Rad. 24, 469–475.

Yang, X., Kahnt, M., Brückner, D., Schropp, A., Fam, Y., Becher, J.,
Grunwaldt, J.-D., Sheppard, T. L. & Schroer, C. G. (2020). J.
Synchrotron Rad. 27, 486–493.

Yu, Z., Noo, F., Dennerlein, F., Wunderlich, A., Lauritsch, G. &
Hornegger, J. (2012). Phys. Med. Biol. 57, N237–N252.

computer programs
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