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Rigorous dynamical theory calculations show that four-beam diffraction (4BD)

can be activated only by a unique photon energy and a unique incidence

direction. Thus, 4BD may be used to precisely calibrate X-ray photon energies

and beam positions. Based on the principles that the forbidden-reflection 4BD

pattern, which is typically an X-shaped cross, can be generated by instant

imaging using the divergent beam from a point source without rocking the

crystal, a detailed real-time high-resolution beam (and source) position

monitoring scheme is illustrated for monitoring two-dimensional beam positions

and directions of modern synchrotron light sources, X-ray free-electron lasers

and nano-focused X-ray sources.

1. Introduction

X-ray diffraction from crystals is generally based on Bragg’s

law of two-beam diffraction (2BD), 2d sin � = �, where � is the

Bragg angle, � is the X-ray wavelength, and d is the spacing of

the diffracting lattice planes. If � can continuously vary, Bragg

diffraction may occur at any angle 0<� � 90� with no special

points (DuMond, 1937). Without references, therefore, it is

challenging to use Bragg diffraction to accurately calibrate/

measure X-ray wavelengths (photon energies) or beam

directions since it is usually difficult to measure � with very

high precision. As an alternative, X-ray absorption edges of

elements have been widely used for wavelength calibration,

particularly for double-crystal monochromators (DCMs) of

synchrotron beamlines. For elements with sharp absorption

features, the absorption method may give high energy preci-

sion (at the eV level or better) (Kraft et al., 1996). In some

unfavarouble cases, however, the absorption edges can be very

wide (up to a few tens of electronvolts) (Keski-Rahkonen &

Krause, 1974) without clear sharp features. This may make it

difficult to achieve adequate precision so that one has to seek

other alternatives.

The other disadvantage of Bragg diffraction is that it is only

very sensitive to the incidence angle � but insensitive to the

lateral ’ angle along the direction perpendicular to the plane

of incidence (the plane containing both the principal incident

wavevector and the diffraction vector). In other words,

Bragg’s law of 2BD is mainly a one-dimensional (1D) equation

that is unable to generate two-dimensional (2D) diffraction

patterns required for precise determination of the 2D position

and direction of an X-ray beam in space.

To overcome these problems, it has been proposed to use

multiple-beam diffraction to calibrate photon energies (e.g.

Arthur, 1989; Hagelstein et al., 1992). However, these methods

as well as many other existing multiple-beam diffraction

methods involve wide-range �-scans that have extremely low
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resolution because the lateral beam divergence is generally

much larger than the divergence along the � angle for

conventional X-ray sources. The fourth-generation synchro-

trons (e.g. Pacchioni, 2019) and X-ray free-electron lasers

(XFELs) (e.g. Emma et al., 2010) with small 2D source sizes

that can produce X-ray beams with high 2D collimation are

expected to remove this obstacle. Motivated by the phase-

space (1D) beam position monitor system based on element

K-edge absorption (Samadi et al., 2015, 2019a,b), here we

propose a new scheme that can accurately monitor 2D source

positions and directions and at the same time can calibrate the

wavelengths of the X-ray beams. This scheme is based on

forbidden-reflection four-beam diffraction (4BD) from crys-

tals with cubic structures, which has to be activated by a

unique photon energy and a unique beam direction. For a

point source, the 4BD pattern is an X-shaped cross that can be

generated by imaging without rocking the crystal. Therefore,

this unique property may be used for real-time monitoring

of beam positions. The 4BD method will be particularly suited

for diagonstic applications of modern synchrotron light

sources, XFELs, and nano-focused beams that have small

2D source sizes.

2. Four-beam diffraction patterns and properties

To demonstrate the concept, we study 4BD using silicon

000=006=113=1�113 reflections1 with the lattice constant a0 =

5.431 Å. For a synchrotron X-ray source, this diffraction

process can be activated by restricting the incident beam in the

plane parallel to the (010) lattice plane, as shown in Fig. 1(a).

Then one changes the incidence angle � while keeping the

incidence wavelength � to satisfy the Bragg condition of the

g1 = h1k1l1 = 006 reflection,

� ¼
2a0

h2
1 þ k2

1 þ l 2
1

� �1=2
sin �: ð1Þ

For specific wavelengths, some reciprocal lattice points may

also fall on the Ewald sphere of reflection 006. Under this

condition, multiple-beam diffraction occurs (Chang, 2004;

Colella, 1974). For example, if the reciprocal lattice point

h2k2l2 = 113 is on the Ewald sphere [Fig. 1(b)], it is obvious

that the angle between its diffraction vector g2 = h2k2l2 =

a�1
0 ðh2x̂xþ k2ŷyþ l2ẑzÞ and the incident wavevector K0 =

��1ðcos � x̂x� sin � ẑzÞ is �/2 + �113, i.e.

K0 � g2

jK0jjg2j
¼ � sin �113; ð2Þ

where �113 is the Bragg angle of reflection 113 satisfying

2a0

h2
2 þ k2

2 þ l 2
2

� �1=2
sin �113 ¼ �; ð3Þ

and x̂x, ŷy, ẑz are unit vectors along the [100], [010], [001]

directions, respectively. Then one can obtain � = 40.6013� from

equations (1)–(3). We denote this angle by �4B. The corre-

sponding photon energy is E4B = 10.5236 keV. By symmetry,

the 1�113 reciprocal lattice point is also located on the Ewald

sphere when K0 lies in the (010) plane. Therefore, under these

conditions, Fig. 1 represents a 4BD configuration involving

reflections 000, 006, 113 and 1�113 (Huang et al., 2014a,b), and

we call g1 = 006 the main reflection.

Here we are only interested in the diffraction intensity of

the main reflection 006 along the K1 direction in Fig. 1. This

implies that the experimental 4BD setup will be almost

identical to that of 2BD, where one sets the detector to collect

only the main reflection intensity. The intensities of the other

two reflections g2 = 113 and g3 = 1�113 are usually of no

importance. The only difference is that 4BD requires a high-

resolution (�1 mrad) rotation stage for accurate control of

the azimuthal angle � in Fig. 1, while in 2BD the diffraction

pattern is invariant with � for symmetric reflections.

Another interesting property of multiple-beam diffraction

is that some of the involved reflections can be forbidden

reflections. For the 000=006=113=1�113 4BD case, the main

reflection 006 of silicon is forbidden, but it can still produce

strong diffraction along the K1 direction in Fig. 1. The

underlying mechanism is that the diffraction intensity along K1

comes from two detour reflection channels in Fig. 1(b). In one

channel, the incident beam is first diffracted by g2, i.e. K0 + g2 =
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Figure 1
000=006=113=1�113 4BD configuration. (a) Diffraction geometry of the 006
main reflection in real space with the plane of incidence parallel to (010).
K0 is the incidence wavevector, and K1 is the 006 reflection wavevector.
The dashed circle indicates the diffraction cone of g1 formed by rotation
of K0 and K1 around g1. (b) The Ewald sphere in reciprocal space. The
four reciprocal lattice points 000, 006, 113 and 1�113 are all on the Ewald
sphere. g1 = g2 þ g02 = g3 þ g03.

1 The 000=006=113=1�113 case is, in fact, a six-beam diffraction configuration
also exciting reflections �7733 and �77�333 (Tang et al., 2021), but these two
reflections are very weak and are ignored here for simplicity of illustration.



K2. Then this diffracted wave is further diffracted by g02 = g1 �

g2 = �11�113 to produce a diffracted wave with wavevector K1,

i.e. K2 þ g02 = K1. Similarly, the other channel consists of the

two steps K0 + g3 = K3 and K3 þ g03 = K1, where g03 = g1 � g3 =
�1113 (Huang et al., 2014a,b). Since the direct diffraction channel

K0 + g1 = K1 is forbidden, the diffraction pattern detected

along the K1 direction is a pure multiple-beam diffraction

effect without the contribution of direct 2BD. Note that

multiple-beam diffraction with a forbidden main reflection

has been experimentally verified and it has many applications

(e.g. Lang et al., 2013).

X-ray multiple-beam diffraction from perfect crystals can

be rigorously computed by the Fourier coupled-wave diffrac-

tion theory (FCWDT) (Huang et al., 2013; Tang et al., 2021),

which is based on similar principles as the method developed

by Stetsko & Chang (1997). But, the FCWDT is more efficient

and accurate. Using the FCWDT, we have calculated the 2D

distribution of the reflectivity R1 along the K1 direction for the

000=006=113=1�113 4BD configuration, as shown in Fig. 2. Here

we always set the main reflection to be symmetric, i.e. g1 is

strictly perpendicular to the crystal surface. We allow the

incident beam to slightly deviate from the (010) plane

by an azimuthal angle �. Then the incident wavevector is

K0 = ��1ðcos � cos � x̂xþ cos � sin � ŷy� sin � ẑzÞ in Fig. 1. The

reflectivity only depends on K0, i.e. R1 is a function of �, �, and

the photon energy E. Fig. 2(b) shows the calculated R1

distribution as a function of � and � at the exact Bragg energy

E4B = 10.5236 keV. �� is the relative deviation of the inci-

dence angle from the geometrical Bragg angle �4B = 40.6013�.

This map represents a 2D ‘rocking curve’ for an incident

plane wave.

Note that for 2BD the Bragg condition is maintained when

the incident and diffracted beams are rotated around the

diffraction vector. We call the cone formed by such rotation

the diffraction cone. For example, azimuthal rotation of K0 and

K1 along g1 in Fig. 1(a) forms a cone that is the diffraction cone

of g1. The diffraction pattern in Fig. 2(b) mainly consists of

three lines, which correspond to the diffraction cones of the

three reflections 006, 113, and 1�113, respectively, in the �–�
coordinate system. For example, the horizontal line corre-

sponds to the 006 reflection, of which the Bragg condition is

independent of �. All three lines intersect in the central

region that is the 4BD region. In this region, the three lines

have significant distortions, indicating that the three reflec-

tions have strong interactions. Here also note that the detour

reflection can be very strong, with reflectivity close to 100% in

some regions although the direct 006 reflection is forbidden.

Fig. 2(a) is the diffraction pattern when the photon energy E

deviates from E4B by �E = �0.5 eV. Consequently, the Bragg

angle of the 006 reflection increases following equation (1),

as indicated by the upward shift of the 006 diffraction

line (cone). The 113 and 1�113 diffraction cones also change with

E according to their respective Bragg equations, for instance,

equation (3) for reflection 113. The resulting effect is that the

three lines no longer intersect at the same point, indicating

that the 4BD condition can no longer be satisfied when the

incident energy deviates from E4B. Instead, each pair of lines

intersect at a distinct point that corresponds to a three-beam

diffraction (3BD) process (Renninger, 1937; Lang et al., 2013).

The top-left (T1) and top-right intersections in Fig. 2(a)

correspond to the 000/006/113 and 000=006=1�113 3BD

processes, respectively, while the intersection in the central

area corresponds to 000=113=1�113 3BD. Fig. 2(c) is the

diffraction pattern for E = E4B + 0.5 eV, and it is nearly a

mirror image of Fig. 2(a) with respect to the central 006

diffraction line �� = 8 mrad in Fig. 2(b). Here the slight shift of

the central line from �� = 0 in Fig. 2(b) is caused by the slight

refraction effect of X-rays.

The most important phenomenon revealed from Fig. 2 is

that 4BD can only occur along a unique incidence direction

and for a unique photon energy. For the current case, the

unique energy is E4B = 10.5236 keV, which is determined only

by the lattice constant a0 . The unique incidence direction

corresponds to �� = 8 mrad (relative to �4B = 40.6013�) and

� = 0 [relative to the (010) lattice plane].

Fig. 2 shows that the plane-wave 4BD pattern is very

sensitive to photon energy variation. For a real X-ray beam,

the spectrum always has a finite energy bandwidth. Here we

consider a synchrotron radiation beam monochromated by an

upstream Si (111) DCM. The spectral bandwidth of the beam

after the DCM is �EBW ’ 1.5 eV at 10.5 keV, and we assume

that the intensity has a Gaussian distribution in terms of E.
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Figure 2
Computed 2D ‘rocking curve’ of the 000=006=113=1�113 4BD setup in Fig. 1
showing the reflectivity R1 of the main reflection g1 = 006 as a function of
the incidence angle (�, ��) and the photon energy E. The indices of each
line (diffraction cone) indicate the corresponding Bragg reflection.
�-polarization, i.e. the electric field of the incident wave, is parallel to
[010] in Fig. 1(a). Semi-infinite Si crystal. �� = 0 always corresponds to
�4B = 40.6013�. (a) E = E4B � 0.5 eV. (b) E = E4B. (c) E = E4B + 0.5 eV.



Based on such an incident beam, we have computed the plane

wave diffraction patterns (as in Fig. 2) for different energies

within the DCM bandwidth and overlapped them together to

form the integrated diffraction pattern in Fig. 3(a). Here the

center of the Gaussian spectrum is E4B. The pattern is an X-

shaped cross consisting of two oblique bands. Here, note that

the central lines of the two bands (dashed lines) are not the

diffraction cones in Fig. 2. The diffraction cones in Fig. 2 are

for monochromatic beams, and their cone apertures (2�B) vary

with the photon energy E according to their respective Bragg

equations, as indicated by the displacements of the lines with

E in Fig. 2. In contrast, the two oblique dashed lines in

Figs. 3(a)–3(c) have fixed positions although the diffraction

intensity distribution on the lines changes with varying E. The

other obvious difference is that the oblique lines in Figs. 2 and

3(a)–3(c) have different slopes.

Detailed analyses show that the two dashed lines in

Figs. 3(a)–3(c) are the loci of the monochromatic 000/006/113

and 000=006=1�113 3BD centers for different photon energies.

For examples, the line intersection centers T1 and T2 in Fig. 2

are indeed located on the two dashed lines in Fig. 3(a). Such

intersections move in the �–� coordinate system with varying

E, thus forming the two 3BD lines that can extend far away if

the energy and angular ranges are wide enough. Based on this

conclusion, one can use the Bragg equations and equation (2)

to easily calculate the slopes and positions of dashed lines in

the �–� space. On the other hand, this indicates that 3BD

can continuously occur for any wavelengths allowed by the

diffraction geometry, similar to 2BD. Hence, 3BD usually

cannot be used for energy calibration. However, the inter-

section of the two dashed line in Fig. 3, here called the cross

center (CC), is the 4BD center that corresponds to a unique

photon energy and a unique incidence direction even for

polychromatic incident beams. This can be seen from Figs. 3(b)

and 3(c) that when the central energy of the incident Gaussian

spectrum deviates from E4B the strong diffraction regions

move away from the fixed-position CC to cover different

regions of the X-shaped cross. The strong diffraction centers

are always on the two fixed dashed lines. Here it can be

verified that the shift of the strong diffraction center from the

CC, ��, along the �� axis [see Fig. 3(c)] and the shift of the

spectral center, �E, satisfy the differential Bragg law of the

006 reflection,

��= tan �4B ¼ ��E=E4B; ð4Þ

around �4B. Hence, different points with different angles on

the dashed lines correspond to different energies. Only those

points with the corresponding energies falling within the

incident spectrum can have strong diffraction when the inci-

dence direction is correct. If E is away from E4B, the CC may

be completely out of diffraction. In such circumstances, one

can still extrapolate the measured dashed line segments [e.g. in

the lower half of Fig. 3(c)] to derive the CC position. This is

very useful for the initial search and alignment of the 4BD

crystal orientation and also for monitoring X-ray beams with

large variations.

Therefore, a polychromatic incident beam can produce a

unique X-shaped diffraction pattern in the vicinity of the 4BD

region. In particular, the spectral bandwidth and the diver-

gence of the incident beam only affect the extent of the

diffraction pattern (in the �–� space) and its intensity distri-

bution without affecting the position of the CC. But, note that

a white beam will not work here since it will activate strong

harmonic reflections, such as 004 and 008, that will significantly

reduce (if not destroy) the visibility of the 006 reflection.

This is the reason why we have considered in the above a

synchrotron beam monochromated by a Si (111) DCM.

For comparison, Fig. 3(d) shows the integrated diffraction

pattern for another example of 4BD, 000=006=�3331=�33�331 with

�4B = 54.1623� and E4B = 8.44807 keV, where the bandwidth of
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Figure 3
(a–c) Integrated 000=006=113=1�113 4BD patterns for a Gaussian incidence
spectrum (�EBW = 1.5 eV). The intensities are normalized intensities of
the main reflection g1 = 006. The patterns can be generated with a parallel
incident beam by 2D rocking of the crystal, or with a divergent beam from
a point source as a one-shot image in the XZ coordinate system. �� = 0
corresponds to �4B = 40.6013�. (a) Central photon energy of the Gaussian
spectrum Ec = E4B (= 10.5236 keV). (b) Ec = E4B + 0.5 eV. (c) Ec = E4B +
1 eV. (d) Integrated 000=006=�3331=�33�331 4BD pattern (Ec = E4B =
8.44807 keV). The color scale is the same as in Fig. 2.



the incident beam is �EBW = 1.2 eV, which is the bandwidth of

a Si (111) DCM for this energy. Here the cross is sharper than

those in Figs. 3(a)–3(c). For higher energies, the 4BD pattern

can be further sharper. Note that the sharpness of the cross

directly affects the precision of BPM and energy calibation.

Thus, we have illustrated that practical 4BD experiments

with finite-bandwidth incident beams can be used to calibrate

X-ray photon energies and measure the directions of X-ray

beams based on the fact that the CC in Fig. 3 corresponds to a

unique energy and a unique incidence direction. Although the

polychromatic diffraction patterns are not as sharp as the

plane-wave diffraction patterns, it is evident that the energy

resolution can reach the sub-eV level from the comparison of

Figs. 3(a)–3(c). Meanwhile, the angular resolution can reach

the mrad level. The beam direction determined by 4BD is a

complete 2D orientation (with the same high resolution along

both the � and � directions), which is a remarkable advantage

over 2BD that may be sensitive only to the 1D directional

change ��.

3. Energy calibration and beam position monitoring
of point sources

In principle, the diffraction patterns in Fig. 3 can be realized by

2D rocking of the crystal near the 4BD conditions using a

parallel polychromatic incident beam, but such a 2D scanning

process will be time-consuming. Meanwhile, X-ray beams with

2D high collimation are very difficult to obtain and most X-ray

beams have larger lateral (’) divergence as aforementioned.

In the following, we will focus on the principles of an imaging

method that uses a naturally divergent beam from a point

source to form a one-shot image of the 4BD pattern.

First, note that symmetric Bragg reflections always follow

the flat mirror reflection (specular reflection) law for ray

directions, which results from the conservation of the

tangential momenta, K0|| + gn|| = Kn||. Here || denotes the

tangential component of the corresponding vector, i.e. the

projection of the vector onto the crystal surface. This equation

is valid for any Bragg reflection (Huang et al., 2013). For the

symmetric main reflection g1 in Fig. 1, g1|| = 0 leads to K1|| =

K0||. Consequently, |K1| = |K0| gives K1z =�K0z. For symmetric

Bragg reflections (of two- or multiple-beam diffraction), this

mirror reflection law is always valid for any incidence direc-

tions and any wavelengths. [Asymmetric reflections are

dispersive and do not have this property (Huang et al., 2012).]

In the case of a point source, therefore, the symmetric Bragg

reflection gives rise to a mirror-image virtual source S 0, as

shown in Fig. 4(a). Viewed from S 0, each ray will not change its

direction at all during the Bragg reflection. The only differ-

ence of the Bragg reflection is that only X-rays falling within a

narrow spectral bandwidth and in a very small angular range

will be strongly reflected, while mirror reflection of light is

usually achromatic for any incidence direction. Similarly, a

DCM consisting of two identical symmetric reflections also

exactly preserves the direction of each ray, where the second

reflection exactly offsets the deflection angle of the first one.

The net effect is that the DCM only causes a beam displace-

ment that has no effect on the subsequent imaging process.

Second, the 2D orientation of a ray emitted from a point

source can be described by two small angles along two

orthogonal directions �� and ’ with respect to the central axis

of the beam, as shown in Fig. 4(b). For synchrotron beamlines,

these two directions usually correspond to the vertical and

horizontal divergence directions, respectively. For the vertical

Bragg reflection, the vertical divergent angle �� is the same as

the variation of the incidence angle � on the crystal surface

in Fig. 4(b). In addition to �, we have also used the azimuthal

angle � above in Figs. 2 and 3 to describe the incidence

wavevector K0 = ��1ðcos � cos � x̂xþ cos � sin � ŷy� sin � ẑzÞ:
From Fig. 4(b) it is apparent that the lateral (horizontal)

divergence angle ’ is proportional to the azimuthal angle �
we used in the above calculations by a geometrical factor

cos �4B, i.e. ’ = � cos �4B for small ’. For the current case,

cos �4B = 0.76.

Hence, a point source naturally provides X-rays along all

the various directions around the central axis of the beam.
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Figure 4
(a) Mirror reflection law of symmetric Bragg reflection. The virtual
source S 0 is exactly the mirror image of the real point source S with
respect to the crystal surface (z = 0). (b) Relationship between the lateral
divergence angle ’ and the azimuthal angle � on the crystal surface (z =
0). The inset indicates the cross section of the divergent beam viewed
along the direction opposite to the beam direction.



When the divergent beam is incident on the crystal, each point

on the illuminated surface corresponds to a unique incidence

direction (’, �). Consequently, the point source may generate

the 4BD patterns in Fig. 3 as one-shot images without the

necessity of 2D angular scans of the crystal. In Fig. 3, we have

set the �� and ’ (top) axes to have the same scale. Then the

one-shot images will have exactly the same shapes as the

simulated images if the imaging device (usually a charge-

coupled device, CCD) is set perpendicular to the diffracted

beam. As shown in Fig. 4(a), if we establish the XZ coordinate

system on the CCD, the positions on the CCD are related to

the angular directions by X = D’ and Z = D��, where D is the

distance between the point source and the CCD. If we assume

D = 50 m for a synchrotron beamline, the image size in

Fig. 3(a) will be 2.04 cm � 1.18 cm, which is close to the fields

of view of some typical X-ray CCDs. If the beam divergence is

smaller than that in Fig. 3, one can adjust the DCM and the

crystal to image only the central part of the diffraction pattern.

The above principles show that a point source can be used

to perform real-time imaging of the 2D 4BD pattern without

angular scans of the crystal. In experiments, the initial align-

ment may still need angular scans. One can first set the DCM

energy roughly at E4B and set the Bragg angle of g1 = 006

roughly at �4B. Then fine alignment of the crystal to the exact

4BD conditions may require several test � scans at different �
angles. Once we find two symmetric 3BD points on the two

oblique dashed lines in Fig. 3, the two lines can be immediately

determined in the �–� space based on their (calculated)

slopes, from which the CC position can be derived. After-

wards, one sets the crystal orientation to the derived CC

position and makes a DCM energy scan to maximize the 4BD

intensity. Under this condition, the DCM energy (center of

the spectrum) is calibrated to E4B with an accuracy better than

0.5 eV. Meanwhile, the crystal orientation is also precisely

determined.2

In practice, the finite source size may blur the images in

Fig. 3 in the imaging method. However, for modern low-

emittance synchrotron light sources or XFELs with source

sizes �s < 50 mm and beamline lengths D > 10 m, the source

size effect �s/D < 5 mrad is very small, which can be further

reduced or eliminated by image processing and data fitting.

For the current cases, from data fitting the energy calibration

precision may reach up to 0.1 eV. In a reversed way, data

fitting of the image blurring can also give information about

the source size.

In addition to wavelength calibration, the most potential

application of the 4BD imaging method is for beam position

monitoring (BPM) of modern synchrotron light sources and

XFELs, and the principles can be understood from Fig. 5. In

Fig. 5(a), we assume that the DCM and the crystal are aligned

to the 4BD conditions to produce a symmetric 4BD pattern

on the CCD detector. For simplicity of description, we further

assume that the thick red line connecting the (virtual) source

and the CC of the 4BD pattern is exactly horizontal. After the

initial alignment, we assume that the DCM and the crystal are

strictly static. Now in Fig. 5(b) if the source is displaced in the

transverse plane by a distance �h, the horizontal red line

containing the source will also be displaced by �h. As

described above, the CC of the 4BD pattern always corre-

sponds to an exact unique incidence direction, which is the

horizontal direction here. This indicates that the CC on the

CCD will also be displaced by the same �h . Hence, the CC on

the CCD will move synchronously with the source along the

same direction. Therefore, monitoring the movement of the

CC on the CCD is equivalent to real-time monitoring of

the beam/source position. If the resolution of the CCD is on

the micrometre level, it is expected that this BPM method

can achieve micrometre resolution. Data fitting may further

improve the spatial resolution.

As shown by Samadi et al. (2015), not only the position of a

synchrotron light source or XFEL may vary over time, but the

beam direction (angle) can also change. Fig. 5(c) schematically

shows that the X-ray beam has both a displacement �h and

an orientation variation ��. It is obvious that as long as the

horizontal direction remains within the angular range of

the divergent beam, the additional �� does not affect the

displacement of the CC, which is still �h. Under the condition

that the beam divergence is small enough, however, the

angular variation of the beam will make the 4BD pattern

asymmetric with the image center (which can be calculated by
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Figure 5
Schematic of the BPM using 4BD of a point source. The left-hand side
shows side views. The right-hand side shows the CCD viewed along the
beam direction (K1 in Fig. 1). The beam displacement caused by the DCM
is not shown, which does not affect the BPM. Since the deflection angle
(2�4B) of the 4BD crystal is omitted, the source S 0 is the virtual source in
Fig. 4(a). For simplicity the 2D variations of the source, the beam and the
image are indicated by 1D shifts. (a) Initial 4BD configuration. (b) S 0 is
displaced by �h without beam direction changes. (c) S 0 is displaced by �h
together with a beam direction change ��, which makes the 4BD pattern
asymmetric as the image center is shifted by �c = D�� from the CC.

2 This indicates that for angular-scan-based energy calibration, a time-
consuming full 2D �–� is not always necessary although such a full scan can
be used to verify the calibration.



data fitting if necessary) shifted from the CC by a distance of

�c = D�� if the divergence of the beam is small enough. If

the beam divergence is large, measurements of �c may not be

very accurate. Meanwhile, the variation of the 4BD pattern

from the symmetric shapes in Figs. 5(a) and 5(b) caused by

beam direction changes may also depend on the spectrum

(which can be numerically computed). However, all these

factors do not affect the beam position variation �h if the

beam direction variation remains reasonably small. (For large

beam direction variation, the 4BD could be out of the angular

range of the incident beam.) Obviously, the 4BD BPM

scheme, in fact, monitors the true position of the X-ray source

(electron beam source) and, compared with many conven-

tional BPM methods, a unique property of this method is that

the source position and variation revealed are completely

independent of any slits (particularly beam-defining slits or

devices) that may exist in the beamline.

For simplicity, the variations of the beam and the image in

Fig. 5 are schematically indicated by the 1D movements of

the images, but it is obvious that in experiments the image

variation gives the 2D variations of the source position and

beam directions since the 4BD pattern is a 2D cross. As

mentioned above, this is a remarkable advantage over 2BD

schemes that can only give 1D beam position variation.

Fig. 3 indicates that imaging a complete 4BD pattern (for

E < 12 keV) requires beam divergence of several hundreds of

mrad along both direction. Although bending-magnet beam-

lines can meet such requirements, the beam divergence of

fourth-generation synchrotron undulators and XFELs may

be only a few tens of mrad (for open beams without slits).

However, note that here the BPM only depends on the posi-

tion of the CC, which can be determined by a small central

region around the CC without the necessity to image the

entire 4BD pattern. For example, one can estimate that in

Fig. 3(d), where the 4BD pattern has sharp lines, a realistic

divergence range of about 20 mrad (V) � 40 mrad (H) in

the central part may well determine the CC position. As

mentioned above, the 4BD pattern can become much sharper

at higher energies (>15 keV), which can further reduce the

requirement of beam divergence if the BPM is chosen to work

at these energies.

4. Discussion and conclusion

The above principles of 4BD and the corresponding point

source imaging scheme are based on rigorous dynamical

theory calculations. A practical implementation of the scheme

at a synchrotron beamline for BPM will have two challenging

requirements. The first is to maintain high stability of the

DCM, particularly the stability of the relative orientation

between the two DCM crystals. Variation of this relative

orientation directly alters the virtual source position. It also

changes the spectrum and beam direction, though these two

factors are less critical than the virtual source variation that

directly affects the precision and reliability of the BPM. On

the other hand, by frequency analyses, it is also possible to

decouple and identify the origin of beam motion (vibration)

from either the source or the optics (Samadi et al., 2019c).

The second requirement is to reduce the heat load of the

DCM so as to mimimize thermal lattice distortion (better than

10�5). Lattice distortion (similar to slope errors of mirrors)

will significantly change the directions of the locally diffracted

X-rays and thus change the virtual source size and position,

which may significantly affect or even destroy the 4BD

pattern. A possible way to mitigate the heat load is to use a

thin-crystal window as a beam splitter (Osaka et al., 2013) to

diffract a weak beam for the 4BD imaging setup, as schema-

tically shown in Fig. 6. This scheme has three major advan-

tages. First, the head load of the thin crystal may be very small

since the crystal thickness can be as thin as a few micrometres

such that most of the photons will be transmitted without

absorption. (Setting homogeneous absorbers/filters upstream

of the thin crystal may reduce the long-wavelength heat load.)

Second, the spectral bandwidth of the beam diffracted by the

thin crystal can be wider than that diffracted by a thick crystal.

The wide bandwidth can extend the angular range of the 4BD

pattern in Fig. 3. Third, it is apparent that with the use of a

thin-crystal splitter the 4BD-based BPM process will not

require a dedicated beamline. Hence it may be implemented

at any beamline with little effect on the main beamline.

Although we have focused on the 4BD case around 10 keV,

there are, in fact, a large number of such 4BD configurations

that cover various energies. For E < 20 keV, Table 1 lists some

typical 4BD cases of silicon with a (001) surface and with the

same (010) plane of incidence. Note that one can use a single

silicon crystal with the (001) surface to realize all these 4BD

configurations simply by setting the Bragg angle of the main

reflection (g1 = 002 or 006) to the specific �4B. If the crystal is

rotated by 45� such that the plane of incidence becomes the

(110) plane that also has mirror symmetry, we can obtain

another set of 4BD configurations.

In fact, some of the special 4BD configurations in Table 1

involve six or eight reflections (or more). For such six- and

eight-beam diffraction geometry, the diffraction patterns

consist of three and four lines, respectively, instead of only two

lines in Fig. 3 for 4BD. All these lines intersect at the same

point that is the center of the diffraction pattern as in Fig. 3(a).

Therefore, the diffraction mechanisms of six- or eight-beam
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Figure 6
Replacement of the DCM with a thin-crystal window for a 4BD-based
BPM with possibly low heat load and minimum thermal lattice distortion
on the thin crystal. The thin crystal must be of symmetric Bragg reflection.



diffraction is almost the same as 4BD for energy calibration

and for BPM. As mentioned above, the slopes and positions of

all the inclined lines can be calculated by a simple computer

program using simple geometry without the complicated

dynamical theory calculations.

The multiple-beam diffraction can also be arranged in the

transmission geometry, which may generate additional unique

features owing to the transmission-diffraction properties, such

as the Borrmann effect (Okitsu et al., 2003). For photon

energies below 10 keV, however, the transmission geometry

requires thin crystals that can be easily strained, which may

require strain-mitigation efforts.

The 4BD principles are also valid for the case where g1 is

not forbidden. In this circumstance, however, the 4BD pattern

has a strong and wide vertical column that is mainly the direct

two-beam diffraction intensity of g1 (nearly independent of �
in the regions away from the CC). This column will greatly

reduce or hide the sharp contrast features around the CC

in Fig. 3.

In summary, we have used rigorous dynamical-theory

calculations to demonstrate that the forbidden-reflection 4BD

pattern, which is typically an X-shaped cross, can be activated

only by a unique photon energy and a unique incidence

direction. The 4BD geometry can be used to calibrate photon

energies and X-ray beam positions and directions. Based on

the principles that the 4BD pattern can be generated by direct

imaging using the divergent beam from a point source without

crystal rocking, we illustrated a high-resolution beam position

monitoring scheme for real-time monitoring or ultrafast

imaging of the sources of synchrotron beamlines and nano-

focused beams. Although other BPMs, particularly blade-type

BPMs, that can differentiate both the position (with mm

resolution) and angle (down to �1 mrad) of the beam have

already been developed and widely used (e.g. Huang et al.,

2019), the new scheme we presented here provides an alter-

native method that is based on completely different mechan-

isms and may have unique or complementary advantages. We

admit that the instant imaging of the 4BD pattern may be

challenging for X-ray beams with extremely small divergence

(e.g. fourth-generation light sources with divergence

�10 mrad), which requires testing (preferably at higher

photon energies with sharper 4BD patterns) in the future.

However, we are confident that our scheme should work

perfectly for bending-magnet or wiggler beamlines. In our

following work, we will test this scheme at beamline 1-BM

of the Advanced Photon Source, but note that the work by

Samadi et al. (2015) has already demonstrated the feasibility

for the 1D case.
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Table 1
Typical 4BD reflections from the silicon (001) surface for E < 20 keV.

4BD reflections �4B (�) E4B (keV)

000=002=�1111=�11�111 63.4349 2.55235
000=002=�3311=�33�111 33.6901 4.11554
000=002=�331�11=�33�11�11 24.7751 5.44767
000=002=�1113=�11�113 21.8014 6.14687
000=006=�3333=�33�333 63.4349 7.65705
000=006=�3331=�33�331 54.1623 8.44807
000=006=�5531=�55�331 45.9710 9.52543
000=006=113=1�113 40.6013 10.5236
000=006=�5553=�55�553 36.1932 11.5979
000=006=�7753=�77�553 32.8687 12.6193
000=006=�7755=�77�555 31.3287 13.1719
000=006=�9953=�99�553 29.1047 14.0801
000=006=�7757=�77�557 27.4076 14.8782
000=006=�9957=�99�557 25.5420 15.8838
000=006=�7775=�77�775 24.3045 16.6397
000=006=�7759=�77�559 22.5796 17.8367
000=006=�9977=�99�777 21.5124 18.6764
000=006=�5577=�55�777 20.3231 19.7189
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