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High-quality tomographic reconstruction is not possible without the accurate

localization of the center of rotation. Poor localization leads to artifacts in the

data and can even cause reconstructions to fail. There are many approaches to

solving this problem, some of which involve the collection of full sinograms, or

even provisional tomographic reconstructions, in order to determine the center

of rotation. Here, a simple method based on the expected symmetry of the

Fourier transform of summed projections approximately 180� apart is presented;

unlike cross-correlation methods, it requires only a single Fourier transform

to compute, and uses mainly low spatial frequency information which is less

susceptible to noise. This approach is shown to be fast, and robust against

poor signal-to-noise as well as to projection images acquired at angles that are

not exactly 180� apart. This rapid method can be useful as a first step in the

processing of tomographic data.

1. Introduction

In single-tilt-axis projection tomography, a set of 2D slices of

the object are reconstructed, with each slice arising from a set

of line projections obtained as the object is rotated as shown

in Fig. 1. [Some electron microscopes have double-tilt-axis

specimen stages (Penczek et al., 1995); hence our use of the

term ‘single-tilt-axis’ tomography which describes most

tomography experiments at synchrotron light source facilites,

and most commercial X-ray microtomography systems.]

However, if one uses an incorrect value for the position of the

actual axis of rotation, objects appear to ‘wobble’ about the

correct axis, resulting in ‘tuning fork’ artifacts in the recon-

structed slice if projections are acquired over 180� (Shepp et

al., 1979), or one type of ring artifact for 360� data. A number

of approaches have been developed to find and correct for this

center-of-rotation (COR) shift error:

(i) One approach is to compare a 0� image with the

mirrored version of an image taken 180� apart, and find the

COR shift to be half the distance between the phase corre-

lation offset between these two images (Gullberg et al., 1986;

Donath et al., 2006). This operation requires a total of three

Fourier transforms, as well as identification of the cross-

correlation peak. Alternatively, one can use the shift of the

center of mass between these two images for the same purpose

(Donath et al., 2006; Dong et al., 2013).

(ii) One simple approach is to fit a sine function to the

sinogram’s angle-by-angle center of mass and use this to

calculate the COR shift (Hogan et al., 1993). This approach

can also be used on the raw sinogram data (Azevedo et al.,

1990; Donath et al., 2006). One can also track the center
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crossing points of identified features in the sinogram (Li et al.,

2010). These carry the added benefit that, for low noise data

sets, individual projections can be shifted such that features

follow a sinusoidal path. When taking the Fourier transform of

the sinogram, COR errors lead to the presence of aliasing

errors at high spatial frequencies (Edholm et al., 1986), which

can be minimized in an alignment strategy (Vo et al., 2014).

(iii) Because of the effects on the reconstructed slice image,

one can carry out reconstructions with a range of choices

for the COR shift and manually select the one with the best

appearance (Walls et al., 2005). Automated approaches include

maximizing the number of positive, non-zero pixels in the

reconstructed slice (Brunetti & De Carlo, 2004), or the

contrast of the slice image (Birk et al., 2010), or minimizing the

image’s total variation (Cheng et al., 2018). One can also train

a neural network to recognize ring-like artifacts and use this

network to identify the image with the

correct COR shift (Yang et al., 2017).

(iv) In an iterative reprojection

approach, one first obtains a provisional

3D image and then aligns projection

images to this volume, repeating until

convergence is achieved (Dengler, 1989;

Owen & Landis, 1996; Birk et al., 2010;

Parkinson et al., 2012). This approach

can also be applied in reciprocal space

(Pryor et al., 2017), and to a single slice

in the reconstructed object. Iterative

reprojection can correct for additional

errors beyond the COR shift, and

speedups can be obtained by alternating

between alignment steps and recon-

struction steps in iterative reconstruc-

tion approaches (Gürsoy et al., 2017).

Of these approaches, the first

involves minimal data and computation.

The second requires full sinogram data,

and somewhat longer computation time.

The third and fourth approaches require numerous recon-

structions, either of a single slice with varying COR guesses

(the third approach) or of the entire 3D data set (the fourth

approach) with consequent costs in data storage and

compute time.

We present here a rapid approach for determination of the

COR shift based on phase symmetry in the frequency domain

of two projection images obtained approximately 180� apart.

This resembles the first approach listed above with some

distinct differences. First, while phase correlation finds the

shift between a projection and the mirror of its 180� coun-

terpart, it normally involves three two-dimensional Fourier

transforms, whereas the phase symmetry approach requires

only a single one-dimensional Fourier transform. Second, we

make use of the fact that this phase symmetry is quite insen-

sitive to noise at low spatial frequencies of the projection

images, as well as being insensitive as to whether the images

were taken exactly 180� apart. This rapid COR shift deter-

mination method can be used alone, or to provide a highly

accurate starting point for correction of additional errors in

the third and fourth approaches described above.

2. Method

For an object rotated along the ẑz axis as shown in Fig. 1, single

point features will produce sinusoids in the sinogram p(t, �)

(using the notation from Fig. 1); therefore
R
� pðt; �Þ d� for a

single feature will result in an arcsine distribution for emission

tomography and an inverted arcsine distribution in the case of

transmission tomography. This distribution has even symmetry

about the rotation axis as shown in Fig. 2(c). Since we collect a

discrete number of projections, the integral becomes a sum

over those projections,
P

� pðt; �Þ, which we will call the �-sum

of a sinogram. We may also consider a reflection pair, which

we define as the sum of one projection taken at � 0 and another
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Figure 2
Phase symmetry of a point in motion about an axis of rotation (a). A point object gives a simple
sinusoid in the sinogram (b). The �-sum of the full 360� sinogram gives an arcsine distribution
symmectric about the rotation axis (c). Since any 180� projection pairs sample points on opposite
ends of the �-sum, they retain the same symmetry (d).

Figure 1
Parallel beam tomographic imaging of an object f (x, y, z) with a rotation
axis in the ẑz direction. X-rays moving from left to right pass through the
object producing a projection image p(t, z) on the detector (grid on far
right). The object is rotated and imaged iteratively, producing the full
tomographic data set p(t, �, z). The vertical dashed lines indicate the
location of the axis of rotation in each of the three domains. If the axis of
rotation is aligned with the ẑz axis, we can reconstruct 2D slices of the
object f (x, y) at z from sinograms p(t, �) at z.



taken at � 0 + 180�. For single point features, these projection

pairs will sample portions of the arcsine distribution on

opposite ends of the rotation axis, resulting in the same even

symmetry as shown in Fig. 2(d).

A continuous object can be thought of as an ensemble of

single point features. This will result in a linear combination of

arcsine distributions in the �-sum which will necessarily retain

the same symmetry about the rotation axis. If, however, the

actual rotation axis is shifted from the center of the recorded

projection due to a COR error (as shown in Fig. 3), the

distribution will be offset; one will instead have a non-

centrosymmetric distribution.

A simple way to determine whether a function is non-

centrosymmetric is to examine its Fourier transform, since the

shift theorem relates an offset center in real space to a phase

ramp in Fourier space. If one did this row by row in the

reflection pair, one could separate out erroneous contribu-

tions to the phase ramp from rows with no features (but only

noise), or rows with other types of errors. When taking the

Fourier transform of the sum of all rows in the reflection sum,

these erroneous contributions would contribute equally to the

phase ramp, whereas, if one were to take the Fourier transform

of individual rows one by one and then obtain the summation

of these complex vectors, the non-erroneous rows would

contribute to the phase ramp in a correlated fashion while the

noise- or error-corrupted rows would presumably contribute

in a non-correlated fashion. Therefore for Nt pixels across the

detector for each of Ny detector rows, one is best off either

adding the contributions of a total of Ny Fourier transforms

each of dimension Nt , or a single Fourier transform of the

(Nt , Ny) data array rearranged as a 1D array of dimension

N 0 = Nt Ny ; we chose to use the latter approach.

The fast Fourier transform of this N 0 = Nt Ny reflection sum

array will contain information about the phase ramp resulting

from a COR error. However, the magnitudes in the Fourier

transforms of images tend to decline as a function of

increasing spatial frequency (Burton & Moorhead, 1987; van

der Schaaf & van Hateren, 1996), while uncorrelated noise

due to photon statistics is equally present at all spatial

frequencies. In addition, the appearance of different features

in different instances of projection pairs will affect higher

spatial frequencies in the �-sum. Therefore one will have the

highest fidelity measurement of the presence of any phase

ramp at the lowest non-zero spatial frequency fmin in the FFT

of the N 0 reflection sum array, as shown in Fig. 3(d) and in

Fig. 4(b) below. In principal we could improve the speed of

this method by calculating this lowest spatial frequency value

only, such as by using the Goertzel algorithm (Goertzel, 1958)

with only N 0 multiplications and 2N 0 additions. However,

the optimizations coded into standard FFT routines [which

require N 0 logðN 0Þ operations] make the full 1D FFT calcu-

lation quite fast enough. Thus we calculate the phase ramp

�(fmin) from the real R and imaginary I parts of the lowest

spatial frequency of the FFT of the projection pair �-sum as

�fmin
¼ arctan 2

�
sgn Rfmin

� �
� Ifmin

; sgn Rfmin

� �
� Rfmin

�
: ð1Þ

where sgnðRfmin
Þ is the sign of the real component, which

accounts for transmission or emission tomography. We convert

the phase shift �fmin
to a position shift t 0 away from the center

of our sinogram (the COR error) using

t 0 ¼ Nt

1

2
�
�fmin

2�

� �
; ð2Þ

thus yielding a rapid approach to finding the COR error t 0.

Some practical considerations to include are that the

method requires the object to be totally within the frame of

the image for all exposures. Otherwise, the entire arcsine

distribution is not collected and the center finding will begin to

fail. Also since we are using only the lowest spatial frequency

the method is strongly effected by illumination gradients along

the t -axis. More often than not, normalization to the flat- and

dark-field projections corrects for illumination gradients, a

standard step in any tomographic reconstruction. Further

improvement can be had by normalizing the background

visible on the right and left sides of the projection images to be

equal. These techniques are both accessible in the TomoPy

Python package.
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Figure 3
Demonstration of the projection pair approach. Using data set
tomo_00030 from TomoBank (De Carlo et al., 2018) (a), ten sets of �-
sums were obtained from projection pairs that were each separated by
180� in the sinogram (b). The corresponding �-sums for each projection
pair are shown in (c), with both the projection center as recorded in the
data set and the recovered rotation center shown. Because an offset from
centrosymmetry leads to a phase ramp in Fourier space, Fourier
transforms of each of these �-sums shown in (d) all show the same phase
ramp at the first spatial frequency index (that is, the lowest spatial
frequency in the Fourier transform), with higher spatial frequencies then
reflecting variations due to what exact features are present in the
projection pair. The correct rotation center is recovered from the phase of
the first spatial frequency index.



3. Demonstration

We compared the above phase symmetry method with two

other popular center-finding algorithms: phase correlation

between the reflection pair of projections at � 0 and � 0 + 180�,

and the sinogram FFT method which involves taking the

Fourier transform of a complete sinogram. We tested the

phase symmetry and phase correlation methods as a function

of departures �� from a perfect projection pair at angles of � 0

and � 0 + 180� + ��. We also compared all three approaches

against the signal-to-noise ratio (SNR) of the acquired

projection images.

We compared these approaches by using a data set from

TomoBank (De Carlo et al., 2018) of phase contrast tomo-

graphy of duplex stainless steel taken at the European

Synchrotron Radiation Facility (ESRF; TomoBank data set

tomo_00064). This data set consists of 450 projections

acquired over a 360� range, with a high density of features

such that one cannot easily see individual features in the

sinogram. Because this data set has very

high SNR, we generated a version of

this data set where the sinogram was

first normalized to its maximum value,

then multiplied by an assumed fluence

of �nn photons per pixel, and each

projection image had Poisson noise

added according to each pixel’s

assumed photon count. One can then

calculate the projection data SNR from

the correlation of two separate images

I1 and I2 with two independent instances

of Poisson noise (Bershad & Rockmore,

1974; Huang et al., 2009). Because the

SNR depends on the contrast of the

object, and because of statistical fluc-

tuations due to specific instances of

Poisson noise, we show in Table 1 the

values of �nn used and the resulting SNR

in various tests.

3.1. Phase correlation method

The phase correlation method performs phase correlation

in the Fourier domain on two projections separated by 180�

(Gullberg et al., 1986; Donath et al., 2006). Since the object has

been rotated 180�, the second projection image is mirrored

about the ẑz axis before processing. The cross-correlation

between the two images will then give a peak at a position that

is offset from the array center by twice the COR error t 0 along

the t̂t axis (it will also provide a measure of sample drift along

the ẑz axis during data acquisition). One can further increase

the accuracy of this method by correlating only on the phase

of the two Fourier transforms (Shaw et al., 1989). Sub-pixel

accuracy can be obtained by embedding the product of the

Fourier transforms of the two images in a larger array before

inverse FFT, either based on the entire array or on a sub-array

(Guizar-Sicairos et al., 2008; van der Walt et al., 2014). In our
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Figure 4
The effect of varying SNR on algorithms for finding the center of rotation (COR) for the
tomo_00064 data set. In (a), we show the COR along the t̂t-axis as determined by three methods
(phase symmetry, phase correlation, and sinogram FFT) for real data with simulated noise. Center
finding was repeated for 100 instances of simulated Poisson noise for each value of �nn and resulting
SNR as summarized in Table 1. From these 100 instances, the mean value of the center of rotation,
as well as the standard deviation of the results, are shown for each SNR value. In (b), the power
spectral density for the reflection image pair is shown for a smaller subset of SNR values, with all
curves normalized to the same power at zero spatial frequency; as expected from Fig. 3(d), the
lowest spatial frequencies are least affected by noise. The sinograms versus SNR are shown in (c). In
(d), a reconstruction of the sinogram is done for the COR as determined by the phase symmetry
method (left), and also for a 2 pixel offset in the COR (right); as can be seen, the image on the left
shows no ring or tuning-fork artifacts, while the image on the right shows ring artifacts as expected
for this 360� data set.

Table 1
Assumed values of fluence �nn in photons per
pixel used in the tests of Figs. 4 and 5, along
with the resulting values of the signal-to-noise
ratio (SNR) in projection images.

Because of the fluctuations due to different
instances of estimated Poisson noise, the SNR
values show slight variations between the two
tests.

Fluence �nn SNR (Fig. 4) SNR (Fig. 5)

39 0.94 0.94
58 1.13 1.13
84 1.36 1.36
122 1.64 1.64
177 1.98 1.98
258 2.38 2.39
375 2.88 2.88
545 3.46 3.46
791 4.16 4.17
1150 5.04 5.03



case we used a sub-pixel accuracy of a tenth of a pixel (i.e. m =

10). Conventional sub-pixel phase correlation would require

the Nt � Ny array be embedded in an mNt � mNy array before

inverse FFT. A less memory intensive approach obtains a

coarse estimate of the correlation peak on an Nt � Ny, then

obtains a sub-pixel estimate of the correlation peak using

matrix-multiplication discrete Fourier transform (DFT) only

on a sub-array around the coarse estimate. Thus while the

phase symmetry approach requires only a single 1D FFT of

length Nt Ny, the phase correlation method requires either two

Nt � Ny FFTs and one mNt � mNy inverse FFT (for the

conventional approach) or two Nt � Ny FFTs, one Nt Ny

inverse FFT, and one matrix-multiplication DFT on a small

array.

3.2. Sinogram FFT method

When one has a complete 360� sinogram over a wide range

of projection angles and no COR error, its Fourier transform

should only have significant values inside a double wedge

region of the transform (Edholm et al., 1986). Therefore the

sinogram FFT method (Vo et al., 2014) finds the COR error by

taking a 180� sinogram and mirroring it about the t̂t axis so as

to form a 360� sinogram prior to taking its FFT. By shifting the

latter 180� of the sinogram along the t̂t-axis, one can find where

the signal outside of the double wedge is lowest, and thus

recover the COR error. Since this sinogram FFT method

requires repeated sinogram shifting and FFT calculation over

a range of test values for the COR error, it tends to be slower

than both the phase symmetry and

phase correlation methods.

3.3. Test versus projection data SNR

The phase symmetry method is

able to determine the COR error

from using the overall phase ramp in

the Fourier transform of a reflection

pair, which can be measured from the

lowest non-zero spatial frequency. As

noted in Section 2, because signal in

the FFT tends to decline with spatial

frequency while the effects of Poisson

noise do not, we first tested repro-

ducibility of the three methods in the

presence of noise while also exam-

ining the power spectrum of the

sinogram pair FFT. The results

given in Fig. 4(a) show that the phase

symmetry method is the most robust

of the three tested approaches

against low SNR. The reason is made

clear in Fig. 4(b), which shows the

power spectrum from the FFT of the

reflection pair of projections used

in the phase symmetry and phase

correlation methods. In this test, the

phase symmetry method calculation

was 32 times faster than phase correlation, and 640 times

faster than the sinogram FFT approach.

3.4. Test against non-180��� projection pairs

The phase symmetry and phase correlation methods require

only two projections acquired exactly 180� apart, which we

term a ‘reflection pair’. To examine the robustness of these

approaches, we tested them against angular departures ��
between this reflection pair relationship; that is, we tested the

methods using one projection at � 0 against a second projection

at � 0 + 180� + ��. These rotation errors can occur for

multiple reasons:

(i) Pure projections separated by exactly 180� carry

redundant information, so they are not always collected. One

might instead collect N� rotations over an angular range of

180(1 � 1/N�)
�.

(ii) Some non-sequential projection acquisition schemes

do not inherently collect 180� projections (Köhler, 2004;

Münch, 2011).

(iii) Angular errors in rotation stages can result in un-

intentional deviations from 180�.

Therefore, for each value of �� and of SNR (Table 1), we

generated 100 projection pairs with different instances of

simulated Poisson noise, and averaged the COR error deter-

mined using each method. The results shown in Fig. 5 indicate

that the phase symmetry approach outperforms phase corre-

lation. This is true both for producing more accurate results
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Figure 5
Center of rotation error (COR) recovered using the phase symmetry and phase correlation methods
when using a relection pair of images obtained at rotational angles that are not exactly 180� apart: that
is, with at angles � 0 and � 0 + 180� + ��. At each instance of SNR (Table 1), 100 instances of Poisson
noise were generated. At the top we see the mean values for the recovered COR values from the phase
symmetry (a) and phase correlation (b), while in the bottom row we see the standard deviation of the
recovered COR values from the phase symmetry (c) and phase correlation (d) methods. Both methods
deviate away from the true center as �� gets further from 0�, but with slightly less error and
considerably lower fluctuations when using the phase symmetry approach.



even with relatively large values of �� of �30�, and also at

lower SNR values.

3.5. Dose fractionation in full-rotation data sets

Dose fractionation states that the total number of photons

required to generate a 3D tomographic reconstruction is the

same as the number of photons required to produce a 2D

projection image of a given sample at the same SNR; that is,

one can divide the required dose among N� projection angles

(Hegerl & Hoppe, 1976). Success in tomographic dose frac-

tionation requires the alignment of low-dose projections

(McEwen et al., 1995). We have previously shown that the

phase correlation method using differential phase contrast

images provides good alignment for both transmission and

X-ray fluorescence tomographic data sets (Hong et al., 2014).

Given that Figs. 4 and 5 show that the phase symmetry method

works well at low SNR, we also tested its ability to accom-

modate dose fractionation.

To test this, we generated sinograms from a 3D Shepp–

Logan phantom (Shepp & Logan, 1974) available in TomoPy

(Gürsoy et al., 2014). With this 5123 voxel data set, we would

expect to require N� = 512(�/2) = 800 rotation angles to fulfill

the Crowther criterion (Crowther et al., 1970) for full sampling

of the 3D volume. The created object had a median trans-

mission of 0.989, so that detecting this change in transmission

relative to the incident beam would suggest an object contrast

parameter � = |Imax � Imin|/(Imax + Imin)1/2 of � = 0.0078,

leading to an expectation that the cumulative incident fluence

should be about �nn = SNR2=�2 = 52=ð0:0078Þ2 = 410000

photons per pixel. Using a slightly lower cumulative fluence of

�nn = 300000 photons per pixel for a somewhat more challenging

test, we distributed this cumulative fluence over N� = 360, 720,

1440, and 2880 angles as one would do if they were collecting a

dose-fractionated data set (yielding a fluence per projection of

�nn = 833, 417, 208, and 104 photons per pixel, respectively). The

resulting sinograms shown in Fig. 6(a) illustrate the low SNR

of the individual projection images at low fluence, with the
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Figure 6
Center of rotation (COR) demonstration on dose fractionated, 360�, simulated data. A simulated low-contrast 3D Shepp–Logan phantom was generated
to which Poisson noise was applied with a cumulative fluence of 300 000 photons per pixel. As this fluence is divided into N� = 360, 720, 1440, and 2880
projections (with �nn = 833, 417, 208, and 104 photons per pixel per projection, respectively), one can see that individual projections become increasingly
noisy in a subset of projections shown in a sinogram (a) and also in the single projection SNR (c). Since the same cumulative fluence was used, the �-sums
shown in (b) and the �-sum SNR shown in (c) are the same no matter the number of projections N� used. [A sinogram with �nn = 300 000 photons per pixel
per projection is also shown on the right in (a) and (b), showing no visible Poisson noise.] In spite of the very low SNR of individual projections (which
scales as �nn 1=2 as expected) shown in (c), the phase symmetry method accurately finds the center of rotation with low variance as shown in (d). The COR
error bars in (d) represent the standard deviation in COR results from 100 different instances of Poisson noise at the indicated fluence per projection.



per-projection SNR shown in Fig. 6(c). The �-sum plots in

Fig. 6(b) and the �-sum SNR shown in Fig. 6(c) show that the

cumulative fluence of �nn = 300000 is identical for all the dose-

fractionated data sets. As shown in Fig. 6(d), the phase

symmetry method finds the center of rotation (COR) from a

reflection pair of projections quite well when dose fractiona-

tion is employed, even for the N� = 2880 case of per-projection

fluence of �nn = 360 and per-projection SNR = 0.09, while

the phase correlation and sinogram FFT methods perform

less well.

3.6. Comparison testing with additional data sets

In order to make sure that the phase symmetry method can

be more broadly applied, we examined a number of additional

data sets. Since TomoBank (De Carlo et al., 2018) has only a

few 360� data sets but several 180� data sets, we chose two

projections not 180� apart but instead two that were 179�

apart, such as 0� and 179� in one test and then 1� and 180� in

a second test. As shown in Table 2, near-consistency in the

center of rotation calculated for these two independent (near)

reflection pairs of projections indicates repeatability of

the approach.

4. Conclusion

Phase symmetry provides a way to find the center of rotation

(COR) error t 0 of a tomographic data set in a rapid and noise-

tolerant fashion. By adding together a reflection pair of

projection images (two projections acquired approximately

180� apart, with some tolerance for departures �� from

exactly 180� as shown in Fig. 5) and examination of the lowest

non-zero spatial frequency of their Fourier transform, one can

obtain the COR error t 0 using equation (2). Because signal

from the object tends to be much larger than Poisson noise at

low spatial frequencies in Fourier transforms of images, the

phase symmetry approach is robust at low exposure, which is

an important consideration for dose fractionation as demon-

strated in Fig. 6. However, the method does require that the

object is within the field of view at all projection angles so that

the reflection pair arcsine distribution is not obscured, and it

also assumes that the rotation axis is aligned to the axis of the

2D detector used to acquire projection images. Lastly, it is

important to note that the method is sensitive to illumination

gradients in the t̂t axis direction, though such gradients are

normally removed as part of illumination normalization and

background normalization.

4.1. Code

The Python code for this method can be found at https://

github.com/everettvacek/PhaseSymmetry.
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Köhler, T. (2004). IEEE Nucl. Sci. Symp. Conf. Rec. 6, 3961–3965.

Li, B., Zhang, Y. & Mo, Y. (2010). Proc. SPIE, 7544, 75445O.

McEwen, B. F., Downing, K. H. & Glaeser, R. M. (1995).
Ultramicroscopy, 60, 357–373.

Münch, B. (2011). Opt. Eng. 50, 123201.

Owen, C. H. & Landis, W. J. (1996). Ultramicroscopy, 63, 27–38.

Parkinson, D. Y., Knoechel, C., Yang, C., Larabell, C. A. & Le Gros,
M. A. (2012). J. Struct. Biol. 177, 259–266.

Penczek, P., Marko, M., Buttle, K. & Frank, J. (1995). Ultramicro-
scopy, 60, 393–410.

Pryor, A., Yang, Y., Rana, A., Gallagher-Jones, M., Zhou, J., Lo, Y. H.,
Melinte, G., Chiu, W., Rodrı́guez, J. A. & Miao, J. (2017). Sci. Rep.
7, 10409.

Schaaf, A. van der & van Hateren, J. H. (1996). Vision Res. 36, 2759–
2770.

Shaw, P. J., Agard, D. A., Hiraoka, Y. & Sedat, J. W. (1989). Biophys. J.
55, 101–110.

Shepp, L. A., Hilal, S. K. & Schulz, R. A. (1979). Comput. Graph.
Image Process. 10, 246–255.

Shepp, L. A. & Logan, B. F. (1974). IEEE Trans. Nucl. Sci. 21, 21–43.

Vo, N. T., Drakopoulos, M., Atwood, R. C. & Reinhard, C. (2014).
Opt. Express, 22, 19078–19086.

Walls, J. R., Sled, J. G., Sharpe, J. & Henkelman, R. M. (2005). Phys.
Med. Biol. 50, 4645–4665.

Walt, S. van der, Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J. D., Yager, N., Gouillart, E. & Yu, T. (2014). PeerJ, 2,
e453.

Yang, X., De Carlo, F., Phatak, C. & Gürsoy, D. (2017). J. Synchrotron
Rad. 24, 469–475.

research papers

J. Synchrotron Rad. (2022). 29, 488–495 Vacek and Jacobsen � Center of rotation in tomography 495

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=mo5249&bbid=BB37

