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Bragg coherent X-ray diffractive imaging is a cutting-edge method for

recovering three-dimensional crystal structure with nanoscale resolution. Phase

retrieval provides an atomic displacement parallel to the Bragg peak reciprocal

lattice vector. The derivative of the displacement along the same vector provides

the normal strain field, which typically serves as a proxy for any structural

changes. In this communication it is found that the other component of the

displacement gradient, perpendicular to the reciprocal lattice vector, provides

additional information from the experimental data collected from nanocrystals

with mobile dislocations. Demonstration on published experimental data

show how the perpendicular component of the displacement gradient adds to

existing analysis, enabling an estimate for the external stresses, pinpointing

the location of surface dislocations, and predicting the dislocation motion in

in situ experiments.

1. Introduction

Imaging three-dimensional displacement and strain in nano-

crystals using X-ray Bragg coherent diffraction imaging

(BCDI) (Robinson et al., 2001; Vartanyants & Robinson, 2001;

Pfeifer et al., 2006) enables physical discoveries in nano-

structured materials from catalyzers to batteries. In a BCDI

experiment, one measures a three-dimensional (3D) intensity

in the reciprocal space containing the coherent hkl Bragg

diffraction peak. An iterative algorithm then solves the phase

problem, retrieving the shape of a crystal and the 3D atomic

displacement field projected onto the reciprocal lattice vector

Qhkl that corresponds to the Bragg peak (Pfeifer et al., 2006;

Williams et al., 2003). The method typically has a spatial

resolution of tens of nanometres, sufficient to reveal the defect

signatures and the crystal deformation.

Fig. 1(a) schematically shows a region of a deformed model

crystal. Then reciprocal space measured around the hkl peak

with BCDI only records displacement of the (hkl) planes

along the scattering vector {here in Fig. 1(a), direction y is

defined as along the [hkl] direction}, i.e. the direction normal

to the planes of the undeformed crystal (Robinson et al., 2001;

Vartanyants & Robinson, 2001). The displacement field is

uy(x, y) = r(x, y) � r0(x, y), where r(x, y) are the positions

of the distorted planes and r0(x, y) are the positions of the

undistorted planes. The displacement along the y-direction is

shown in false color in Fig. 1(b). The direct interpretation of

the displacement field is often complicated by a linear slope

that arises from imprecise centering of the Bragg peak due

to the discrete data collection. Instead, one often interprets

the gradient of the displacement field in the direction of

the scattering vector Qhkl . Taking the derivative of a linear
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variation in displacement returns a constant strain, and, by

definition, "yy = @uy /@y is the normal strain in the y-direction,

which is the local variation in the lattice constant.

While the atomic displacement field and the normal strain

field are often calculated and interpreted in BCDI experi-

ments (Singer et al., 2018a; Ulvestad et al., 2015a,b), the

component of the displacement field gradient perpendicular

to the scattering vector is seldom considered. This excludes

useful information on the variation of the atomic displacement

along the crystallographic planes. It has been suggested that

the transverse derivative of the displacement field can be a

measure of the plane disorder (Kawaguchi et al., 2019), or can

be used to help define the full strain tensor in multireflection

experiments (Hofmann et al., 2017, 2020). Consider that in

the example in Fig. 1 the crystal deformation includes bending

of the crystallographic planes without changing their relative

spacing. The normal strain [derivative along y in Fig. 1(b)]

vanishes, consistent with the notion that pure bending

can leave the lattice constant perpendicular to the bending

unchanged. Nevertheless, the bending of the crystallographic

planes is still clearly visible in the perpendicular component of

the displacement gradient @uy /@x. The displacement derivative

@uy /@x is a part of the shear strain "yx, defined symmetrically as

"yx = 1/2(@uy /@x + @ux /@y). Because BCDI on a single peak

only records uy, no direct measurement of the shear strain is

possible unless multiple peaks are recorded to extract the full

strain tensor (Hofmann et al., 2017, 2020; Newton et al., 2014).

The challenge to record multiple peaks exists due to the

geometrical limitations such as the small crystal and X-ray

focus size, specifically in operando multicomponent systems.

Here, we consider the component of the displacement

gradient @uy /@x (hereafter referred to as shear gradient) for

interpretation of BCDI experiments, in the absence of access

to the full strain tensor. We present an experimental example

of using the shear gradient to derive hitherto undiscussed

properties from BCDI data, specifically the propagation

direction of dislocations in nanocrystals.

2. Results and discussion

BCDI has recently proven itself as an effective tool to image

dislocations, which play a key role in the chemical and struc-

tural properties of functional materials (Ulvestad et al., 2015b;

Clark et al., 2015; Singer et al., 2018b; Sun et al., 2021; Jacques

et al., 2011; Dupraz et al., 2017). Three types of dislocations

exist: screw dislocations, edge dislocations, and mixed dis-

locations. Within continuum mechanics, the displacement

fields along the Burgers vector are given by (Hirth & Lothe,

1982)

uzðx; yÞ ¼
b

2�
arctan

x

y

� �
ðscrewÞ;

uyðx; yÞ ¼
b

2�
arctan

x

y

� �
þ

x � y

2 1� �ð Þ x2 þ y2ð Þ

� �
ðedgeÞ;

where b is the Burgers vector and � is the Poisson ratio. For a

screw dislocation, the Burgers vector and the sense vector

(tangential to the dislocation line) are parallel: bkz. For an

edge dislocation both are perpendicular, b? z. At the dis-

location, the Burgers circuit construction – a contour integral

over the displacement gradient around the dislocation – yields

a non-vanishing Burgers vector equal to the corresponding

plane spacing. As a result, the displacement field contains a

singularity and a surrounding vortex on the plane perpendi-

cular to the dislocation line. Fig. 2 shows this singularity for

an edge dislocation [Fig. 2(a)]. If in a BCDI experiment the

scattering vector Qhkl has a non-vanishing component along

the Burgers vector, the retrieved displacement field will also

display a singularity. An edge is visible on the plane containing
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Figure 1
Schematic of the displacement and its gradient. (a) A schematic
representation of a displacement field inside a crystal (blue) with respect
to an unperturbed crystal lattice (gray). The momentum transfer Q is
parallel to the y-axis, and the experiment is insensitive to the vertical
crystal planes (dashed lines). (b) The 2D displacement field uy(x,y) in
false color, typically directly extracted from BCDI data through phase
retrieval. We chose the field such that the normal strain @uy /@y = 0. (c) The
displacement gradient @uy /@x in the direction perpendicular to Q clearly
shows the bending of the planes visible in (a). In (b) and (c) the x and y
coordinates are identical to those in (a).

Figure 2
Displacement and its gradient in the presence of crystal defects. (a) The
displacement field around an edge dislocation with the Burgers vector
oriented vertically and the extra half plane inserted from the left. (b) The
normal strain @uy /@y and (c) the displacement gradient perpendicular to
Q, @uy /@x. (d – f ) The displacement field and gradients for a pair of
dislocations.



the Qhkl vector, while a screw is visible on the plane normal to

the Qhkl vector.

The displacement gradient components for screw and edge

dislocations can be derived analytically (Hirth & Lothe, 1982)

and both are shown in Figs. 2(b) and 2(c). These quantities can

be directly calculated from the experimentally retrieved 3D

displacement field by taking the derivative numerically. For a

screw dislocation, both the normal and the shear gradient are

identical, simply rotated by 90� (not shown here). For an edge

dislocation, normal strain and shear gradient show different

signatures of the dislocation. The shear gradient is more

spread out spatially and is larger in magnitude (see Fig. 2), and

its extension away from the dislocation line strongly depends

on the Poisson ratio. A comparison between the normal and

shear gradients therefore allows us to study the Poisson ratio,

similar to the analysis reported by Ulvestad et al. (2015b).

Additionally, the shear gradient at a distance from the dis-

location [see Fig. 2(d)] is slightly larger in magnitude than the

normal strain. This is particularly useful for studying disloca-

tions at the grain boundary since the displacement field in

the proximity of the grain boundary is generally difficult to

recover with BCDI. Usually, BCDI is more sensitive to probe

the structure in the bulk, and the boundary is determined

from the retrieved amplitude by setting an arbitrary threshold

between 0.1 and 0.5, and thus capturing the dislocations at the

grain boundary is unreliable. Therefore, having a displacement

gradient reaching deeper inside the grain can increase the

sensitivity of BCDI to study dislocations located at the

grain boundary.

In addition to enabling an extended dislocation imaging,

the shear displacement gradient offers a way to gain further

insight into other stress contributions present in the specimen.

These other stresses can arise from the presence of neigh-

boring dislocations in the specimen, external stresses, or image

forces (Hirth & Lothe, 1982) on dislocations nucleating near

the crystal surface. Image forces arise because the stress at

the interface vanishes and can be understood as a force from

an oppositely oriented imaginary dislocation placed on the

opposite side of the interface. Notably, shear stresses oriented

along the Burgers vector result in dislocation glide. The shear

displacement gradient is a combination of a rigid body rota-

tion and shear strain: one cannot extract the shear strain from

the displacement field along a single direction measured in

single-peak BCDI. Nevertheless, if the inhomogeneity in

the shear gradient emerges in combination with observed

dislocation motion, it can serve as evidence to estimate the

mechanisms behind the evolution.

We further demonstrate the new insights provided by the

shear displacement gradient by re-analyzing the operando

experimental data published by Singer et al. (2018a). This

study reported operando dislocation formation, which was

correlated with the voltage fade in a lithium-rich layered oxide

material for high-capacity electrodes in lithium-ion batteries.

In the paper, the authors measured the atomic displacement

uy(r) along the 002 reciprocal lattice vector and calculated the

normal strain field @uy(r)/@y, both reproduced in Figs. 3(a)–

3( f). Dislocations are recognized in the displacement field as

singularities. The displacement field at charge states 1 and 2

display no singularities. At charge state 3, two singularities are

visible in the displacement field. Based on the direction of the

Burgers vector in comparison with the scattering vector, they

correspond to two edge dislocations that formed between

charge states 2 and 3. The dislocations are also visible in the

normal strain showing compressive and tensile strain on the

opposite sites of the dislocation. From the normal strain maps

[see Figs. 3(d)–3( f)], the authors hypothesized that the tensile

strain build-up at the lower right section of the image that

emerges at charge state 2 possibly leads to the generation

of defects.

Going beyond what was reported by Singer et al. (2018a),

we calculate the shear displacement gradient @uy(r)/@x [see

Fig. 3(c)]. The direction x is perpendicular to the Burgers

vector and the dislocation line of the observed edge disloca-

tions (unique direction). The dislocations are visible at charge

state 3 as vertical bands of high positive and negative shear

gradient above and below both dislocations. Interestingly,

while the normal strain shows no apparent features in charge

states 1 and 2, the shear displacement gradient is highly

inhomogeneous in charge states 1 and 2. Specifically,

inhomogeneities appear in the region where the dislocations

later emerge. The shear displacement gradient at charge states

1 and 2 before dislocation nucleation reveals a narrow vertical

band, about 100 nm wide, where the shear gradient lowers and

raises again. In charge state 2, the shear bands are visible in
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Figure 3
Shear gradient calculated from the operando imaging data experiment
described in Singer et al. (2018a). (a–c) Cross-sections of the displacement
field within a single grain at different stages of the battery charging. (d – f )
Strain field, @uy /@y. (g–k) Displacement gradient @uy /@x perpendicular to
the Q vector proposed in this work. Charge states 1 (a, d, g), 2 (b, e, h),
and 3 (c, f, k) correspond to charging a lithium-rich layered oxide particle
at voltages of 4.0 V, 4.2 V, and 4.3 V, respectively.



the particle indicating incipient dislocations at the grain

boundary. Similar to the one shown in the schematic in

Fig. 1(c), the experimentally found shear gradient reveals an

undulation in the crystalline layers [see Fig. 1(a)]. Addition-

ally, these shear bands visible before the dislocation formation

predict where the dislocations will emerge: the dislocations

move along the direction of that shear band. Because the

undulations are visible before the dislocations occur, they

likely arise because of other stresses present in the particle.

The measured particle is surrounded by other particles

agglomerated tightly into a secondary particle. The anisotropic

lattice changes inside the neighboring particles is therefore a

possible reason for the external stress on the measured

particle.

Now we will attempt to interpret the dislocation motion

from the displacement gradient. An edge dislocation moves

within the slip plane (parallel to the Burgers vector) following

the force per unit length given by the Peach–Koehler equation

f = �xy b. Here, �xy is the shear stress resolved onto the slip

plane where the dislocation moves. Because the dislocation

moves along the undulation band, it is plausible that this stress

is the origin of dislocation formation at the boundary and its

motion into the bulk. We estimate the shear stress through

Hooke’s law, �xy = G"xy . The shear modulus G of LiCoO2

(structurally similar to the material studied here) is of the

order of 100 GPa (Qi et al., 2014) in the discharged (lithiated)

state and 30 GPa in the charged (delithiated) state. By

assuming that the value of the full symmetrically defined shear

strain "xy = (1/2)(@uy /@x + @ux /@y) is similar in magnitude to

the displacement gradient @uy /@x we measure (note that

@uy /@x and @ux /@y are not equal generally, so this is an order

of magnitude estimate at best), we estimate the shear stress.

The value of @uy /@x from Figs. 3(g)–3(i) is smaller than 0.01,

yielding a shear stress of 1 GPa for the lithiated and 0.3 GPa

for the delithiated material. Combining this result with the

value for the Burgers vector of 5 Å, measured in Singer et al.

(2018a), we estimate the force per unit length of dislocation

of f = 0.25 N m�1, and the total force on the dislocation of

F = fL = 50 nN (L = 200 nm is the length of the dislocation).

The Peierls stress is the fundamental property that resists

dislocation motion. In Fig. 3, we observe that the dislocation

only starts moving when the shear stress increases above the

estimated value, suggesting that the shear stress we estimate

from the displacement gradient is comparable in magnitude

with the Peierls stress. The value we find (1 GPa) for the

gradient is about an order of magnitude smaller than in the

covalently bonded ceramics and is comparable with semi-

covalent and ionic bonded ceramics (Kamimura et al., 2013).

3. Conclusions

In summary, we show that the displacement field determined

in X-ray Bragg coherent diffractive imaging experiments from

a single Bragg peak contains additional beneficial information

on the shear strain components. We calculate the displacement

gradient perpendicular to the scattering vector and demon-

strate that this gradient includes information beyond the

normal strain, which is usually discussed in the literature.

We applied the shear displacement gradient to previously

published experimental operando data, which discussed

dislocation nucleation in battery nanoparticles during charge.

Our result allows detection of dislocations at the crystal

surface and predicts the path of dislocations movement.

Additionally, we use the magnitude of the shear gradient to

estimate the Peierls stress in operando experiments on

nanoparticles.
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