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Debye–Scherrer patterns, obtained from X-ray diffraction experiments using

synchrotron light in transmission geometry, were analysed to construct

generalized pole figures, and further used as input for an orientation distribution

function inversion algorithm. By using Langford’s method for separating strain

and size contributions to peak broadening, it was possible, for the first time,

to obtain full domain size and dislocation density generalized distribution

functions (GDFs). This method was applied to cold-rolled and annealed

interstitial-free steel. The predictions made using GDFs were corroborated by

electron backscatter diffraction measurements and were also consistent with

what was previously known for this kind of material under these conditions.

1. Introduction

1.1. An overview of the Langford model for line profile
analysis

It is well known that thermo-mechanical processing strongly

influences the development of material microstructures.

Together with optical microscopy, X-ray diffraction (XRD)

was one of the first tools employed to study the development

of microstructures in deformed materials.

Currently, there are three main techniques for micro-

structure determination: transmission electron microscopy

(TEM), electron backscatter diffraction in SEM microscopes

(SEM-EBSD) and line profile analysis from X-ray diffraction

peaks (XRD-LPA). TEM has the highest spatial resolution

but the poorest statistics, whereas XRD provides an indirect

method for the characterization of microstructures by mean-

ingful interpretation of diffraction patterns. It has the worst

spatial resolution, but the best statistics. SEM-EBSD resolu-

tion lies somewhere between both techniques and may help to

link the sometimes inconsistent conclusions obtained from

TEM and XRD.

In this work, we focus on the use of XRD-LPA to obtain

information on the microstructure of materials, and the way

to correlate the defect (dislocations, grain size etc.) storage

capacity with the orientation distribution or texture.

Currently, there are generally no accepted models that can

accurately correlate deformation levels and defect densities. A

correct quantification of the microstructure remains so far
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a crucial task in order to determine the effect of different

mechanical processes in any material.

Since the origins of XRD, it is well known that broadening

of diffraction peaks is related to different kinds of defects in a

crystalline lattice, aside from instrumental peak broadening

discussed later. A material with low dislocation density and

spherically shaped domains will produce a diffraction pattern

with a full width at half-maximum (FWHM) for each {hkl }

reflection given by

Hhkl ¼
KS�

Lhkl cos �hkl

; ð1Þ

where � is the wavelength of the incident X-ray beam, Lhkl is

the length of the coherent domain size in the hkl direction, �hkl

is the Bragg angle for the hkl reflection, Hhkl is its FWHM and

KS is the Scherrer constant (Scherrer, 1918).

If, on the other hand, one can neglect the broadening from

large domain sizes, and assuming the peak broadening comes

only from the storage of dislocations producing cell parameter

changes by developing internal stresses, it can be shown that

the quantity Hhkl is given by (Keijser et al., 1982)

Hhkl ¼ 4"hkl tan �hkl; ð2Þ

where "hkl is the mean-square strain of the crystalline lattice,

observed in the hkl direction. In a more general case, the peak

broadening for a given reflection will have contributions from

both size and strain effects. By assuming that the size contri-

bution will shape the diffraction peak as a Lorentzian distri-

bution, and that the strain contribution will give a Gaussian

shape, Langford proposed to model a diffraction peak with a

Voigt function, i.e. the convolution of Gaussian [G(x)] and

Lorentzian [L(x)] functions (Thompson et al., 1987),

VðxÞ ¼

Z
GðxÞ � LðxÞ: ð3Þ

In equation (3), both the Gaussian and the Lorentzian func-

tions have different FWHMs, HG for the Gaussian and HL for

the Lorentzian, so once a particular peak has been fitted with a

Voigt function, the values HL and HG can be inserted into

equations (1) and (2), respectively, to estimate the crystallite

size and the mean strain in a particular direction of a given

sample.

In practice, it is easier to work with the pseudo-Voigt

approximation,1 which substitutes the pair (HG, HL) with the

pair (H, �),

pVðxÞ ¼ 1� �ð ÞG 0ðxÞ þ �L0ðxÞ: ð4Þ

The pV(x) function is a linear combination of Lorentzian and

Gaussian functions of the same FWHM H, with a mixing

parameter �. The pseudo-Voigt function expressed in equation

(4) has the advantage of being numerically easier to compute

than in equation (3). The mapping between the pairs (HG, HL)

and (H, �) can easily be obtained using the numerical

approximation provided by Thompson et al. (1987).

This rather simple interpretation has received a correct

criticism regarding the fact that neither the grain size nor

the dislocation distortion can be completely described by

Lorentzian and Gaussian distributions, respectively. Both are

actually represented by complex distributions, only approxi-

mately described by the Voigt distribution as a convolution of

perfectly separated effects.

In fact, it can be seen that if dislocations are arranged

in compact arrays, the consequent broadening tends to be

Lorentzian, whereas for uncorrelated dislocations the broad-

ening is Gaussian (Kerber, 2011). This means that for compact

arrays of dislocations, equation (1) can be interpreted as the

average column length of the coherently diffracting crystals

along the hkl direction. In this sense, Lhkl will be determined

by the minimum between the actual length of the crystallites in

the hkl direction and the average separation between compact

arrays of dislocations. On the other hand, equation (2) can be

interpreted as the mean strain produced by random distrib-

uted dislocations in the material in the hkl direction. When

interpreted this way, the values of Lhkl and "hkl can be used for

estimating dislocation density in a material using the approach

of Williamson & Smallman (1956) and Chowdhury et al.

(2010), who developed an expression that allows estimation of

dislocation densities from the Lhkl and "hkl values obtained

from equations (1) and (2),

� hkl
Size ¼

3

Lhkl
ð5Þ

� hkl
Strain ¼

Kð"hklÞ
2

b
; ð6Þ

where K is a constant that depends on the material elastic

constants and b is the magnitude of the Burgers vector. Once

the dislocation densities from size and strain are obtained, the

average dislocation density for the {hkl } plane family can be

estimated from the geometric average of such quantities

(Kapoor et al., 2004),

� hkl
Langford ¼ � hkl

Size � �
hkl
Strain

� �1=2
: ð7Þ

This way, the total dislocation density of a material will be

between the values given by equations (2) and (6) and that

obtained from taking into account the contributions given by

equations (1), (2), (5), (6) and (7). The more random the array

of dislocations, the more accurate the value given by equation

(6), whereas, if the dislocations are stored in compact arrays,

the value given by equation (7) would be preferable.

It also follows from the previous discussion that dislocation

arrays composed of loosely packed dislocations can be better

modelled by a complete separation of independent effects

following the Langford model. In such cases dislocation

distortion follows quite closely a Gaussian distribution, which

can be easily separated from the domain size broadening

(Mittemeijer & Scardi, 2003; Kerber, 2011). However, if

dislocations are stored in compact arrays it is difficult to
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1 There are libraries that allow the exact calculation of the Voigt profile [e.g.
Johnson & Wuttke: libcerf, numeric library for complex error functions
(version 1.17), http://apps.jcns.fz-juelich.de/libcerf, or Limandri et al. (2008)].
However, there are still programs widely used that rely on the pseudo-Voigt
calculations, e.g. the FULLPROF suite (Rodrı́guez-Carvajal, 1993; Roisnel &
Rodriguez-Carvajal, 2000; Rodriguez-Carvajal & Roisnel, 1998), in order to
implement the same algorithm in our calculations.



accurately separate size contribution from the contribution of

non-random dislocations in the peak broadening.

1.2. Criticisms and alternative methods to Langford analysis

As stated earlier, a major problem that arises when

employing Langford’s method is the assumption that broad-

ening caused by dislocations and crystallite size cannot be

properly reproduced by taking into account solely Lorentzian

and Gaussian functions, which makes the method biased

(Scardi et al., 2004). The bias can be reduced if the whole

pattern is analyzed instead of studying a single peak. Among

the methods that employ this approach we may mention the

methods of Williamson–Hall (WH), Warren–Averbach (WA)

and all modified versions (Hall, 1949; Averbach & Warren,

1949; Ungár & Tichy, 1999; Ungár et al., 1999, 2001a,b). These

methods attempt to correct the problem that arises from

performing a single peak analysis, and separates the size and

strain contributions by taking into account that size broad-

ening is order-independent, whereas strain broadening is

order-dependent.

The modified versions of WH and WA methods improve the

estimation of the dislocation density by taking into account

the anisotropic broadening of dislocations using the so-called

contrast factors (C hkl). These factors take into account that

the strain produced by a dislocation is dependent on the

direction that the dislocation itself is observed as well as the

dislocation type, i.e. edge or screw (Ungár & Tichy, 1999;

Ungár et al., 1999, 2001a,b; Scardi et al., 2004).

The other method employed to separate size and strain

contributions is to fit the Fourier coefficients of the diffraction

profiles. The upside of this method is that it is completely

unbiased, since it does not assume any shape for the profiles,

although it also requires measuring several reflections in order

to separate strain and size contributions. Fourier methods also

naturally include the concept of contrast factors, and take into

account the compactness of dislocation arrays. It is through

the analysis of the Fourier coefficients that we demonstrated

that the asymptotic behaviour of the profiles is determined by

the spatial correlation of the dislocation distribution (Borbély

& Groma, 2001; Groma, 1998, 2013; Kalácska et al., 2017;

Székely et al., 2000; Wilkens, 1970) and, when dislocations are

stored in compact arrays, the tails of the diffraction profiles

tend to be Lorentzian; however, when the dislocation distri-

bution is random, the tail of the profile is Gaussian (Kerber,

2011). At this point, it is worth mentioning that, even though

Langford’s method uses the FWHM of the Gaussian and

Lorentzian components of the profile, those values are

strongly influenced by the mixing parameter �, which in turn is

determined by the asymptotic behaviour of the profile.

Among the methods based on the analysis of the Fourier

coefficients, the more developed versions are the convolu-

tional multiple-whole profile (CMWP) (Ungár et al., 2001;

Ribárik et al., 2001; Ribárik, 2008; Gábor, 2008) and the whole

powder pattern modelling (WPPM) (Scardi & Leoni, 2002).

Both modified versions of WH and WA, as well as the

CMWP and WPPM methods, consider the visibility of the

dislocations by employing the contrast factor C hkl, which can

be calculated for materials with high symmetry, if the active

slip planes are known and the material has no texture. When

there is texture, the dislocation density can still be determined

if the reflections corresponding to each texture component can

be separated (Jóni et al., 2013; Ungár et al., 2015). The problem

persisting in this approach is that the defect distribution

cannot be determined in the whole orientation space, but only

in the main texture components, as long as they are easily

separated. Another problem presented is that, despite the

incorporation, in one way or another, of the contrast factor,

they depend on so many parameters adjustable by mathe-

matical techniques that they have to rely on the assumption of

isotropic storage of dislocations and no dependence of crys-

tallite size on crystal orientation, or they have to fix the slip

systems available for the material. Otherwise, the large

number of parameters cannot be fitted by relying only on

the redundancy of information stemming from the many

evaluated peaks.

1.3. The method of generalized pole figures

Two decades ago the measurement and analysis of features

dependent on crystal orientation was suggested in the form of

generalized pole figures (GPFs; Wcislak & Bunge, 1996). The

great advantage of such an approach would be that the whole

resources available for pole figure (PF) analysis would be

readily available for understanding anisotropy of properties,

defect accumulation etc. The sole condition for such treatment

to be correct is that the property under analysis must be a

mathematical function of crystal orientation, the same way

the texture itself is. Despite the fact that this simple condition

is envisioned to be fulfilled by many physical properties

(almost by definition), there were also some practical diffi-

culties precluding the complete application of that concept

since its proposal. The method of GPFs is usually better used

in the mode of generalized inverse pole figures to represent

polar properties, which are properties depending only on the

direction of a preferential crystal axis or even sometimes only

on the sample orientation (Ryo & Ryo, 2016; Miller et al.,

2005), but no complete analysis has been carried out by

resourcing to the determination of generalized distribution

functions (GDFs) and recalculation of the original PFs.

When the first proposition to measure some of the orien-

tation-dependent physical properties of polycrystalline

materials was made, the first position-sensitive detectors were

being installed in synchrotron sources and the detection

technology appeared to be mature for attempting a complete

GPF approach. However, the following steps for realizing the

proposals were slow and only measurements of incomplete

GPFs were achieved (Perlovich et al., 2015; Cruz-Gandarilla

et al., 2012).

The purpose of the current work is to process advanced

synchrotron experimental data to perform texture-like calcu-

lations and obtain GPFs and generalized orientation distri-

bution functions (GODF) for physically meaningful data

extracted from the resulting diffraction patterns. To this end
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we take the approach of Rahjmohan et al. (1997), in which we

assume that the stored defect energy of a crystal is a function

of its orientation g [i.e. Ec = Ec(g)], which implies that the

measured (average) energy in the crystal direction hj in the

sample direction y is

Ehj
ðyÞ ¼

I
EcðgÞ f ðgÞ d�; ð8Þ

where � corresponds to a closed path in the Euler space

around the crystal direction hj, and f(g) is the orientation

distribution function (ODF) of the material. Given that Ehj
ðyÞ

can be estimated indirectly from the broadening of the

diffraction peak corresponding to the crystal direction hj for

many sample directions yi, it can be said that the set of Ehj
ðyÞ

for different sample directions yi constitutes the GPF for the

average defect stored energy for the crystal direction hj. This

means that the product Ec(g) f(g), which is the weighted stored

energy for the orientation g, can be estimated from the energy

generalized pole figures (EGPFs), Ehj
, measured for different

crystal directions hj, using standard pole figure inversion

procedures (Bunge, 1982).

In their work, Rajmohan et al. (1997) showed that Ec is

proportional to the square of the broadening of a diffraction

profile, and since the dislocation density is proportional to the

square of the mean strain, equations (2) and (6) imply that it is

reasonable to assume the function � Strain
LangfordðgÞ exists, and can

be obtained from a treatment similar to that depicted in

equation (8), substituting Ehj
for � hkl

Strain and Ec for � Strain
Langford, and

then applying an inversion algorithm to obtain the GDF of

dislocation density weighted by the ODF, that is,

� Strain
LangfordðgÞ f ðgÞ.

For this kind of analysis, the estimations of stored defect

energy must be carried out by single peak analysis and, as far

as we know, there is no way to perform

this kind of analysis employing the

methods based in WH and WA to

univocally evaluate all parameters.

Therefore, we approach the problem

by implementing a solution according

to the Langford model. The results

obtained using the Langford method

are later on further supported by the

coherence of the results themselves and

by previous knowledge of the defect

storage behaviour of the current alloy.

We will also validate the conclusions

obtained by employing Langford’s

model with EBSD measurements, and

show that the conclusions obtained with

the method of the GPF are consistent

with those obtained independently with

the EBSD measurements.

2. Experimental setup

Interstitial-free (IF) steel subject to

cold-rolling was chosen for the experi-

ments because it is commonly used in investigations owing

to its well known texture characteristics, after both room-

temperature deformation and further heat treatment. Many of

the phenomena occurring during industrial and laboratory

processes are well understood in these products (Ray et al.,

1994). A commercial-quality IF steel in the stage of ‘hot band’

(i.e. after high-temperature industrial reduction) was rolled to

75% reduction at room temperature, which is common for

these kinds of steels. Later on, three samples were subject to

heat treatments in air for 5 s at 400�C, 600�C and 730�C. At the

final temperature, the usual heat treatment in cold-rolled IF

steels is performed to obtain the best formability properties.

Diffraction experimental data were obtained at the High

Energy Materials Science beamline (HEMS) at Petra III/

DESY, Hamburg, Germany. Complete Debye–Scherrer rings

were taken on transmission geometry with a highly parallel

�87.1 K eV (� = 0.14235 Å) synchrotron beam of 100 mm �

100 mm. Two types of solid-state detectors were used. First,

results were taken in IF steel deformed by rolling to 75%

reduction using a Mar345 detector with maximum MarMode

of 3450 (effective detector size 3450 mm � 3450 mm) and

highest resolution of 100 mm � 100 mm. The second round of

results were obtained on heat-treated samples using the faster

Perkin–Elmer (PE) detector of 2040 mm � 2040 mm with a

200 mm � 200 mm pixel size. In both sets of experiments the

sample holder allowed the rotation of the sample with a 5�

step (! angle in Fig. 1). Transmission geometry was employed,

and the sample was rotated from �90� to 90�, giving a

collection of 37 sets of Debye–Scherrer rings for each

diffraction experiment. The first setup, with 100 mm � 100 mm

pixel size, guaranteed a minimum of 20 measured points for

the whole breadth for each of the measured peaks. By utilizing

a larger sample-to-detector distance, the larger pixel size of
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Figure 1
Transmission synchrotron X-ray Debye–Scherrer rings taken at HEMS at Petra III/DESY. Beam
size: 100 mm � 100 mm, � = 0.14235 Å. The Mar345 detector ensured a minimum of 20 measured
points for the whole breadth for each of the measured peaks, while the Perkin–Elmer detector
allowed measurement of approximately 10 points.



the PE detector was also capable of defining the peak shape

with high accuracy, with each one subtending approximately

10 points. A schematic of the setup is shown in Fig. 1.

One very important compromise has to be made to ensure

low instrumental peak broadening together with high statis-

tics. Due to the very parallel synchrotron beam, compared

with laboratory X-rays, sample thickness cannot be neglected

as influencing instrumental line broadening. In a transmission

experiment, a large sample thickness increases the peak width

because the beam path tends to produce diffraction maxima at

different positions on the detector. Yet a thin sample would

render a small volume of crystals on the condition of having

the right diffraction angle and, as a consequence, the grain

statistics as well as the intensity statistics would worsen. We

found that, for most materials, microstructures and textures,

the best compromise is obtained with a thickness of approxi-

mately 1 mm, hence parallelepiped samples of 1 mm � 1 mm

sections and 1 cm length were used.

For instrumental broadening evaluation, we also used a

1 mm-diameter LaB6 NIST standard sample allowing the

simultaneous calculation of instrumental and sample (mostly

inherent to its thickness) peak broadening. The instrumental

line broadening varies between 0.020� and 0.025� for the first

three Bragg reflections (110), (200) and (211), which were

taken into account later on for the following line broadening

investigations.

3. Data processing

3.1. XRD fitting

The standard software FIT2D (Hammersley et al., 1996) for

area frames was used to extract diffraction data (line intensity

and line broadening) from the complete Debye–Scherrer rings

collected. The rings were divided and integrated in 72 portions

of 5� each, thus obtaining 72 diffractograms. The positions of

the cakes are characterized by the � angle in Fig. 1 and by the

angle ! related to rotation position of the sample. The result is

a set of 2664 diffraction patterns identified by their different

(!, �) angles.

The experimental intensities of each diffractogram (Iexp)

were fitted using in-house-developed software by a sum of

pseudo-Voigt functions plus a piecewise linear background

function,

Iexpð2�Þ  !
Fit

Itheor 2�; I i
0; 2� i

0; �i;Hi; I
j
Bg

� �

¼
XN

i¼ 1

I i
0 � pVi 2�; 2� i

0; �i;Hi

� �

þ
XM

j¼ 1

Bg 2�j; I
j

Bg

� �
: ð9Þ

The values after the semicolon are those to be fitted by the

software. The theoretical function includes a pseudo-Voigt

function for each of the N peaks in the diffractogram, and the

background function is defined as a sum of functions with

M fixed points 2�j . Each of these points has an associated

intensity I
j

Bg which is fitted by the software. The intensity of

the background function between the j and j + 1 points is a

straight line that goes from ð2�j; I
j

BgÞ to ð2�j þ 1; I
jþ1

Bg Þ. The user

can set as many background points as needed.

Once the fitting is complete, for each measured peak the

user is given a set of values (I, 2�0 , H, �) along the sample

orientation in the laboratory coordinate system (!, �). A

coordinate transformation is then performed to take the

sample axes related information to the crystal coordinate

system, so the relevant quantities can be plotted as PFs

(Bunge & Klein, 1996).

The results were used first for calculating regular intensity

pole figures, known as the texture of the material. PFs were

processed by MTEX software (Hielscher & Schaeben, 2008)

to calculate ODFs and recalculated PFs, as shown in Fig. 2,

easily identified as typical rolling textures for Fe.

3.2. Langford analysis

As mentioned in the Introduction, we will analyze the

microstructure by employing Langford’s method. Although

this method is biased, and is somehow more primitive than the

other methods described in this paper, it is the only one that

allows the separation of the size and strain contributions from

a single peak analysis, since all the other available methods

analyze the full diffraction pattern, or at least need two

reflections from the same plane, to successfully separate strain

and size contributions. Besides, there is no clear separation

between compact dislocation arrays, which would result in the

creation of subgrain boundaries, and loose arrays that are

detected by X-ray peak broadening as Gaussian peaks. A

rather continuous distribution of ‘compactness’ might present

different limits of detection for that technique, and the mix-up

between Lorentzian and Gaussian, depending mainly on

X-ray beam brilliance. There is a non-proven chance of having

sudden collapses of more or less loose dislocations into

compact arrays, which would define a more abrupt separation

between Lorentzian and Gaussian behaviour along the

process.

For each hkl peak and sample position i, a pair ðHhkl
i ; �hkl

i Þ is

obtained, and for each of these values the Gaussian and

Lorentzian contributions to line broadening are calculated

(Thompson et al., 1987). With the new pair ðHhkl
G;i;Hhkl

L;iÞ and

equations (1), (2), (5) and (7), GPFs of dislocation density are

obtained. We then work with the assumption presented in the

Introduction, and model the dislocation density as a function

of the crystal orientation, from where it follows that the GPF

can be processed using the same inversion method used for

the regular PFs. The result of this process is a distribution that

is actually the product of the GDF of dislocation density per

crystal weighted by the ODF, as expressed in equation (8).

This means that the function obtained from the inversion

algorithm is the total dislocation density for the crystal

orientation g.

Although the analysis from Rajmohan can only be

reasonably applied to strain-broadening and dislocation

density, we also heuristically apply the same concept with the
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ad hoc assumption that there is also a size distribution density

that can be obtained by inverting a GPF of crystallite size. As

Kallend & Huang (1984) already pointed out, one conse-

quence of this assumption is that the symmetry of both size

and dislocation density GPFs should be determined by the

crystal symmetry. This constitutes the first conditions that

should be met by all GPFs to be considered correctly analyzed

and recalculated by usual PF analysis formalisms.

Apart of the symmetry of the GPFs, we also check the scope

of the model by analyzing the consistency of the GPFs

obtained by the inversion algorithm with the experimental

ones. Finally we also compared the conclusions obtained from

the GPFs with those obtained independently by EBSD

measurements.

It is difficult to rationalize that a quantity such as ‘size’,

which very often does not constitute a physical variable, can

be considered as such in the current case. Actually the initial

grain boundaries and the newly generated ones constitute a

mechanism for accumulating energy, as do the dislocation

arrays. The new domain boundaries are in fact a direct

consequence of the accumulation of dislocations in such an

amount they become indistinguishable from the original grain

boundary surfaces, which are less than 1% of the final ones for

large deformations, for which some authors suggest the

calculation of accumulated energy as dislocation densities, see

equation (5). We will attempt to describe the complete shape

of a domain, surrounded by compact arrays of undiscernible

dislocations, which might eventually be described by a second-

rank tensor with the main axes referred to as the crystal-

lographic axes or the sample axes.

4. Results

4.1. Quality of the fitting

Fitting was performed by following a Levenberg–

Marquardt implementation of a fitting sub-routine according

to equations (4) and (5). Reliable starting parameters were

obtained for use as seed parameters, after a careful fit

performed for a single starting diffractogram. The input

parameters obtained from such initial fitting were used for

each diffractogram as starting parameters.

Some critics might raise concerns about the fact that,

whenever the peak intensity is low, where there are fewer

grains on the proper diffraction condition, the tails of the

peaks may become confused with the background and the

peaks could appear wider. The fitting was performed by fixing

a limit for the square root rule of the difference below which

the fit was considered incorrect. Those values were not taken

into account for further processing by MTEX, which offers the

advantage of being able to calculate ODFs even though the

absence of data is not confined to regularly distributed regions

of the orientation space. For the measurements used in this

work, the relative peak intensity background for which a good

fitting was achieved was 1.33, i.e. if the peak is about 30%

higher than the background, the quality of the fitting is good

enough.

Data obtained fulfilling the convergence condition were

used for further ODF function calculations and are shown in

Fig. 3 for the FWHM case. As can be seen in Fig. 3, line

broadening coming from the microstructure varies between

0.02� and 0.03�. These data were used as input for an ODF-PF
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Figure 2
Intensity PFs for the cold-rolled sample by post-processing image plates. (a) Initial data obtained as described in the text. (b) Recalculated from ODF as
coming out from MTEX software. The textures obtained can be easily identified as typical rolling textures for Fe.



inversion routine, and the consistency between experimental

and recalculated data was used as ‘rule of thumb’ criteria for

checking if it was possible to represent the FWHM as a

crystalline orientation-dependent property. The recalculated

FWHM GPFs are shown in Fig. 4. In Fig. 4(a) the GPFs

were obtained from the MTEX inversion algorithm, which

normalizes the input PFs in order to fulfil the normalization

conditions of a distribution [e.g. Bunge (1982)]. From the

MTEX algorithm, a normalization factor is obtained for every

value of the GPF. In order to recover the original intensities,

one must divide the normalized PF for such a factor, which

produces the result shown in Fig. 4(b). In this sense, GPFs are

different from intensity PFs, since normalized intensity PFs

show enough information while GPFs are normalized for

calculation purposes only and the correct value has to be

recovered.

By comparing Figs. 3 and 4(b) we observe a small change in

amplitude between maxima and minima in the (200) and (211)

GPFs. However, both the measured and the recalculated

GPFs are quite complementary with the intensity PFs, i.e.

show their lowest values where the PFs are higher, and show

their highest values where the PFs have lower intensities (see

Fig. 2). There are, however, some differences between the

measured and recalculated GPFs, despite which it can be said

that the recalculated GPFs are reasonably consistent with the

original values, which in turn highlights the consistency of the

data and reproducibility of the results. Using colours in the

same scale as the current figures allows us to effectively
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Figure 3
FWHM GPFs (�) for a cold-rolled IF sample. These GPFs are clearly correlated with the intensity PFs shown in Fig. 2.

Figure 4
Recalculated GPF for the FWHM shown in Fig. 3, (a) normalized, (b) divided by the normalization factor (�) to obtain a real FWHM versus PF
orientation. The consistencies, both qualitative and quantitative, observed between the measured and reconstructed GPFs were used as a rule of thumb
criteria for checking the viability to represent the FWHM as a crystalline orientation-dependent property.



identify the incidence on the FWHM of accumulated defects

on crystals characterized mainly by the orientation of parti-

cular directions with respect to the sample (PF). However, this

may preclude properly separating the limits between maxima

and minima.

Another way to check the reliability of the ODF inversion

from FWHM GPFs was to remove the data coming from low-

intensity peaks, which provide less reliable information, and

compare the results with those obtained from the complete

GPFs. As illustrated in Fig. 5, the changes introduced by

removing data do not affect the quality of the plots or the

extremes of the recalculated GPFs, demonstrating not only

the compatibility of the GPFs but also the stability of the

solutions.

Fig. 6 shows the ODF and FWHM GDF (’2 = 0� and ’2 =

45�). The ODF sections show characteristic orientations for

the IF steel rolled at room temperature (Ray et al., 1994). Also,

the FWHM shows maxima concentrated in orientations

coincident with the position of the �-fibre at ’2 = 45� and

minima for the ODF maxima shown at ’2 = 0� (� = 0�, ’1 = 45�

and symmetry at � = 90�, ’1 = 45�) and at ’2 = 45�, � = 0�, ’1 =

0�/45�. This different storage capacity for defects during

deformation of steel is in agreement with previous studies

performed in the field and with the behaviour of these alloys

when subject to thermal treatment.

4.2. Langford analysis

As explained in the Introduction, a more physically mean-

ingful analysis can be performed by separating FWHM GPFs

into two parts by following the previously described Langford

model. Domain size GPFs and strain GPFs can be calculated

from equations (1), (2) and (6) and the measured broadening

from the diffraction peaks, and then fed into the same ODF

analysis software, accounting for the previous caveats.

Original data for domain size and strain are shown in Fig. 7.

By taking the split results through the same formalism of

calculating the GDFs and recalculating the GPFs, we obtained

the results shown in Fig. 8.

Fig. 9 shows the GDFs for domain sizes and dislocation

densities at ’2 = 0� and ’2 = 45�. Minimum and maximum

values differ by a factor of two for domain sizes and by 35%

for dislocation densities. We can confirm the trend (Thomas et

al., 2003; Novillo et al., 2003; Mohamed & Bacroix, 2000;

Bacroix et al., 1999; Raabe & Lücke, 1992, 1993) to store more

dislocations within medium-size domains along the �-fibre.

Some larger domains, like those located in rotated cube

(’1, �, ’2) = (45, 0, 0)� and �(h110i//RD) components store

fewer dislocations: they are larger and cleaner.

For the heat-treated samples, the corresponding GPFs and

the same GDF sections are shown in Figs. 10 and 11 for the

treatment at 400�C, Figs. 12 and 13 at 600�C, and Figs. 14 and

15 at 730�C.

Fig. 16 shows the ODF for the 5 s, 730�C heat-treated

sample (’2 = 0� and ’2 = 45�). We observed that rotated-cube

and � components became some of the weakest orientations,

while the �-fibre is the strongest. The rotated-cube and �
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Figure 5
Recalculated GPFs by removal of 30% of the FWHM values corresponding to the peaks with the lowest intensities (�) for the cold-rolled sample. The
stability of the GPF reconstruction was also used as criteria for studying the compatibility of the GPFs. Comparison with the results from Fig. 4 shows
that the GPF reconstruction is not greatly affected by removing the data obtained from the peaks with the lowest intensities.

Figure 6
Sections at ’2 = 0� and ’2 = 45� for (a) ODF and (b) FWHM GDF for the
IF cold-rolled sample. The increase of the FWHM in the orientations of
the �-fibre is in agreement with previous studies.



components were composed of large grains with a very low

dislocation content, and as a result are more prone to being

consumed by the nucleation and further growth of those

nuclei inside �-fibre grains. Note that the increase in intensity

of the �-fibre for the 730�C heat-treated sample, with respect

to the cold-rolled sample, is still far from optimum, probably

due to the non-optimum time and temperature for the last

annealing. Optimization of the process was not the purpose of

the current research.

4.3. EBSD analysis

EBSD maps were measured using an FEG-SEM FEI

QUANTA 200E with the acquisition software TSL OIM DC 5

and data analysis was performed using TSL OIM (version 7.3;

EDAX, Draper, UT, USA). Samples were polished with

diamond paste of 9 mm, 6 mm, 3 mm and 1 mm, in that order.

Then a final step of polishing using 0.05 mm colloidal silica was

performed. The measurements were made from the TD
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Figure 7
GPFs for (a) domain size (nm) and (b) dislocation density (�1014 m�2), as separated by following the Langford model from FWHM GPFs for the IF
cold-rolled sample.

Figure 8
Recalculated GPFs for (a) domain size (nm) and (b) dislocation density (�1014 m�2), as separated by following the Langford model from FWHM GPFs
for the IF cold-rolled sample. As well as for FWHM GPFs, we can see great consistency between recalculated and measured GPFs.



direction, with RD parallel to the x axis and ND parallel to the

y axis in 100 nm steps. No clean-up routine was employed

prior to the microstructural analysis, and pixels were assigned

to different grains if their misorientations were larger than 5�.

The density of geometrically necessary dislocations (GNDs)

was calculated using the method of Pantleon (2008) with a

threshold misorientation of 5�.

Since the goal was to compare the microstructure of the

material as a function of orientation, the information for each

map was stored in different partitions. Considering the texture

of the steel had two main components, the �-fibre and �-fibre,

for each EBSD map, three partitions were created: one that is

consistent in all measurements with crystal directions (011)

parallel to RD, one with crystal directions (111) parallel to ND

and the third one with all the remaining orientations, as shown

in Fig. 17. The range in which an orientation was assigned to

a component was up to 15� misorientation with the corre-

sponding direction. For each partition, the average GND was

calculated as well as the average grain size, using the average

intercept length method, in both RD and ND directions.

The same analysis was performed for a cold-rolled sample

(R75) and for three annealed samples for 5 s at 400�C

(R75A400), 600�C (R75A600) and 730�C (R75A730).

Fig. 18 shows the evolution of dislocation densities for the

cold-rolled sample and the three annealed samples. For the

cold-rolled sample R75, it is clear that the �-fibre stored more

dislocations than the �-fibre which is consistent with the

results obtained by Langford’s method. Also, the �GND values

are on the same order of those obtained by XRD.

The �-partition contains fewer dislocations than the �-

partition with intermediate values for the No �/�-partition.

The same trends observed for the R75 sample were also

present for the R75A400 and R75A600 samples, with roughly

the same values of GND for all partitions. Heat treatments at

400�C and 600�C are only enough to remove loosely stored

dislocations and not compact arrays. For the R75A730 sample,

dislocation density dropped drastically to a value on the

order of 0.5 � 1014 m�2 for all partitions. This means that for

annealing temperatures of 730�C most dislocations introduced

by deformation were cleaned either by recombination or sub-

grain and grain boundary migration. Further, for the R75A730

sample, all partitions have the same values of GND, which is

also consistent with the information obtained from Langford’s
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Figure 9
GDFs for doman size and dislocation density at ’2 = 0� and ’2 = 45� for
the IF cold-rolled sample. Comparison with Fig. 6(a) suggests that the
orientation along the �-fibre stores more dislocations than other
orientations, and that orientations in the �-fibre grew larger domains.

Figure 10
Recalculated GPFs for (a) domain size (nm) and (b) dislocation density (1014 m�2) as separated by following the Langford model from FWHM GPFs.
Heat-treated sample, 5 s at 400�C.



method (Fig. 15) where it was shown that the domain size and

strain distribution lost all correlation with texture.

Regarding domain sizes, measured as intercept lengths

along ND and RD, it can be seen from Figs. 19 and 20 that the

�-partition has a larger average size than the �-partition, along

both ND and RD, for the rolled sample. The No �/�-partition,

for all other components, has lower grain sizes than the �-

and �-partitions.

In addition, there are no great variations in the grain size for

the samples annealed at 400�C and 600�C. Only loose dis-

location arrays, those that cannot be detected by EBSD, are

annealed at the two temperatures. For the sample annealed at

730�C a clear rise in the average grain size can be observed, as

well as the loss of correlation between texture and grain size,

which is also consistent with the GND and the Langford

analysis. In fact, the larger abundance of GNDs present in

the �-fibre, once annealed, will produce grain sizes on the

component that are larger than in the �-fibre.

5. Discussion

Current capabilities of high-energy synchrotron experiments

and analysis allow us to realize, for the first time, a whole

calculation of defect contents as a function of crystalline

orientations, what is formally known as generalized orienta-

tion distribution functions, GDF. The requirements to achieve

such analysis are, at present, satisfied by the angular accuracy,

spatial resolution of image plate detectors, brilliance of

current synchrotron radiation sources, etc.

Regarding the current models for separating the contribu-

tions stemming from different physical phenomena – like

domain sizes, dislocations, twinning, etc. – they are still behind

present needs. Currently, there are two approaches to obtain

quantitative information from peak broadening: the analytical

methods, which involve fitting analytical functions to the

diffraction profiles; and the Fourier methods, which model the

microstructure of the material and then fit the Fourier coef-

ficients of the theoretical functions with those obtained from

the measured profiles.

The analytical methods are easier to implement, and allow

separation of the contributions of the different kinds of

defects, relating such defects with the shape of the profile, in

our case, Lorentzian for size contributions and Gaussian for
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Figure 11
GDFs for (a) domain size and (b) dislocation density at ’2 = 0� and ’2 =
45�. Heat-treated sample, 5 s at 400�C.

Figure 12
Recalculated GPFs for (a) domain size (nm) and (b) dislocation density (1014 m�2), as separated by following the Langford model from FWHM GPFs.
Heat-treated sample, 5 s at 600�C.



strain contributions. However, such separation is only an

approximation since it is known that, for compact arrays of

dislocations, the strain contribution to peak broadening is

also Lorentzian-like, which means that the length Lhkl in

equations (1) and (5) should be interpreted as the minimum

length between the coherent diffracting crystallites in the hkl

direction and the distance between arrays of dislocations. The

high brilliance of the X-ray beam allows us to reasonably

assume that the latter definition is more accurate. Further,

the simplification of using the Langford model is useful for

separating domain sizes and dislocation densities in materials

like those presented in this work, in which the influence of

other defects, like twinning, is negligible. Nevertheless, the

methods based on the separation of defect contributions by

analytical functions are biased, and this is why we chose to

validate its predictions using EBSD, another technique that

enables us to explore the microstructure of a material in an

independent and more direct way.

The Fourier methods, on the other hand, are not biased,

since they model the physical microstructure of the material

and then look at the resulting theoretical profile to compare it

with the experimental one. These methods are excellent in

analyzing the microstructure of materials where the texture is

negligible, in which case it is completely reasonable to assume

that the anisotropic broadening of the diffraction peaks can be

attributed to variations of the average contrast factors �CCðhklÞ,

which in turn depend solely on the sample direction for a given

set of crystalline planes {hkl }. This means that both disloca-

tion density and domain sizes will depend only on the sample

direction, and its respective distributions should come from

the contributions of all the diffraction peaks present in a

given sample direction, all of which involve contributions of

different crystal populations. This model becomes inaccurate

when it is known that crystallographic texture affects the

storage of defects, like in the study performed in the current

work. A number of authors (Jóni et al., 2013; Ungár et al.,

2015) have partially solved this limitation by analyzing

diffraction peaks that originate from exactly the same popu-

lation, allowing us to observe some correlations between

crystallographic texture and defect storage. It could be said

that those works partially map the GDF of dislocation density,

since the kind of analysis presented can only be applied to a
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Figure 13
GDFs for (a) domain size and (b) dislocation density at ’2 = 0� and ’2 =
45�. Heat-treated sample, 5 s at 600�C.

Figure 14
Recalculated GPFs for (a) domain size (nm) and (b) dislocation density (1014 m�2), as separated by following the Langford model from FWHM GPFs.
Heat-treated sample, 5 s at 730�C.



limited volume of the orientation space, which is the part in

which the diffraction peaks come only from the crystals

corresponding to the texture component of interest.

For mapping the dislocation density GDF, the diffraction

profiles of many more sample orientations must be studied,

which makes the analytical method based on the Langford

model, although biased, the only one suitable for the task. It is

the only method that allows separation of the size and strain

contributions from single peak analysis with reasonable

accuracy. From the GPF obtained via Langford, we obtain the

GDF of defects based on the work of Rajmohan et al. (1997),

Bunge (1982), Wcislak & Bunge (1996) and others (Ryo &

Ryo, 2016; Miller et al., 2005). The basis of our reasoning is

that, if such GDF exists, it must be related to an ODF through

an equation analogous to equation (8), which means that such

distribution can be obtained by the same methods employed

to obtain the ODF from the intensity pole figures. The exis-

tence of such function for the dislocation density seems

reasonable from the work of Rajmohan, and from the fact that

dislocation density behaves in the same way as the square of

the FWHM of the diffraction peaks. We also chose to heur-

istically use the GPFs of size as input for the same analysis and

evaluate its reasonableness from the consistency of the PF

reconstruction from the calculated GDF, as well as the

consistency with the EBSD measurements and the previous

knowledge gathered for this steel. We also evaluated the

dislocation density GDF with the same criteria. The worst

scenario would be that we may not be delimiting correctly the

dislocations assigned to the buildup of new domain borders

and those kept, more or less, as loose dislocations contributing

to dislocation density calculation.

Figs. 3–13 show a strong relationship between the broad-

ening, both in amount and in shape, of certain crystallographic

directions and the corresponding crystallographic orienta-
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Figure 15
GDFs for (a) domain size and (b) dislocation density at ’2 = 0� and ’2 =
45�. Heat-treated sample, 5 s at 730�C.

Figure 16
ODF for the 5 s, 730�C heat-treated sample. ’2 = 0� and ’2 = 45�.

Figure 17
EBSD maps for the cold-rolled sample R75, for the partitions created to analyse the microstructure as a function of texture. For verifying the results
obtained from XRD, three partitions were created: orientations along the �-fibre (011) // RD, orientations along the �-fibre (111) // ND and all remaining
orientations.



tions, which suggest that the broadening observed in, say the

(110) GPF, will be observed in the (200) GPF in a way

consistent with the texture components measured in the ODF

[i.e. if the poles corresponding to the �-fibre in the (110) GPF

show a larger broadening, the poles of the same fibre but in the

(200) GPF should also be larger], which is precisely the

observed behaviour. What is more, the crystal symmetry is

imposed in all the GPFs, as is to be expected from equation

(8). This behaviour further suggests that those GPFs are

projections of a GDF, and can thus be processed by a pole

figure inversion method to obtain a GDF linking crystalline

orientations and features of the microstructure such as dis-

location density and domain size, provided that the effect of

the contrast factors does not destroy the correlation observed

in the GPFs. These assumptions are equivalent with those

made in Langford’s model, i.e. that microstructure is firmly

correlated with crystalline orientation. The correlation

between texture and defect storage is not observable in the

annealed sample, as seen in Figs. 14–16, which is expected

given the known behaviour of IF steels, and it will be

addressed later.

Comparison between experimental and recalculated PFs is

a known and proven way to check the quality of the data

obtained during PF measurement. We can see that the recal-

culated GPFs obtained from the pole figure inversion algo-

rithm show good agreement with the experimental GPFs. This

is true for the FWHM, size and dislocation density GPFs.

Furthermore, the quality of the reconstruction remains the

same when the data obtained from the low intensity peaks

are removed. This also addresses and removes one common

criticism made to the line profile analysis, namely the fact that

low-intensity peaks always tend to be broader than high-

intensity peaks.

It is known that rolled IF steels tend to store dislocations

mainly in the �-fibre, which helps to enhance the drawability

of steel sheets after proper recrystallization procedure. In fact,

Every & Hatherly (1974) showed the following hierarchy for

the stored energy as a function of fibre orientation for highly

deformed steels,

E200< E211< E222< E110:

This hierarchy has never been contradicted by recent

measurements, even though published numerical values are

relatively scattered (Borbély et al., 2000; Castelnau et al.,

2001; Rajmohan et al., 1997a; Wauthier-Monnin et al., 2015).

Moreover, it is in complete agreement with the results shown

in this work using the Langford approach.

It is also known that the dislocation arrays formed during

annealing can only be removed at temperatures higher than

700�C. The GDF for dislocation densities in Fig. 10 shows

precisely this behaviour, i.e. ’2 = 45� sections of the GDF show
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Figure 19
Average intercept lengths along the ND direction for each partition and
each sample. For grain size, the �-fibre grows larger grains in both the
cold-rolled sample and the samples annealed at 400�C and 600�C. Also,
the grain size becomes quite homogeneous for the sample annealed at
730�C. All these results are also in agreement with those obtained from
XRD analysis.

Figure 20
Average intercept lengths along the RD direction, for each partition and
sample, further confirm the trend observed in Fig. 19.

Figure 18
Dislocation densities for the cold-rolled and annealed samples. EBSD
results show that the �-fibre accumulates a greater number of dislocations
for both the cold-rolled sample and the samples annealed at 400�C and
600�C. For the sample annealed at 730�C, the density of dislocations
becomes homogeneous for all orientations. This is in agreement with the
observations made from the Langford analysis from XRD.



clearly how the orientations along the �-fibre have the highest

number of dislocations for all orientations, while the crystals

orientated along the �-fibre and in the rotated cube compo-

nent have the minimum number of dislocations. It also shows

that all other orientations have an intermediate number of

dislocations. Size-GDF indicates that the components with

more dislocations also have smaller domains sizes, and that the

components with fewer dislocations have larger domain sizes.

It can be said that assuming Langford’s model is valid

has important consequences when determining the micro-

structure: the dislocations considered by the model are those

contained in loose arrays and the domain sizes are perhaps

smaller than expected, because compact dislocation arrays are

interpreted as domain boundaries. Moreover, on the current

experimental setup, the high brilliance of the synchrotron

beam may enforce the detection of dislocation arrays as if they

were domain boundaries, decreasing the domain size even

more. That said, there still remains the question of whether the

smaller domains can be attributed to smaller grains or to

higher amounts of piled up dislocations, which also produce a

Lorentzian broadening that cannot be separated from the

pure size contribution to peak broadening. The correct limit

in between which dislocations are considered as such and

considered as domain limits remains somewhat murky, but we

expect none of them stay undetected but rather are assigned

to one or the other set of dislocations. The discussion may

become Byzantine in some aspects, since the limit between

both perhaps artificially separated dislocation accumulations

is highly dependent on the measurement method itself (e.g.

synchrotron brilliance).

Figs. 12 and 14 show that the trends observed for the cold-

rolled sample remain for annealing temperatures of 400�C and

600�C, and that in the annealing performed at 730�C only the

�-fibre remains, and that dislocation density and crystallite

size become more or less homogeneous for all orientations,

according to what is known for this material.

Furthermore, since the correlation between orientation and

microstructure was so clear, it was possible to analyze EBSD

maps for the same sheets and study the microstructure of

this material on a different scale, comparing grain sizes along

different directions and the density of GNDs for all four

samples. Again, it was shown that crystals along the �-fibre

have smaller grains and higher GNDs than the crystals

belonging to the �-fibre and the rotated cube component, and

that all the remaining orientations store an intermediate

number of defects. EBSD measurements confirm this beha-

viour for the samples annealed at 400�C and 600�C, and the

microstructure becomes homogeneous with all orientations

having a similar number of GNDs and grain size for the

sample annealed at 730�C.

To summarize, based on the assumption that dislocation

density depends on the crystal orientation in a way that can

be represented by a GODF, we obtain size and dislocation

density GPFs, based on the Langford model, which was the

only one that allowed us to separate such contributions

when performing single peak analysis. We found that GDFs

obtained from such GPFs are self-consistent in the sense that

the GDFs obtained produce recalculated GPFs which are

similar to the measured ones. Additionally, the current results

have been obtained in a system, rolled IF steel, where much of

the physics and metallurgy has been explored in the past, and

we found that our results are consistent with what is known for

this material. Finally, we performed further confirmation of

the results by EBSD analysis. Guided by the GDF, we looked

for the correct partitions in the EBSD maps and confirmed

the persistence of certain anisotropic accumulation processes

despite the uncertainty of the kind and quantity of dislocations

and type of arrays, character of domain boundaries, etc. It

seems clear that, at least in the current system, certain invar-

iance on the scale of analysis can become fruitful for the

understanding of defect accumulation. In the first approx-

imation, the accumulation of defects is scale invariant, i.e. no

matter which method is used and no matter the resolution

scale, the sizes and dislocation accumulations correlate at

those different scales. A further search in different systems is

underway to confirm that trend.

As for the dependence of the crystallite size on the sample

orientation, the experience from EBSD and metallographic

grain-size measurements show that the shape of grains is

mostly determined by the sample symmetry of deformation

processes, rather than by their crystal orientation, which

favours the results given by the homogeneous approach. At

this point it is worth remembering that the grain definition

from metallography and EBSD, coming from boundaries

drawn looking for rather large misorientations (>� 5�) between

neighbouring crystals, is conceptually different from the

crystallite size distribution that is constructed from the sizes of

simply connected coherent diffraction domains. For synchro-

tron radiation this means that two crystals with a mis-

orientation larger than the beam divergence (>� 0.01�) will

make different contributions to the size distribution. In this

context, it is no longer obvious that what is known from

metallography and EBSD will also hold true for X-ray size

distributions. A consequence of this is that it is not necessarily

true that the crystallite size should depend only on the sample

direction, but also on the crystallographic orientation.

Note that the average value of dislocation density given by

both Langford decomposition and EBSD is �1014 m�2, which

means that both methods are equally reliable if one is only

interested in estimating the order of magnitude of the dis-

location density of the sample as a whole, instead on the

details of their distribution. Moreover, the proportional

distribution of defects with respect to orientation components

is information that remains valid despite the fact that absolute

values are unknown.

6. Conclusions

Cold-rolled IF steel was analyzed by XRD using synchrotron

light. The material was chosen because of its importance in

many industrial processes and because the development of its

microstructure with rolling and annealing is well known.

Synchrotron light was chosen because of high intensity, high

brilliance and the allowed low-divergence angle, making
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high-resolution measurements of crystallographic texture

and microstructure of the material possible, by relating the

intensity and broadening of the diffraction peaks with the

sample orientation.

The broadening of the peaks was analyzed using the

Langford model for line profile analysis. Langford’s method,

while biased and more primitive at first sight, can model the

main features of the microstructure of textured materials with

reasonable accuracy, and can accomplish this by performing a

single peak analysis.

This method was used to construct GPFs for defects, and

such PFs were used to calculate the corresponding GDFs

using standard pole-figure-to-ODF inversion algorithms. The

calculated GDFs were consistent with the measured GPF, and

the conclusions drawn from such GDFs were also consistent

with what is known for IF steels subject to cold-rolling and

annealing processes.

The results obtained with XRD were also compared using

EBSD, another well established and independent technique

for analyzing the microstructure of materials on a different

scale. The EBSD maps were partitioned in the three main

components of texture, namely the �-fibre, the �-fibre and one

additional partition consisting of all the remaining orienta-

tions. The partitions were created to check the predictions

made using the GDFs of size and dislocation density. The

defect storage of every partition was estimated by means of

the average intercept length of grains and the average of the

GNDs, and we observed that grains belonging to the �-fibre

tend to store more defects than those belonging to the �-fibre,

and that the remaining orientations lie more or less in the

middle. All these results were in perfect agreement with those

obtained by applying Langford’s method to XRD measure-

ments, which in turn were in good agreement with the previous

experiments for this material.

The same experiments were repeated for annealed samples

at 400�C, 600�C and 730�C, and we observed that the samples

annealed at 400�C and 600�C show more or less the same

microstructure than the cold-rolled sample, according to what

is known for this steel. We also observed that the annealing at

730�C removes the majority of the dislocations of the material,

homogenizing dislocation with respect to orientation, which

was also in agreement with what is known for rolled IF steels.

More importantly, the same results were obtained from both

EBSD and XRD measurements when Langford’s method and

GDF were applied.

The analysis described in this paper demonstrates how peak

broadening is related to sample orientation in correlation with

texture. This correlation allows us to construct GODFs from

GPFs obtained by means of XRD, and perform an analysis of

peak broadening according to Langford’s model. These GDFs

succeeded in describing, albeit in a qualitative manner, how

defects are stored in different texture components, which

means that texture does not only command the macroscopic

anisotropy of crystalline materials but also defines the aniso-

tropy of defect storage.

A final word is owed to the caveat that may be interceded

regarding the impossibility of knowing the character of the

functional relationship between GDFs and GPFs in the sense

of our ignorance of what would happen with the defect

content on a hypothetical crystal oriented in such a way that

it cannot be detected experimentally. The question arises of

whether the defect content can be reconstructed from the

information given on the orientations that contain a reason-

able number of crystals. The answer is clearly no, but the

concern becomes, in our opinion, immaterial since the

reconstruction appears adequate and defines a relationship

between both spaces that reveals a functional in terms of its

univocally and reversible character.

We must emphasize that the calculation of full GDFs has

been realized for the first time, after many years of being

suggested as a method for anisotropic structure and micro-

structure analysis. It may become a customary method for

such analysis in deformed and heat-treated metals and alloys.

Even though these results are by no means conclusive, they

are promising enough to justify its applications to more

materials in order to verify the scope of this model.
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