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At the High Energy Photon Source (HEPS; Beijing, People’s Republic of

China), where up to 90 beamlines can be provided in the future, minimization of

workload for individual beamlines and maximization of knowledge about one

beamline that can be applied to other beamlines is essential to minimize the

total complexity in beamline control. Presented in this paper are our efforts to

achieve these goals by composing relatively simple utilities and mechanisms to

automate tasks, while always remembering to keep our automation solutions

simple and clear. After an introduction to our choice of basic software in

EPICS-based beamline control, the issues encountered in introducing package

management to EPICS modules, as well as solutions to them, are presented; the

design and implementation of the packaging system is concisely discussed. After

a presentation of our efforts to reduce the need for self-built multi-device

EPICS ‘input/output controller’ (IOC) applications by providing reusable

modular IOC executables, implementation of easily maintainable multi-IOC

setups through the separation and minimization of each user’s IOC configura-

tions is given. The ongoing project of comprehensive beamline services at HEPS

to further simplify configuration management on multiple scales, ranging from

individual beamline devices to all beamlines at HEPS, is introduced.

1. Introduction

The High Energy Photon Source (HEPS) (Jiao et al., 2018) is a

fourth-generation synchrotron radiation facility under steady

construction in Beijing, People’s Republic of China. Fourteen

beamlines will be provided in 2025, when Phase I of HEPS is

planned to open up to the public; up to about 90 beamlines can

be provided in further phases. The beamline control system at

HEPS (Chu et al., 2018) is mainly responsible for the proper

operation of individual beamline devices and the abstraction

of the various device-specific control interfaces for these

devices as consistent interfaces. Given the large number of

beamlines, it is undoubted that, for unnecessary work to be

reduced, reusable designs and plans are essentials instead of

luxuries. In this paper, we focus on the beamline control

system of the facility; nevertheless, we believe that in other

parts like the accelerator control system, or even in other large

scientific facilities like free-electron laser facilities and spal-

lation neutron sources, the same principles described here are

still applicable, and most techniques can be adapted.

Given the background above, the tasks of beamline control

can be considered a kind of computer system administration

with a focus on diverse device support and large-scale

deployment; with this focus, it is easy to note that tasks for

HEPS beamline control need to be performed in simple yet

reproducible ways. For beamline control at HEPS, we predo-

minantly use Unix-like operating systems, where off-the-shelf

utility programs are abundant and it is very easy to compose

these utilities to automate tasks. With the utilities, we can
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express many tasks as command line code, and further abstract

common tasks as scripts; as the amount of manual operations

decrease, the tasks cost less time and labour, yet the results

become more reliable and maintainable – in other words, both

efficiency and reproducibility increase.

If ‘control’ is to be seen as an integral part of the infra-

structure for ‘automation’, then the practice above can be

seen as ‘automation of automation’; in essence, what we do is

programming specific to the domain of system administration.

When designing and implementing the beamline control

system of HEPS, we find that by seriously considering the

programming nature of tasks we can often identify the key

factors in problems; we may find surprisingly simple solutions

to these problems by the composition of relatively simple

mechanisms and utilities, like the use of the flock utility to

implement critical sections (cf. Section 3.2). In this paper, by

showing some examples for the practice above, we attempt to

convey the idea that it is beneficial to regard beamline control

as a serious domain of programming.

As is the case with any other kind of programming, while

the abstraction of beamline control tasks reduces complexity,

it also brings about additional complexity itself. For multiple

reasons, Experimental Physics and Industrial Control System

(EPICS) is chosen as the basis for the device control interfaces

at HEPS. We find that when performing certain tasks, by

deviating from the ‘orthodox’ EPICS practice, we are able to

make the task much simpler – sometimes by an order of

magnitude or even more, in terms of manual labour or lines of

code that each party needs to care about (cf. Section 3.1); in

some cases, we also deviate from the ‘orthodox’ in certain non-

EPICS parts of beamline control. Therefore, in this paper,

often what we discuss is not only ‘automation of automation’

itself but also our choices of strategy when implementing

requirements, and more importantly the rationale behind the

choices. In general, we prefer composition of simple tools over

off-the-shelf but complex workalikes, to avoid the additional

complexity in the latter; we prefer free-form development

over potential over-design in early phases when unsure

whether the abstraction in our mind would be sufficiently

beneficial, to reduce time spent on irrelevant details or even

anti-features.

2. Package management

2.1. Choice of basic software

Due to the requirement of large-scale deployment at HEPS,

a first issue to consider is the installation of supporting soft-

ware for the many kinds of devices used in beamline control.

The automation of this task belongs to the field of package

management, which revolves around the automated installa-

tion of software modules and the automatic management of

dependencies. There are many package managers, like DPKG/

APT of Debian, RPM/yum of Red Hat, Portage of Gentoo,

etc.; there are also cross-distribution package managers like

Conda, pkgsrc and Guix, and we are aware of efforts, like

those by Bertrand & Harrisson (2019), to use these kinds of

package managers for software involved in beamline control.

However, we find that in order to properly handle depen-

dencies, we need to duplicate efforts in packaging software

already provided by the distribution; otherwise we would need

to resort to the official package manager of the distribution

for many dependencies. The latter would not only be incon-

venient but also degrade the portability of our packages, which

is an important reason to use cross-distribution package

managers in the first place. Community efforts like conda-

forge surely help to avoid packaging dependencies by

ourselves, but they essentially act as mini-distributions in

parallel with the distribution we already use, with significant

implications in development and maintenance. Since we are

quite satisfied with the attributes of our distribution (see

below), we choose not to use cross-distribution package

managers at least as of now.

For various reasons, CentOS is currently the primary

operating system running on computers in control systems at

our institute. For us, while CentOS is not known for minim-

alism/simplicity or flexibility, it is usable enough for automa-

tion work in control systems. More importantly, the strong

compatibility between minor releases (like 7.1 and 7.9) of

CentOS makes its basic behaviour (without deep customiza-

tion to the system itself) quite predictable. Factors like the

inclusion of all official base packages for a minor release

in single :iso files (like CentOS-7-x86 64-Everything-

2009:iso) and the availability of deployment tools like

Kickstart (cf. Section 3.2) also contribute to easy automated

batch deployment. Because of the lifecycle of CentOS

releases, we currently base the beamline control system of

HEPS on CentOS 7. We are aware of the discontinuation

of non-rolling releases of CentOS 8 (Bowen, 2020) and the

resulting uncertainty; depending on future developments

of the situation, we will evaluate the migration to a suitable

alternative Linux distribution roughly two years prior to the

public opening of HEPS Phase I in 2025, before CentOS 7’s

end of life in 2024. We estimate that the migration will take

roughly two months if we are to use a Red Hat-like distribu-

tion, or about six months (with occasional overtime expected)

if not. Anyway, for the reasons above, we currently use RPM,

the official packaging format of CentOS, for beamline control

software.

We are aware of the trend in the EPICS community to

migrate to EPICS 7, and the declining activity resulted around

EPICS 3; considering this background, we plan to use

EPICS 7 whenever applicable, so that we have the best

community resources around the version we use. However,

due to the relatively immature adoption status of new features

(most importantly the PVA protocol) in EPICS 7 in our

testing environment, we deliberately avoid these features in

production, and instead use EPICS 7 like EPICS 3. Finally,

as is quite common with EPICS in beamline control at major

synchrotron radiation facilities, we extensively use the

synApps collection (Mooney, 2010) of EPICS modules for

HEPS; this has very profound effects on the packaging of

EPICS for HEPS, which is discussed in Section 2.2. Here we

also note that, although the official documentation of synApps
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does not explicitly state its compatibility with EPICS 7, very

few build-time or run-time errors have actually occurred in

our experience that are traced back to using EPICS 7, which

proves that EPICS 7 is mostly backward compatible with

EPICS 3 in terms of functionalities shared between both

major versions.

2.2. Packaging EPICS

EPICS base explicitly supports installation to a separate

location with few negative effects on downstream code like

synApps etc., by specifying the $fINSTALL LOCATIONg

variable which is fairly similar to the $fDESTDIRg variable

supported by many open-source software projects. However,

on the current version of the synApps homepage, the

recommended way to install the software collection is to

extract the source code archive into a certain directory (like

=opt=epics=support) in the system, build the source code,

and then use the built libraries and executables in place. So

there is no separation between building and installation

phases with synApps, and consequently no clear distinction

between source code and files which would be installed

separately if $fINSTALL LOCATIONg was used. This allows

applications to refer to code that is not explicitly to be

‘installed’, e.g. areaDetector modules referencing files in

$fADCOREg=ADApp=Db. While perhaps convenient, this also

results in implicit dependence on the synApps directory

layout, which is very unfriendly to packaging.

A first issue we can easily notice is the directory layout.

Ideally, there should be preset directories for different types of

installed files: executables to a common directory, libraries to

another common directory, etc. This way, modules just need

to refer to these preset directories for necessary files without

worrying about where to find each and every module they

depend on. There do exist attempts to package EPICS

modules in this way, with the NSLS-II package repository for

EPICS and RTEMS (BNL, 2018) being perhaps the most well

known example. Nevertheless, as far as we know, none of them

provide a satisfactory coverage of modules we are interested

in, most importantly motor and areaDetector modules. From

the open-source packaging code we obtain from these

projects, we conclude that attempts to use common directories

for different modules instead of the synApps layout require an

inordinate amount of work by packagers, who need to work

around references outside $fINSTALL LOCATIONg that may

occur in too many ways possible to handle in a way repre-

sentable by simple, clear code. For these reasons, the synApps

layout is preserved in our packaging system; and not only

modules provided by synApps are organized in its original

way, extra modules, including but not limited to additional

motor and area detector modules, are also put into directories

similar to the built-in modules they look like.

The second issue is file conflicts. With

$fINSTALL LOCATIONg specified, files in the configure

directory are copied into the configure subdirectory of

$fINSTALL LOCATIONg; no consideration is taken for the

coexistence of multiple modules, which may have conflicting

configure contents. These kind of conflicts also contribute

to the difficulty in proper packaging of EPICS modules; with

the synApps directory layout, we do not need to worry about

the conflicts between configure contents of modules, but

another kind of file conflict arises. Because our system builds

synApps and many other EPICS modules in place, we cannot

directly build them on a computer with themselves already

installed, which is highly inconvenient; we used to solve this by

running our packaging system in virtual machines, and now we

use Docker containers (cf. Section 2.3).

The third issue is permissions. The synApps directory layout

is unrelocatable: the directories, even as a whole, cannot be

moved around once it has been built, mainly because of

parameters like library search paths and environment

variables set to certain absolute paths by the build system

of EPICS. Because of this, our packaging system builds

synApps and other EPICS modules depending on it in

=opt=epics=support; to avoid accidentally tampering with

system files, the packaging system itself is run as a normal user.

However, for the same purpose of avoiding unintended

manipulation of packaged files by users, these files should

normally be installed into a directory hierarchy owned by the

root user, and themselves also be owned by root. So in

order to build synApps and many other modules, we need

write access in directory hierarchies owned by root, even

though we build packages as a normal user. We resolve this

issue by using the sudo utility for controlled privilege escala-

tion: we set up password-less sudo permission for a ‘builder’

user, and run our packaging system as this user, so it can

acquire root privilege when necessary without manual

interaction. The use of root privilege is purposefully mini-

mized: e.g. when building synApps, we first use it to move a

user-owned support hierarchy, extracted from the source

code archive and properly patched, into the =opt=epics
directory; we also use root privilege to move the mostly built

support hierarchy into a staging directory specified by the

packaging tool we use, and then do some necessary processing

that can proceed without the privilege. For certain modules

(like motor modules that are not yet integrated into

synApps), some built files may end up in directories (like

=opt=epics=support=motor=db) where files from other

modules can also exist. We handle this kind of situation by

temporarily changing the owner of directories with files from

multiple modules to the builder user in an early phase, and

selectively move the non-root-owned files in these direc-

tories into corresponding directories inside the staging direc-

tory when the building procedure is mostly done (cf. Fig. 2);

the selective moving may be regarded as a case where the

separation between root and non-root operations actually

simplifies the building procedure.

2.3. Beyond EPICS itself

Considering the limited human resources at our facility,

maintainability is a first concern in the design of our packaging

system. For this reason, we strive to make the system as ‘small’

as reasonable: we keep the packaging code simple and clear,
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with proper abstractions that are thin yet flexible enough. A

first choice we make is about the organization of packaging

code; one approach is to put the code specific to one package

alongside the source code archive(s), then generate a source

package, and finally build the binary package we normally use.

This is how Debian-like and Red Hat-like distributions usually

work, and is also how the NSLS-II package repository is

created; however, a most important drawback of this approach

is that the packager may be tempted to apply site-specific

modifications directly in source code repositories. In a sense,

this disperses packaging code into original upstream code,

which creates difficulty in packaging updates and reviewing

modifications; we feel this is at least a hidden factor contri-

buting to the difficulty in maintenance of the NSLS-II

packages after the leaving of a main developer (Lange, 2021).

Due to the reasons above, we put all our packaging code in a

single code repository (Fig. 1; a fully open-source edition of

our packaging system is available at https://github.com/

CasperVector/ihep-pkg-ose), and directly build binary

packages from there (the source package phase is optional in

CentOS 7, and is also not used in our packaging system); this

approach is also prevalent in more recent Linux distributions

like Alpine and Void.

As has been discussed in Section 2.2 and will be further

exemplified in this paper, in order to reduce the intrinsic

amount of tasks needed in packaging, we attempt to package

EPICS and related software modules similar to that intended

by their authors with only relatively minor and non-intrusive

modifications. To reduce duplication in the actual packaging

code, multiple measures have also been taken to abstract

common tasks, like how eclasses for Gentoo ebuild abstract

common tasks. Because the majority of packaging code is

written in the Shell language, we currently use two library

scripts, fn-build:sh and fn-setup:sh [Fig. 2(a)], to define

abstractions for most tasks in the :spec package definition

files used in RPM packaging; they are not combined into one

script because the code in fn-build:sh is only used during

the building procedure, while the code in fn-setup:sh needs

to be used when the binary package is installed into the

system. Certain common definitions are needed by both :spec
files themselves and the packaging code therein, so we define

them in an rpmmacros file [Fig. 2(b)] that will be loaded by

rpmbuild, the official program to build RPM packages; also

present in rpmmacros are wrapper macros that pass para-

meters, which are known to rpmbuild but unknown to the

library scripts, to functions defined in the latter, so as to

further simplify :spec files [Fig. 2(c)]. By the way, although we

follow the synApps directory layout, we also try to keep a

slightly higher level of granularity by packaging basic modules

(like asyn and calc), frequently used modules (like motor

and areaDetector) and other modules as three separate

packages [cf. Fig. 3(b)]; this not only helps users to slim down

systems but also helps packagers to better understand the

dependencies.

Apart from running rpmbuild, quite a lot of ancillary tasks

are also involved in the creation and management of a readily
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Figure 1
Directory layout of our packaging system.

Figure 2
Example snippets from (a) fn-build:sh, (b) rpmmacros and (c) our
:spec files for extra motor modules (where %frepog has been set to
strings like motorAcsMotion earlier).

Figure 3
Example usage of (a) boot:sh and (b) dboot:sh, both expected to be
executed from the root directory of the build system.



usable repository of binary packages: downloading and

managing source archives, downloading build-time or run-

time dependencies (e.g. re2c required by synApps) that are not

provided by the base CentOS repositories, running createrepo

to generate necessary metadata for the repository, etc. We use

a script, boot:sh, to abstract these tasks, so that the packager

only needs to run simple commands [Fig. 3(a)] to do common

tasks. A point worth mentioning is that, instead of down-

loading dependencies as needed when building a package, we

use a locally mounted CentOS Everything image (cf.

Section 2.1) to provide all base dependencies, and batch-

download all non-base dependencies into the epel subdir-

ectory of our repository with the epel get subcommand of

boot:sh. With the same mechanism, we also download

frequently used third-party packages, like procServ and

Docker, into our repository, so that our users (who are not

very skilled Linux users on average) have a one-stop solution

for common packages. The source archives can also be batch-

downloaded (using the src get subcommand); the fact that

all source materials can be batch-downloaded enables us to

pre-download the materials, transfer them to a network-

isolated machine with tens of CPU cores, and then perform the

building procedure alone on said machine, thus exploiting

high-performance machines without regular network access

for big tasks.

Traditional RPM packaging does not involve the integrity

check of source archives, which is a common feature in many

packaging frameworks, and also a crucial security feature

given the recently increasing threats posed by supply chain

attacks. To compensate for this shortcoming, we maintain a

group of checksum files (SHA512SUMS etc.) and compare the

checksums of downloaded source archives against them at the

end of the src get subcommand of boot:sh. Actually,

for each input outside of our packaging system, we have

a chain of trust (Fig. 4) to ensure its integrity: there is

SHA512SUMS-iso for the CentOS Everything image we

use, which ensures every base package contained therein is to

an extent trusted; also in SHA512SUMS are the checksums for

OpenPGP public keys of repositories we download third-party

packages (including Docker which is discussed later in this

subsection) from, and the signatures of downloaded packages

are checked against the keys at the end of epel get; the base

image which our Docker container images are based upon is

also referenced by its checksum to avoid tampering. Another

issue loosely related to beamline control is also handled in our

packaging system: providing a repository of Python packages

[currently mostly related to Bluesky (Allan et al., 2019)] for

use in beamline experiments, some of them with customized

patches and some of them developed internally at our facility

(the adoption of Python-based software at HEPS is still in a

fairly early phase, so we do not yet have a formal policy for the

management of Python packages other than recommending

our repository). We first use the pypi get subcommand of

boot:sh to batch-download most of these Python packages

from the Python Package Index (PyPI) and source archives of

the several internally developed packages; after this, we can

use the pybuild subcommand to build the customized or

internally developed packages (the former also downloaded as

source archives). The pybuild subcommand delegates most

of its tasks to a script, pybuild:sh (Fig. 5), which is essen-

tially a miniature build system for Python packages heavily

inspired by Gentoo ebuild. We also note that, given the high

fluidity of PyPI packages, a ‘hidden’ advantage of our internal

Python package repository is the relative stability of systems

using the packages therein, assuming our repository is not

updated too frequently.

As has been mentioned in Section 2.2, we used to run our

packaging system in virtual machines to avoid interference

with actually used machines where EPICS-related packages

have been installed; this also reduced the potential security

risks resulting from password-less sudo permission of the

builder user. Nevertheless, the preparation and usage of

virtual machine images for packaging tasks is still fairly

complex and involves quite a number of manual steps, which

reduces reproducibility and consequently reliability; more-

over, file transmission between virtual machines and the host

machine is not very convenient to perform in an automated

fashion. To further increase reproducibility, we developed the

helper script dboot:sh [Fig. 3(b)] to create suitable Docker

container images and perform packaging tasks in containers

instantiated from these images; built RPM and Python

packages are respectively put into the RPMS and pypi
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Figure 4
Chains of trust for external files in our packaging system.

Figure 5
(a) ipython:sh, the definition file of the ipython package customized at
HEPS; (b) a condensed pybuild:sh, expected to be executed from the
root directory of the build system.



directories (Fig. 1) automatically, by using the ‘mounting’

feature of Docker. To save time used in installing common

build-time dependencies, we distinguish between base and

non-base container images: the former used to build basic

packages like EPICS base and synApps, with preparation

tasks (like setting up password-less sudo) done on image

creation time; the latter based on the former but with the basic

packages pre-installed (and therefore need to be recreated

when these packages are updated). A common practice in

software engineering is continuous integration (CI), where

updates to the code repository trigger rebuild of the changed

parts automatically. We currently do not have a fully auto-

matic CI workflow, partially due to the complexity in mana-

ging source archives as well as in rebuilding dependencies and

container images, and more importantly because the infra-

structure needed for CI at HEPS is still under development.

However, we also find the current script-assisted rebuilding

procedure sufficiently succinct and efficient that it can be

regarded as some kind of ‘slightly manual’ CI; fully automatic

CI will be completed as the necessary hardware and services

are settled down.

3. Minimization of configuration

3.1. Reusable modular IOC executables

Most of the time in EPICS-based beamline control is spent

maintaining IOC (‘input/output controllers’) applications

which translate various device-specific control protocols into

the Channel Access (CA) protocol exposed by EPICS. IOC

applications are mainly composed of IOC executables (based

on underlying support libraries) and data files (most impor-

tantly :dbd files, :db files and :cmd files). From a slightly

academic viewpoint, IOC executables are interpreters that

interpret :cmd files, which most importantly tell interpreters to

load specified :dbd files and :db files. Upon closer observation

it is not difficult to find that, for IOC applications that handle

the same type of devices, the source files of the IOC execu-

tables and :dbd files are mostly unchanged: although the

filename of the executable and the :dbd file may change, these

factors do not lead to any substantial change in the behaviours

of the IOC application. In other words, the exposed interface

of an IOC application is mostly affected by the interpreted

files excluding :dbd files; we may consider :dbd files as an

external yet closely coupled part of IOC executables, and

other data files as configuration files in general. For many

support modules, it is common to provide shared :db files, and

let users compose them into more complex interfaces by using

:substitutions files; we regard these kinds of shared data

files as configuration fragments provided upstream that can be

composed or customized by the user. From the above, it may

be concluded that, for IOC applications dealing with at most

one type of device, we may provide reusable IOC executables

(including :dbd files and other shared data files) that can be

fed with different configuration files to act as different appli-

cation instances. We will show at the end of this subsection

that application instances for different devices, seen as

modules, can be composed to implement the same require-

ments done by at least a large fraction of previous multi-

device IOC applications; thanks to this change, we can mini-

mize the need for users to build IOC applications by them-

selves, which greatly reduces the need for systems like Sumo

(Franksen, 2019). The applications instances that replace a

multi-device application can still be run on the same

computer, and be started/stopped as a group; since they would

then communicate through the local loopback interface which

can only be disrupted in the case of very serious errors, the

splitting does not hurt reliability. By properly organizing

configuration files for different instances of the same IOC

executable (cf. Section 3.2), conflicts between different

instances can be easily avoided, so we do not need to use

mechanisms like Docker to isolate different IOC applications

(Derbenev, 2019), which simplifies deployment and saves both

memory and disk space. Another point worth mentioning is

that the idea of reusable modular IOC executables seems more

natural and easier to understand for us than the require

mechanism (PSI, 2015), which loads support libraries on

demand in :cmd files and requires much more patching in

the packaging procedure for every EPICS support module

involved.

For reusable modular IOC executables to be provided, they

must be built first; for some EPICS modules this is done by

default, or is disabled but can be easily enabled. For other

modules which we want reusable executables of, we need to

build them by ourselves; for various purposes, we also add

features like iocStats (IOC ‘health’ monitoring) and autosave

(automatic state saving and restore) to most IOC executables.

We do these by patching the build system (usually

configure=RELEASE and xxxApp=src=Makefile in a

module) before actually running it; the centralized manage-

ment of packaging code (cf. Section 2.3) also helps to review

patches and compare the patches of modules that are similar

in packaging, both of which prove to be very helpful in quality

assurance. The build systems of modules that belong to a

common type (most importantly motors and area detectors)

often only differ in a few highly ‘templated’ locations. This

similarity can sometimes be exploited to simplify the patching

procedure above: since the patches for these modules would

also be templated, we may provide a template (Fig. 6) and

generate the patches on the fly for them based on this

template. For this reason, we prefer to make the build systems

of internally developed motor and areaDetector modules

similar to their counterparts in synApps, instead of using the

more ‘standardized’ (and much more bloated) build system

generated by traditional tools like makeBaseApp:pl; to

generalize a little, we have the policy for fundamentally similar

code in different places that if they cannot yet be abstracted,

at least make them templated. A situation where we further

exploit the similarity between EPICS build systems is building

generic extra modules: we find that although the build systems

of these EPICS modules (e.g. Keithley_648x for Keithley

6485/7 picoammeters and s7nodave for Siemens PLCs) do not

look immediately similar, they can usually be replaced by a

‘standard’ counterpart with only minimal changes in some
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‘template parameters’. For this reason, when packaging

synApps, we provide a standard configure directory and

Makefile that would appear in xxxApp, iocBoot and

iocxxx, respectively, at configure, app:mk, iocBoot:mk
and ioc:mk in the =opt=epics=support=utils directory,

and have successfully used them to replace their module-

specific counterparts.

When we discussed reusing IOC executables above, what

we meant to reuse was not only those that deal with specific

devices but also those that do not directly communicate with

devices other than the computers they run on. They may

control other devices indirectly by communicating with other

applications through the CA protocol, like the optics (mono-

chromators and similar utilities) and sscan (interlocked action

of motors and detectors, functionally like a reduced Bluesky)

modules; they may also provide PVs (‘process variables’ in

EPICS) which other applications may read or write through

the CA protocol. The behaviours of some applications among

them are completely determined by the :db files supplied, to

the point that their behaviours remain intact if they are

instead fed to the intuitively named softIoc executable; this

is how we implement these applications, so that we do not

even need to write :cmd files for them. However, given our

requirement of status monitoring mentioned above, we also

need to add the iocStats feature to our softIoc executable

[cf. Fig. 9(a)], which results in a chicken-and-egg situation:

synApps depends on EPICS base which provides softIoc,

while softIoc needs to be added with support for iocStats which

is from synApps. We break this dependency loop by disabling

the building of softIoc in EPICS base, lifting the former’s

source code from the latter, using the templates in

=opt=epics=support=utils to form the build system for

a standalone softIoc, and finally building it with iocStats

support added. Another dependency loop is that the sscan

IOC executable depends on the calc module, which in turn

depends on the sscan library; we solve it in a similar way – first

building libraries in the two modules only, and then

building the executables separately. We also note that in

order to make references to EPICS modules (including

executables and libraries) stable across updates, we remove

the version tags from the directory names of all synApps

modules (like the -R4-36 from asyn-R4-36, cf. also

Fig. 9); this does not prevent the user from querying

the version numbers, which can still be found in

=opt=epics=support=assemble synApps:sh. And to

make OPIs (‘operator interfaces’, GUIs for IOCs) easier

to find, we create symbolic links to all OPI files under

=opt=epics=supportin=opt=epics=resources: links

to :edl files for EDM in the edl subdirectory, links to :adl
files for MEDM in the adl subdirectory, etc. Search paths like

$fEPICS DISPLAY PATHg are also set to these resource

subdirectories, so that users do not even need to type the

directory names for OPI files; in case of ‘missing’ resource files

(e.g. kohzu:gif referenced by kohzuGraphic:adl from

the optics module, expected to be in the same directory), the

user can also easily find the real path of OPI files by looking at

where the symbolic links point to.

Interlocked actions between devices are a well known

strength of EPICS, and we provide full compatibility with self-

building of multi-device IOC applications: the libraries and

ancillary files are provided as usual, with reusable modular

IOC executables just as an added bonus. However, we also

find what is done by at least a big fraction of previous multi-

device applications can also be done by the composition of

their single-device counterparts; the first examples are optics

and sscan, which in our experiments work well whether the

devices involved are controlled by the same IOC application

or not. From a theoretical perspective, a multi-device appli-

cation can be split into multiple single-device applications as

long as the main modules involved (like sscan and the motor/

detector modules it is supposed to control) do not actually

assume each other were in the same application, or in EPICS

terms they do not mandate that they communicated through

DB links instead of CA links. For some applications, even if

this is not true, the link relation between the modules can be

refactored to eliminate the demand for DB links; this certainly

needs to be analysed on a case-by-case basis, but here we give

a relatively simple real-world example that is nevertheless

fundamentally similar to many other IOC applications in

production, which is why we believe many multi-device

applications can actually be split up. For a certain application

scenario, we need to poll temperatures from a group of

Cryo-con 18C monitor channels, and write them to a group of

memory addresses of Siemens PLCs; our previous and current

solutions are shown in Fig. 7. For each pair of temperature

channel and PLC address, we use a pair of EPICS analogue-

input and analogue-output PVs based on StreamDevice (cf.

Section 3.2) and s7nodave, respectively. In the previous solu-

tion, the StreamDevice PV periodically updates (‘scans’) from

the temperature channel, and after every update uses a

‘forward link’ to trigger update of the s7nodave PV, which

pulls the temperature from the StreamDevice PV and writes

it to the specified memory address. According to the EPICS

documentation (Kraimer et al., 2018), a CA forward link only

works as expected if it explicitly points to the :PROC ‘field’ of
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Figure 6
A ‘template’ used to batch-add support for iocStats and autosave to motor
modules.



the destination PV (e.g. CryMon:18c1 AtoPLC:PROC), so we

can eliminate the demand for DB links by batch-adding the

:PROC suffix to the forward links. For multiple reasons, we

actually use a slightly more complex solution, with ‘soft

channel’-based analogue-out PVs (supported by EPICS base)

as intermediates for temperature values; the ‘soft channel’

PVs are scanned instead of the StreamDevice PVs, and the

latter are only passively updated (using the ‘process passive’

option) before the s7nodave PVs.

3.2. Configuration minimization and automated deployment

An issue with introducing package management into

EPICS is the management of configuration files. The first

problem is that, if the user tunes the behaviours of IOC

applications by directly changing packaged files, these changes

would get lost when the corresponding package is updated;

although package managers usually support the declaration of

certain packaged files (like all files under =etc) as ‘config-

uration’, which helps to prevent the loss of configuration

changes, there are often too many customisable files in EPICS

to be batch-declared as configuration. The second problem is

that since packaged files are typically installed as root-owned

(cf. Section 2.2), we often would need to use root privilege to

change them, with implications in security and even conve-

nience: e.g. with reusable IOC executables (cf. Section 3.1),

the same executable may be used by multiple users for

different applications, and one user may accidentally over-

write configuration files that actually belong to another user.

Both problems can be easily solved if the configurations files

by each user are kept inside the user’s own home directory;

this is a common practice outside the EPICS ecosystem, and

is in essence analogous to the separation of packaging code

and source archives (cf. Section 2.3) in that both distinguish

between upstream and downstream (upstream developers

versus packagers, packagers versus users) in order to reduce

the amount of code each party needs to maintain. As has been

mentioned just now and in Section 2.3, this also helps with

software update and migration: a very nice side effect of the

separation of configurations is that, if somehow we find a clean

way to get rid of the packaging-unfriendly synApps directory

layout (cf. Section 2.2), users will be able to migrate to the new

layout relatively easily by batch-changing all path references

in configurations files accordingly.

At our facility, we have formed what we call the ~/iocBoot

convention: putting configurations corresponding to an EPICS

module (e.g. motorIms for MDrive motors) into a suitable

subdirectory (e.g. iocIms) of $fHOMEg=iocBoot named after

the subdirectory of iocBoot where the configuration files

are derived from. This is chosen because :cmd files (Fig. 8)

usually change to the ‘$fTOPg=iocBoot=$fIOCg’ directory

before loading their default configurations, so we can

easily adapt them by changing the references into

‘$fHOMEg=iocBoot=$fIOCg’ where appropriate. For modules

where the $fIOCg subdirectories are named too generally (e.g.

iocAny from optics), the packager renames them into more

distinguishable names (e.g. iocOptics); for packages where

iocBoot is not provided or the contents are not very good

examples, the packager provides self-made examples that can

be easily customized. The StreamDevice module is widely used

in EPICS for talking to simple devices in a request/reply

fashion, where developers mainly need to provide :proto
‘protocol files’ and corresponding :db files; we have a dedi-

cated package that collects these files, and groups them into

directories like iocCounter and iocThermo according

to the device type [cf. Fig. 9(b)]. softIoc is a special case
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Figure 8
Default :cmd file for Cryo-con 18C temperature monitors.

Figure 9
Run scripts in $fHOMEg=iocBoot=service in a production environ-
ment for (a) a LabView-based monochromator gatewayed to EPICS with
CA Lab (run-mono:sh) and (b) some Cryo-con 18C temperature
monitors (run-temp18c:sh), with (c) example invocations of utilities
that start and then stop corresponding applications.

Figure 7
A requirement implemented with (a) multi-device and (b) single-device
IOC applications; for reliability reasons, the latter should be run on the
same computer, and be started/stopped as a group.



where the iocBoot directory is not strictly needed, but in

the name of uniformity all :db files for softIoc are put in

$fHOMEg=iocBoot=iocSoft. Furthermore, all :cmd files

are patched to store autosave state files in

$fHOMEg=iocBoot=autosave=$fIOCg; nevertheless, to

prevent IOC executables from outputting warning messages

over and over when the specified directories do not yet exist,

the saving and loading of state files are disabled by default. We

use the $fHOMEg=iocBoot=service directory to store ‘run

scripts’ (Fig. 9) that when executed run corresponding appli-

cations in the foreground; utilities based on procServ are also

provided to start/stop specified application(s) in the back-

ground, and we are developing procServControl-based

mechanisms to provide GUIs for centralized status manage-

ment. With all these elements combined, we are able to

implement multi-application setups, where the hundreds of

IOC applications needed for a beamline (excluding area-

Detector and other applications that are resource-intensive, as

well as VME-based applications) can be accommodated on

just a few computers with very modest hardware. We find this

much easier to implement and maintain than alternatives, e.g.

Konrad & Bernal (2019) which uses much more abstraction

based on Puppet to compile applications from what is roughly

equivalent to ~=iocBoot . We note that we are indeed

evaluating the use of Puppet-like utilities to push changes of

centrally managed configurations to beamlines (see below),

but that our mechanism will rarely (if ever) need to care about

compiling IOC applications.

System administration is closely related to the concept of

‘configuration management’; to us, configuration is the entire

procedure of composing hardware and software, whether off-

the-shelf or self-developed, into systems that can readily work

in production. In the above, we have shown the basic aspects

of our efforts to minimize the complexity in configuring soft-

ware on a single computer for comfortable EPICS-based

beamline control; in addition to these, we also further reduce

the complexity of said configuration by simplifying config-

uration files using various mechanisms, whether based on

EPICS (e.g. :substitutions files) or not (mainly code

generators, provided the workload saved by them significantly

outweighs the workload to maintain them). To also simplify

hardware configuration, we have written a software/hardware

handbook to give simple yet reproducible instructions that can

be followed to configure beamline devices and corresponding

software into basic working states. On a larger scale, we are

developing a backup system (probably based on rsync and

related utilities) where the actual configuration of computers

(whether running IOCs, OPIs or software like Bluesky) are

automatically synchronized to a central backup service, which

in turn distributes the computer configurations on a beamline

to every computer on this beamline, so that the configuration

of a computer can be replicated onto a backup computer in

case of hardware error. Git-based version control will be

applied to the backups, so that we can revisit recent changes

in case misconfiguration is suspected; in order to minimize

downtime spent on replicating configuration, automation

mechanisms will be developed for the replication procedure,

and backup computers will be preloaded with basic software

after procurement if applicable (at the BDL discussed below).

In addition to regular computers, we also plan to extend the

backup system to other programmable hardware, like PLCs

and network switches, that accept automated and structured

configuration input, so that their configuration procedures can

also be simplified. A natural step after the backup system is a

mechanism to change the configurations centrally and push

the changes (also including updates of software packages) to

beamlines, perhaps with the help of Puppet or similar utilities.

We will surely need to solve the technical challenge posed by

possible conflicts between changes on both sides, but more

importantly we will need to set up administration policies to

ensure stability and uniformity of the configurations, while

also allowing a suitable level of flexibility for beamline users.

From our definition of ‘configuration’ above, we can see

that reducing the amount of configuration for a single beam-

line device is reducing the amount of device-specific workload,

and that reducing the amount of configuration of an entire

beamline is reducing the amount of beamline-specific work-

load. Therefore in order to maximize the scalability of

beamline control, we are developing a group of comprehensive

beamline services (CBS), which covers most aspects in beam-

line control that are shared between beamlines. A docu-

mentation library service will be provided, which gives users

access to not only the software/hardware handbook (also

including a recommended list of hardware for various uses on

a beamline) and the operation manuals of individual beamline

devices, but also training materials (which would ‘configure’

new users for various aspects of the facility) and other useful

documentation. Centralized network services will be

provided, including the backup system and the documentation

library mentioned above, our package repositories (cf. Section

2.3) and other services like an EPICS PV archiver/alarm

service and CA gateways to forward information from, for

example, the accelerator. For reliability reasons, our control

network (where basic control information, represented by CA

traffic, is transmitted) will be isolated from the data-transfer

network (where experiment data produced by software like

Bluesky are transmitted); bulk data produced by area detec-

tors are transmitted on the data-transfer network, because of

their high throughput and relatively looser requirement on

reliability. Beamlines cannot directly communicate with each

other, and instead can only communicate with the CBS;

transmission of outside information, like NTP information and

PVs from the accelerator, is done by gateway services in the

CBS. A beamline development laboratory (BDL) will be

provided, where beamline devices and major configuration

changes (including major software updates) can be tested

without interfering with the production environment; the

BDL is like a small beamline in terms of networking, of which

the CBS is formally a part of.

Another prominent use of the BDL is batch deployment,

where basic software is installed on new hardware before the

latter is moved to the beamlines or stored as backup hardware.

At the end of this paper, we use the batch installation of

operating systems onto new computers as an example for how
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certain requirements in system administration can be imple-

mented in surprisingly simple ways, when we compose simple

mechanisms and utilities according to careful analyses of the

nature of the problems. Regular installation of operation

systems is often performed with CDs/DVDs or USB flash

drives, which are exclusive media that cannot be accessed by

multiple computers simultaneously; thus for batch deploy-

ment, network-based installation (now almost universally

based on PXE) is preferred, which is only limited by the

network bandwidth of the installation environment and

perhaps disk performance of the installation server. In order

to facilitate large-scale deployment, network installers of

Linux distributions often support some kind of templated

unsupervised installation mechanism, like Kickstart of

CentOS; many of them, including Kickstart, also support some

kind of mechanism that allows for post-installation execution

of specified programs (‘hooks’), so we can automatically

preload basic software during unsupervised installation.

However, for some requirements, we also need differentiation

between computers, e.g. installation of systems onto a group of

servers for EPICS PV archiving with automated configuration

of hostnames and related settings. This can be done if we

set up a service on the installation server that automatically

assigns tokens (which the hostnames will be based on)

according to certain rules, and let the hook program obtain the

token from the service; using the socat utility and a little Shell

scripting, this can be done in just a few lines of code (Fig. 10).

The naı̈ve implementation of the service suffers from an

obvious race condition when multiple clients ask for tokens at

the same time; this can be solved if we execute the service

script in a critical section, which can be easily implemented by

the flock utility (Anvin, 2006).

4. Conclusion

At HEPS, we currently use RPM for packaging beamline

control software, and deliberately use EPICS 7 like EPICS 3,

with most modules based on synApps. We preserve the

synApps directory layout in our packaging system, which

however results in potential file conflicts and permission

issues; we solve these problems using a builder user with

password-less sudo permission in Docker containers. The

packaging system, including the packaging code and the

Docker wrapper, is managed centrally and properly abstracted

to minimize complexity. Both self-built packages and some

very useful third-party packages are provided in our internal

RPM repository, and we also provide a similar Python package

repository for internal use; all external inputs involved in the

creation of both repositories are checked against a chain of

trust to avoid tampering. We use reusable modular EPICS

IOC executables, built with support for iocStats and autosave,

to minimize the need for self-built multi-device applications,

and facilitate the use of these executables by providing easy

access to resources like OPIs and example configuration files.

Full compatibility with multi-device applications is kept, and

we also find at least a large fraction of them can be replaced by

the composition of their single-device counterparts. We have

formed the ~=iocBoot convention to separate each user’s

IOC configuration files from the default configurations

provided by RPM packages, and provide utilities that help

to implement maintainable multi-IOC setups for beamlines.

Efforts are being made under the umbrella project of

comprehensive beamline services to further simplify config-

uration management on multiple scales: beamline devices and

related software on individual computers, all computers and

other programmable hardware on an entire beamline, as well

as all beamlines at HEPS. Throughout our efforts, we prefer

composition of simple tools over off-the-shelf but complex

workalikes, and prefer free-form development over potential

over-design in early phases, which have helped to boost

productivity with our limited resources.
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