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Bayesian-inference-based approaches, in particular the random-walk Markov

Chain Monte Carlo (MCMC) method, have received much attention recently

for X-ray scattering analysis. Hamiltonian MCMC, a state-of-the-art develop-

ment in the field of MCMC, has become popular in recent years. It utilizes

Hamiltonian dynamics for indirect but much more efficient drawings of the

model parameters. We described the principle of the Hamiltonian MCMC for

inversion problems in X-ray scattering analysis by estimating high-dimensional

models for several motivating scenarios in small-angle X-ray scattering,

reflectivity, and X-ray fluorescence holography. Hamiltonian MCMC with

appropriate preconditioning can deliver superior performance over the random-

walk MCMC, and thus can be used as an efficient tool for the statistical analysis

of the parameter distributions, as well as model predictions and confidence

analysis.

1. Introduction

Due to the loss of phase information and the impossibility

to sample the entire energy/momentum space with sufficient

resolutions and absence of errors, many X-ray scattering data

analyses are performed through the modeling of relevant

processes with physical parameters. The recovery of the

model parameters is an inverse problem. Typical optimization

procedures for X-ray scattering data analysis attempt to

minimize an objective cost function defined for the difference

between the experimental data and the model prediction,

for example, the sum of squared residuals (SSR) in the least-

square regression. Algorithms such as gradient descent,

Newton-method, and their variations are often used for

parameter optimization in non-linear problems. The para-

meter uncertainties are often estimated via quadratic

approximation, which may not always be reliable in the

presence of parameter correlations for high-dimensional

problems. Sampling-based Bayesian approaches may tackle

these issues, as they offer a statistical insight into the

surroundings of the local minima of objective functions, and

also facilitate the confidence analysis of parameters and model

predictions (Hogg & Foreman-Mackey, 2018). Taking advan-

tage of recent advancements in statistical machine learning

(Bishop, 2011; Hastie et al., 2016), Bayesian-inference methods

are becoming more popular for analyzing and interpreting

X-ray and neutron data. In particular, model parameters can

be estimated by the widely applicable Markov Chain Monte

Carlo (MCMC) method, which iteratively draws samples

with classical random-walk-based Metropolis or Metropolis–
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Hasting algorithms from the probability distribution of the

parameters (Gamerman & Lopes, 2006). These randomly

drawn samples can be used to make statistical inferences, such

as uncertainties and confidence levels, about the parameters

as well as the variables or functions derived from these

parameters for model predictions. While finding the global

minimum is not already the primary goal of the MCMC

methods, one can eventually reach a solution decently close to

the global minimum, if the detailed balance is satisfied and

sufficient samples are gathered. Heuristic techniques help

during the search for the global minimum or a solution giving

physical senses. For example, one may perform a multi-start

MCMC with various initial parameters, or narrow the range of

initial parameters to be constrained by priors and measure-

ment conditions.

For applications to X-ray and neutron scattering, a few

MCMC packages have proved useful. For example, the

differential evolution adaptive Metropolis algorithm (ter

Braak & Vrugt, 2008) embedded in bumps (Kienzle et al.,

2021) is called by SASView (Doucet et al., 2018) for small-

angle scattering analysis, and by Refl1D (Kienzle et al., 2011)

for reflectivity analysis. An affine-invariant sampler is another

variation of the classical Metropolis–Hasting algorithm based

on ensemble sampling (Goodman & Weare, 2010). It has been

implemented in the Python library emcee (Foreman-Mackey et

al., 2013, 2019) called by the refnx package for model-based

reflectivity analysis of layered films (Nelson & Prescott, 2019),

and in the MATLAB library gwmcmc (Grinsted, 2015) for

small-angle neutron scattering analysis of dispersed core-shell

nanocrystals (Winslow et al., 2019). One major challenge of the

classical MCMC algorithms is that they are based on random

walks and the efficiency of exploring the parameter space

may fall off drastically when the dimension of the parameter

space increases (Betancourt, 2018), because the volume of the

parameter space becomes more concentrated near the surface

region, and thus only a small range of the parameters can be

sampled by the classical MCMCs. This is one of the facets of

the famous problem known as the curse of dimensionality. The

effective sample size (ESS, the number of independent draws)

(Vats et al., 2019) with the classical MCMCs is often small

because of the stagnation and high serial correlation (i.e.

autocorrelation that describes the similarity between random

draws as a function of lags; small and rapidly decayed corre-

lations are desired) in the sequence of draws.

The Hamiltonian Markov Chain Monte Carlo (HMCMC) is

a recently developed sampling scheme. It attempts to mitigate

the inefficient random-walk behaviors in classical MCMCs

(Neal, 2011). Originally introduced as a hybrid Monte Carlo

for simulating the lattice field of quantum chromodynamics

(Duane et al., 1987), HMCMC has been greatly advanced and

has become one of the most popular MCMC approaches. The

principle of HMCMC works in close analogy to the Hamil-

tonian dynamics. An auxiliary momentum space is introduced

and combined with the parameter space to form a state space,

and drawing parameters is achieved through the frictionless

Hamiltonian dynamics in the state space. The evolution of

the dynamics is achieved with numerical integration along the

motion trajectory that is fully described by the Hamiltonian

equations. It has been well shown that the HMCMC delivers

superior performance over the classical MCMC methods for

high-dimensional problems because the momentum space

facilitates large jumps to distant locations in the parameter

space, thus reducing the chance of being trapped in local

minima as well as the serial correlation along the draw

sequence. Also, the acceptance rate of each jump is relatively

high, owing to the energy conservation of the frictionless

dynamics. However, this high efficiency of HMCMC is

achieved at the cost of computing resources spent on calcu-

lating the gradients of the potential energy defined for the

parameter space. Fortunately, the gradients can often be

calculated either numerically or with automatic differentiation

algorithms on modern computers nowadays.1 In addition, the

accuracy and speed of the numerical integration depend on

the magnitude of the gradients, and the discrete evolution step

size � for the integration (equivalent to the discrete-time

element dt for a time integral). The Hamiltonian dynamics

algorithm has been implemented in some packages, for

example pymc (Salvatier et al., 2016), Stan (Carpenter et al.,

2017), and LaplacesDemon (https://web.archive.org/web/

20150206004624/http://www.bayesian-inference.com/software).

Despite some applications of MCMC to X-ray and neutron

data analysis (Sunday et al., 2015; Fancher et al., 2016; Metz

et al., 2018; Nelson & Prescott, 2019; Winslow et al., 2019),

the more efficient Hamiltonian MCMC has not yet been

attempted in the field. In the present paper, we will give a

quick review of the basic HMCMC to establish notations,

followed by the working principles of the HMCMC. We will

also describe practical details of preparing the problems

required for the HMCMC settings. It will be followed by a few

motivating examples in small-angle X-ray scattering (SAXS)

and X-ray waveguide fluorescence holography (XWFH) data

analysis to demonstrate the performance of the HMCMC.

2. Methods

2.1. Introduction to Hamiltonian MCMC

Here we will briefly introduce the concept of Hamiltonian

Markvo Chain Monte Carlo. Comprehensive reviews can be

found elsewhere (Neal, 2011; Betancourt, 2018; Fichtner,

2021). In classical MCMC methods, unknown parameters are

randomly drawn from their probability density function PxðxÞ,

where x = fx1; . . . ; xNg is the set of N parameters. In the

context of the HMCMC, parameter set x corresponds to the

generalized coordinates in classical mechanics, and they will

be drawn indirectly through Hamiltonian dynamics. The

potential energy of the Hamiltonian system is defined as the

negative logarithmic probability density,

UðxÞ ¼ � log PxðxÞ: ð1Þ
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(Willkomm et al., 2014) package was used in this work for gradient
computations.



A generalized N-dimensional momentum vector p =

fp1; . . . ; pNg is introduced as an auxiliary variable and the

kinetic energy is defined as

KðpÞ ¼ � log PpðpÞ: ð2Þ

Here PpðpÞ is the probability distribution of the momentum,

which often assumes a multivariate normal function,

PpðpÞ / exp �
1

2
pT M�1 p

� �
: ð3Þ

Here, the covariance matrix M is a symmetric, positive-definite

‘mass matrix’. While an identity matrix IN is often assumed,

preconditioning with a non-trivial M is required for HMCMC

to be efficient. With the Hamiltonian expressed as Hðx; pÞ =

UðxÞ þ KðpÞ, the joint distribution of the system in the state

space ðx; pÞ is

Pðx; pÞ ¼ PxðxÞPpðpÞ / exp �Hðx; pÞ½ �: ð4Þ

A random draw from this distribution with a classical MCMC

is equivalent to the motion of a friction-free system whose

dynamics is governed by the Hamiltonian equations

@x

@t
¼ rpHðx; pÞ ¼ rpKðpÞ ¼ M�1p; ð5Þ

@p

@t
¼ �rxHðx; pÞ ¼ �rxUðxÞ: ð6Þ

The evolution of the Hamiltonian system is practically

achieved via a numerical integration along the trajectory of

motion, for which the leapfrog integrator is often applied

(Neal, 2011). Specifically, at coordinate xk in the parameter

space, a state ðxk; pkÞ is constructed with a randomly drawn

momentum pk using equation (3). Assigning this state as the

initial state ðxð0Þ; pð0ÞÞ  ðxk; pkÞ, we can move the system to a

new state ðxðLÞ; pðLÞÞ by leapfrogging L times with step size �.
At the l th step, where l = 0; . . . ;L� 1, the integrator is

pðlþ
1
2 Þ ¼ pðlÞ �

�

2
rx ðlÞ UðxÞ; ð7Þ

xðlþ1Þ
¼ xðlÞ þ �M�1pðlþ

1
2 Þ; ð8Þ

pðlþ1Þ
¼ pðlþ

1
2 Þ �

�

2
rx ðlþ1ÞUðxÞ: ð9Þ

After a total integration length � = L�, we arrive at a new

candidate state ðxkþ1; pkþ1Þ  xðLÞ; pðLÞ
� �

[see Fig. 1(a)]. The

property of the friction-free dynamics guarantees the detailed

balance required by MCMC because the symmetry of the

transition matrix of the Markov chain is naturally ensured by

the time-reversibility of the Hamiltonian dynamics, i.e. rever-

sing the direction of the momentum vector rewinds the system

exactly. The acceptance rate is 100% in theory because of

the energy conservation, giving rise to very high efficiency.

However, the Hamiltonian is not precisely an invariant, owing

to the discretization error of the numerical integration.

Therefore, the new state is accepted with a probability

min
�

1; exp �Hðxkþ1; pkþ1Þ þHðxk; pkÞ
� �	

: ð10Þ

Once state ðxkþ1; pkþ1Þ is generated, xkþ1 is kept but pkþ1 is

replaced with another randomly drawn momentum vector to

create a new state space with a new Hamiltonian for the next

move (Algorithm 1). This iteration continues [Fig. 1(b)] until

the Markov chain becomes stationary (a.k.a. burn-in or warm-

up), after which a sequence of draws can be collected to

estimate parameters and make inferences.

During the evolution, large jumps of x are possibly induced

at a high acceptance rate, hence avoiding the inefficient

random-walk behavior in the classical MCMCs. With properly

selected hyper-parameters M, �, and �, HMCMC may explore

a high-dimensional parameter space more efficiently than

classical MCMC methods. In addition, HMCMC has a higher

tendency to reduce the serial correlation of the sampled

sequence (Kass et al., 1998). While the choice of the hyper-

parameters depends on specific inverse problems, the general

guidelines have been reviewed elsewhere (Neal, 2011).
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Figure 1
(a) Illustration of the evolution of Hamiltonian dynamics to move an
object from xk to xkþ1 in the parameter space. Flipping the direction of
the momentum pkþ1 at xkþ1 reverses the energy and brings the object
back to xk . (b) An HMCMC drawing sequence. Contour lines are the
joint probability distribution Pðx; pÞ. The topmost and leftmost curves
represent the marginal distributions of the parameter and the
momentum, respectively. With an initial parameter x1, a random
momentum is generated to create a state ðx1; p1Þ of Hamiltonian
Hðx1; p1Þ (blue arrow). Parameter x2 is generated as the result of the
evolution from state ðx1; p1Þ to state ðx2; p2Þ through the trajectory 1! 10

(red arrow). This process repeats to generate a sequence of parameters.



There have also been extensive efforts to optimize the

settings of the hyper-parameters in order to further improve

the HMCMC’s efficiency. For example, the step size � can be

adaptively tuned on the fly with the dual-averaging algorithm

(Nesterov, 2009; Hoffman & Gelman, 2014). No-U-Turn

Sampler (NUTS) automatically searches for the most efficient

integration length � to minimize the serial correlation

(Hoffman & Gelman, 2014). Instead of using a fixed step

length �, NUTS builds a set of candidate states when moving

along a path defined by the target distribution and then stops

automatically at the location before retracing. The mass

matrix also plays an important role in tuning the HMCMC.

The sampling of the parameters can be more efficient for

linear problems if the inverse of the covariance is used for the

mass matrix (Neal, 2011). In practice, one often collects a

number of samples after the sampler reaches stationarity, and

then restarts the sampler preconditioned with the inverse of

the covariance matrix of samples, as adopted in pymc

(Salvatier et al., 2016). This strategy may be challenging in the

presence of multi-modals in the target distribution or for high-

dimensional models with a band of parameter space that yields

acceptable physical interpretations yet impossible for further

screening due to experimental condition limitations. An

approximated approach is to adopt a form of a scalar multiple

of the identity matrix for the mass matrix (Fichtner et al., 2019;

Carpenter et al., 2017). A recently developed method uses

quasi-Newton methods to automatically tune the mass matrix,

while keeping the evolution stable with adaptive step sizes

(Fichtner et al., 2021). This method is yet to be explored in the

present study. A close inspection of equations (7) and (9)

indicates that, if momenta are proposed with M = IN , the

dynamics with a single step size � may be either unstable (too

large evolution steps) or too slow (too small evolution steps)

in the presence of large variations of the potential gradients

jrUðxÞj for different parameter dimensions. A practice we

used for some examples is to coarsely precondition with a

diagonal matrix whose diagonal values are roughly scaled to

be proportional to the magnitudes of the gradients computed

from samplings obtained from a short warm-up run. This

controls the magnitude of the leaps to be incremental and

balanced in all dimensions thus increasing the accuracy of

dynamics evolution and the speed of convergence. A multi-

start strategy with the different initial parameters is also

frequently used to avoid falling into local minima and to

explore a wider range of the parameter space.

2.2. Problem setup for parameter estimation

Parameters are often estimated by minimizing a cost func-

tion, which is frequently defined as the SSR between the

experimental data and the model prediction (known as the

least-square minimization). Maximizing the likelihood of the

residuals (known as the maximum likelihood estimation or

MLE method), is an alternative method if the residual’s

probability distribution is specified. MLE is equivalent to the

SSR-minimization if the residual assumes a normal distribu-

tion of variance �2,

Px I mea
j jx

� �
¼

1

2��2ð Þ
1=2

exp � I mea
j � I cal

j ðxÞ
� �2


2�2
� �n o

; ð11Þ

for the jth observation data ( j = 1; . . . ;N). Other distributions

are applicable, for example Poisson for low-intensity 2D

imaging reconstructions (Mario et al., 2018). Many X-ray

scattering data fitting and analysis routines work well by

assuming that data points are independently measured and

their measurement error distributions are identical. While the

error distribution �j can vary point-by-point to reflect the

weights of data, observation errors � are assumed identical

here for simplicity and are treated as a separate unknown

parameter. We thus can write the total likelihood function as

Px I mea
jxð Þ /

YN

j¼ 1

Px I mea
j jx

� �
: ð12Þ

While conventional random-walk MCMC draws samples from

this probability distribution, HMCMC does this through the

evolution of a Hamiltonian dynamics. With equations (1) and

(11), the potential energy becomes

UðxÞ ¼
1

2�2

XN

j¼ 1

I mea
j � I cal

j ðxÞ
� �2

þN log 2��2
� �1=2
h i

: ð13Þ

When parameters are bounded or constrained [take CðxÞ � 0

as a general expression], one may transform the parameters

to be unbounded or free from constraints in order to help

HMCMC search the parameter space. For example, a positive

parameter can be reparameterized by a logarithm transfor-

mation. Alternatively, one can augment the aforementioned

MLE problem by incorporating a prior distribution of the

parameters, thus dealing with a maximum a posterior (MAP)

problem according to Bayes’ theorem. Thirdly, one may

handle the constraints during the sampling such that the

conditions are iteratively examined and violating states are

simply rejected. However, this approach is inefficient because
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the decision is made after computing resources have been

spent on generating new states that may be immediately

discarded. A more efficient way is to check with the constraint

during the leapfrogging and reflect the momentum vector

without energy loss at the constraint surface CðxÞ = 0

(Betancourt et al., 2011).

3. Results and discussion

3.1. Small-angle X-ray scattering from silica nanoparticles

We first demonstrate the Hamiltonian MCMC on a classical

problem: SAXS from dilute spherical silica nanoparticles

dispersed in water. The data were taken with 10.9 keV X-rays

at Sector 8-ID-I of the Advanced Photon Source (APS),

Argonne National Laboratory, USA. The scattering intensity

evaluated at a wave vector transfer value q is given by

I calðqÞ ¼ I0

R1
0

R1
0

r q0; qð ÞPðR0;RÞ Fðq0;R0Þ
�� ��2 dq0 dR0

R1
0

PðR0;RÞ VðR0Þ
�� ��2 dR0

þ Ib;

ð14Þ

where I0 is a scaling factor and Ib is the constant background.

r(q0, q), P(R0, R), and F(q0, R0) are, respectively, the resolution

function to be convolved (modeled as a normal function

centered at each measured q with a standard deviation �q),

nanoparticle size distribution function (modeled as a normal

function with mean particle radius R and standard deviation

�R), and the form factor of a spherical particle of radius R0,

r ðq0; qÞ ¼
1

2��2
q

� �1=2
exp �

q0 � qð Þ
2

2�2
q

� 

; ð15Þ

PðR0;RÞ ¼
1

2��2
R

� �1=2
exp �

R0 � Rð Þ
2

2�2
R

� 

; ð16Þ

Fðq0;R0Þ ¼ 3VðR0Þ
sin q0R0 � q0R0 cos q0R0

ðq0R0Þ
3 ; ð17Þ

where V(R) = 4�R3/3 is the volume of a particle. The

denominator in equation (14) accounts for the scattering

volume normalization so that the fraction approaches one as

q ! 0. The parameter space is, therefore, six-dimensional,

x = fI0; Ib;R; �R; �q; �
2g, where �2 is the variance of the

residuals of the logarithmic intensity assuming a normal

distribution.

Given a well-tuned step size � and total leapfrog integration

length �, the speed of convergence is often less of a concern

for HMCMC than for random-walked MCMC methods

even with far-off initial guesses. Here, the NUTS algorithm

(Hoffman & Gelman, 2014) is used to automatically tune the

total leapfrog integration length for the HMCMC. A poor

guess, R = 500 Å and �R = 20 Å, still leads to a reasonably

quick convergence, as seen in Fig. 2(a) where all parameters

but the resolution �q become stationary around 50 iterations.

To address the concern of being trapped in an undesired local

minimum, as a general practice, we carried out multi-start

HMCMCs with various initial values and the stationary results

were examined in order to filter out nonphysical solutions. In

addition, instead of completely random values, the parameters

are initialized with sensible values that comply with experi-

ment conditions and prior knowledge about the samples.

Fortunately, for examples in the current study, once the model

is determined via model assessment and selection (see the next

two examples), we did not observe multiple distinct solutions

that cannot be ruled out with physical prior knowledge. The

speed of convergence is demonstrated in Fig. 2(d), where

parameters generated at as early as the 20th iteration can

describe the experimental data quite well. We preconditioned

the HMCMC for better performance by choosing a kinetic

energy such that the mass matrix approximates the inverse

covariance of the parameters. A recent advancement worth

further exploration has been focused on automatically tuning

the mass matrix through quasi-Newton methods (Fichtner et

al., 2021). However, the mass matrix in the present study was

approximated from samples of a short run after the warm-up.

For further simplicity, we computed the variance of the

parameter from a number of pre-run HMCMC iterations and

then restarted HMCMC with the mass-matrix set to be the

inverse diagonal matrix of the variance. The serial correlation

of the sampled parameters quickly decays to beyond the 95%

significant level, indicating the efficiency of the HMCMC

sampler. The effective sample size determined from the auto-

correlation function (ACF) (Neal, 2011; Fichtner et al., 2019) is

39% for the mean nanoparticle radius R. Joint and marginal

distributions of the parameters are shown in Fig. 2(c), and

their mean values and standard deviations (not to be confused

with the MCMC sampler’s standard errors) are listed in

Table 1. All parameters are over 99% significant, except for

the resolution. The exceptionally large p-value of �q indicates

that the q-resolution is perhaps beyond the sensitivity and

resolving capability of the data and thus can be removed from

the model.

As a comparison, nonlinear least-square fitting was

performed. Although it gave a nearly identical mean radius

(R = 761.3 � 2.1 Å) and polydispersity (�R = 57.5 � 1.6 Å),

MCMC-based (including HMCMC) methods have a benefit of

giving the confidence of the parameters and model predictions

[Fig. 2(d)], even in the presence of high correlations among

the parameters, as we will see soon in the next example.

The conventional random-walk MCMC method was also

performed using the multivariate normal distribution for the

proposal function with a diagonal covariance matrix deter-
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Table 1
SAXS results with HMCMC.

Mean (s.d.) t - stat p - value

I0 1.34 (0.01) 97.7 0
Ib 2.00 (0.23) � 10�5 8.63 0
R (Å) 757.7 (2.0) 383.4 0
�R (Å) 59.5 (1.7) 34.6 0
�q (Å�1) 1.44 (3.14) � 10�5 0.458 0.647
�2 1.78 (0.23) � 10�3 7.69 0



mined from the HMCMC result. However, the efficiency of

the MCMC is low (Fig. 3). The ACFs remain high for many

lags and the effective sample size is only 2% for R, which

is undesired for parameter confidence analysis and model

predictions. The superior performance of HMCMC may not

appear obvious in this toy example when dealing with a small

parameter space of only six unknowns. For example, one can

run the random-walk MCMC sufficiently long to harvest the

same number of absolute effective samples as in the HMCMC.

The advantages of HMCMC will manifest in more complex

examples of higher dimensional problems as demonstrated

below.

3.2. Reflectivity from lipid bilayers

We now show the application of the HMCMC method

to another classical case: X-ray reflectivity from silicon-

supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine)

lipid bilayers in water buffer. The experiment was performed

with 20 keV at Sector 1-BM-C at the Advanced Photon

Source. The entire bilayer is modeled as consisting of four

layers: two hydrophilic head group layers, one hydrophobic

hydrocarbon tail layer, and a water cushion layer between

the silicon substrate and the the inner side of the head group

(Miller et al., 2005), as shown in Fig. 4(a). In the conventional

box model for reflectivity analysis, the roughness is considered

as a qz-dependent damping term in a form similar to the

Debye–Waller factor (Beckmann & Spizzichino, 1963; Névot

& Croce, 1991). This method, however, is only valid on well

defined layered films where the thicknesses of layers are far

larger than the roughnesses of the boundary interfaces. When

this d� � criterion is violated, the effective density model is

required (Tolan, 1999; Jiang & Chen, 2017), where these layer

parameters construct a continuous and highly smeared profile

in a manner that the component of each layer may penetrate

deeply into neighboring layers due to large roughness para-

meter.

For a quick implementation, a coarse preconditioning is

applied with the mass matrix taking a diagonal matrix whose

non-zero elements are scaled with the potential gradients. The

dual-averaging method was used to optimize the step size �
(Nesterov, 2009; Hoffman & Gelman, 2014). With the four-

layer model, the thicknesses of the water cushion layer and the

inner side head group are found to be ho = 3.2 � 2.1 Å and

hi = 4.6 � 2.5 Å, respectively. The two thicknesses are highly

uncertain and their correlation coefficient is also high, � =

�0.987. In addition, the interfacial roughness between the two

layers is exceptionally large, �w = 19.3Å. All this evidence

research papers

726 Jiang, Wang, Tirrell, de Pablo and Chen � Scattering analysis with HMCMC J. Synchrotron Rad. (2022). 29, 721–731

Figure 2
Result of SAXS data analyzed by Hamiltonian MCMC preconditioned with a non-trivial diagonal mass matrix as described in the text. (a) Trace of the
parameters. The meaning of each parameter is defined in the main text. (b) Auto-correlation of the parameters sampled from post-burn-in iterations. The
red dashed lines are 95% confidence bounds for the zero auto-correlation hypothesis. (c) Probability distributions of the parameters. The off-diagonal
panels are joint distributions, and the histograms along the diagonal are marginal distributions. (d) Calculated SAXS with parameters from the initial
guess, and the 5th, 10th, and 20th HMCMC iterations. (e) 95% confidence interval (between the 2.5% and 97.5% percentiles).



indicates that the water layer and the inner head group should

not be treated separately as two distinct layers, and that the

experiment data are unable to provide persuasive clues on the

existence of the water cushion layer. Instead, with a three-

layer model after dropping the water cushion layer, all para-

meters now become highly significant (Table 2). The conver-

gence appeared quickly after 100 iterations and the decays of

the ACFs of the parameters after the burn-in process display

a good independence of the consecutive HMCMC samplings

[Figs. 4(b) and 4(c)]. The distributions of the samplings also

show signs of convergence [Fig. 4(d)]. The 95% confidence

level of the constructed density profile (in terms of the

dispersion of the index of refraction) is shown in Fig. 4( f) with

the corresponding confidence level for the reflectivity in

Fig. 4(e). The band of the confidence is narrow, consistent

with the narrow distributions of parameters [e.g. narrow histo-

grams in Fig. 4(d) and negligible p-values in Table 2 that are

numerically calculated from the post-burn-in samplings]. Thus

the capability of deriving the correlation between parameters

and evaluating confidence of both parameters and models

makes this MCMC-based method a powerful tool during

model assessment and selection. Finally, as a comparison,

we carried out random-walk MCMC with Gaussian proposal

functions intialized as the variance of the converged HMCMC

result. However, the rejection rate of the MCMC is high, and

within a similar computating time we did not obtain a suffi-

cient number of independent samplings to draw conclusions

about the models.

3.3. X-ray waveguide fluorescence holography for gold-layer
depth profiling

As a general optimization method, HMCMC can also be

applied beyond X-ray scattering data analysis. Here we will

give a recent example of the application to the depth profiling

with the X-ray waveguide fluorescence holography. XWFH

is a recently developed high-resolution probe for atom or

nanoparticle depth profiling in thin films. While the principle

and experimental considerations are described in detail else-

where (Jiang et al., 2020), they are briefly illustrated here via

an example [Fig. 5(a)]. The goal was to determine the density

distribution of a gold nanoparticle monolayer sandwiched

between two layers of poly(tert-butyl acrylate) (PtBA) of

molecular weight 19.6 kg mol�1. This sandwich was capped

with a thin layer of polystyrene (PS) to prevent dewetting. The

entire film was supported on a silicon substrate pre-coated

with a Cr layer followed by a Pd layer. The XWFH experiment

was carried out with incident X-rays of 12.1 keV at Sector

7-ID-C of the APS, Argonne National Laboratory. The beam

was incident onto the film at a grazing angle of 0.125	, which

was between the critical angles of the external reflection for

the polymer film and the Pd substrate to enhance the X-ray

standing-wave effect as well as to minimize the background

scattering from the substrate. At an exciting energy

(exchangeable with ‘elastic energy’ below) of 12.1 keV, the

gold’s L32p3/2 (11.919 keV) level is excited, giving out two

fluorescence groups: L�1, 2 = (9.713, 9.628) keV and L�2, 15 =

(11.585, 11.566) keV. These originally isotropic fluorescence

emissions are modulated or wave-guided by the thin film,

creating two sets of exit-angle-dependent fluorescence cones

[termed fluorescence holograms shown in Fig. 5(a)]. The
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Table 2
X-ray reflectivity results.

Mean (s.d.) t - stat p - value

I0 1.06 (0.01) 97.0 0
�Si (Å) 2.6 (0.1) 33.9 0
ho (Å) 12.2 (0.5) 24.8 0
ht (Å) 22.7 (0.3) 82.9 0
hi (Å) 11.2 (0.2) 51.4 0
�o 6.59 (0.07) � 10�7 95.5 0
�t 4.19 (0.05) � 10�7 91.6 0
�i 9.30 (0.07) � 10�7 133.9 0
�o (Å) 4.9 (0.3) 17.5 0
�t (Å) 4.2 (0.1) 31.1 0
�i (Å) 8.5 (0.2) 54.8 0
�2 5.7 (0.7) � 10�4 8.0 0

Figure 3
(a) Trace of the parameters sampled with random-walk MCMC. (b) Auto-
correlation of the parameter samplings. The red dashed lines are 95%
confidence bounds.



holograms were collected with an area detector mounted in

the film surface plane at a right angle (90	) with respect to the

X-ray incident plane. Because the fluorescing gold monolayer

is isotropic in the plane, i.e. no macroscopic in-plane structural

modulations, the spatial fluorescence intensity distribution is

also isotropic in the surface plane, but it varies as a function of

emission/exit angle �f , thus forming concentric cones. Hori-

zontal lines appear on the area detector as a result of the

interception with these cones, as shown in Fig. 5(b). The total

measured signals consist of three contributions: two fluores-

cence holograms corresponding to L�1, 2 and L�2, 15 emissions,

and one elastic scattering background. In general, the fluor-

escence intensity IF and the elastic background IE are given as

functions of the incident and exit angles, �i and �f , such that

IFð�i; �f Þ /

Z
d	F Yauð	FÞ

Z
dz E

�
z; �i; 	E; �ðzÞ

��� ��2
� 
auðzÞ E

�
z; �f ; 	F; �ðzÞ

��� ��2; ð18Þ

IEð�i; �f Þ /

Z
dz E

�
z; �i; 	E; �ðzÞ

��� ��2
�
X

j

�j 
jðzÞ E
�
z; �f ; 	E; �ðzÞ

��� ��2: ð19Þ

For the fluorescence intensity, 	F and Yau are the fluorescence

wavelength and atomic yield spectrum of the gold atoms.


au(z) is the gold atomic number density to be reconstructed,

and it is related to the total electron density profile of the film

�(z). The electric field distribution E describes the standing

wave and it depends on the depth z, incident/exit angle,

fluorescence/elastic energy, and �(z). For the elastic scattering

background, the contribution arises from the scattering of all

atoms in the film and the substrate. The atomic distribution for

the jth atom type is denoted by 
j(z), with its elastic scattering

cross-section denoted by �j . Because the creation of standing

waves here is a result of the dynamical effect in the thin-film

waveguide, the reconstruction of the XWFH must employ

the dynamical theory to calculate the E-field, as is done

similarly for the analysis in the grazing-incidence SAXS

(Jiang et al., 2011) and reflectivity (Tolan, 1999). Also, incident

and exit standing waves of different energies must be

established to match the two holograms in a self-consistent

manner in that they all arise from the same electron density

profile �(z). Therefore, the XWFH with the simultaneous

grazing-incident and exit angles imposes very strong

constraints on the reconstruction and thus is capable of

eliminating the ambiguities often encountered in many other

inverse problems.
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Figure 4
(a) Illustration of the reflectivity geometry and the layer parameters in the model. ho, t, i, w and �o, t, i, w are layer thicknesses and dispersions; �o, t, i, w, Si

are interface roughnesses; and I0 is the incident flux (i.e. an intensity scale factor of the reflectivity). (b) Traces of parameters from HMCMC. (c) ACFs of
parameters after 100-iteration burn-in. (d) Probability distributions of parameters. The off-diagonal panels are joint distributions, and the histograms
along the diagonal are marginal distributions. (e) Reflectivity R and its 95% confidence from post-burn-in HMCMC samplings. For clarify, the reflectivity
is scaled by a factor q4, where q = ð4�=	Þ sin �i, 	 is the X-ray wavelength, and �i is the incident angle for the reflectivity scan. ( f ) 95% confidence of the
dispersion profile. The solid blue line is the median (50%) profile. The red solid line is the step-like profile without roughness smearing. The blue dashed
lines are profiles of each layer with smearing.



For generality, the gold atomic number density profile is

described with a set of NS cubic b-spline (CBS) basis functions,

which is often used to construct any arbitrary curve of the

second-order derivative continuity (Hastie et al., 2016),


auðzÞ ¼ Nau

XNS

i¼ 1

ai BiðzÞ; ð20Þ

subject to aj � 0 and

Z1

�1

dz
XNS

i¼ 1

ai BiðzÞ ¼ 1:

Here, Nau is the total number of gold atoms and its value

corresponds to a nominal layer thickness of pure gold dau.

a = faigi¼ 1;...;NS
are the CBS coefficients to be reconstructed,

and BðzÞ = fBiðzÞgi¼ 1;...;NS
are the CBS basis functions. Model

assessment and selection methods help determine the number

of splines NS. In this example, we evaluated models with

different NS and found that approximately 30 splines (thus

30 unknown spline coefficients) are required to give a

sensible result (Jiang et al., 2020). Assuming no prior knowl-

edge about this profile, we set a constant value for all

the initial spline coefficients. A warmup-run indicates that

{I0, zoffset, dptba, dps, dau, �2} have higher absolute gradients

than other parameters f�ptba; �ps; felastic; a1; . . . ; a30g. Here, I0 is

normalization, dptba and dps are the thicknesses of the PtBA

and PS layers of corresponding roughnesses �ptba and �ps,

zoffset is the pixel offset to account for possible mis-calibration

of the sample surface plane, felastic is the fractional contribu-

tion from the elastic scattering background, and �2 is the

residual variance. We thus coarsely preconditioned the

HMCMC with diagonal M whose nontrivial elements are

either 400 or 1. Basic HMCMC is used with fixed evolution

step size 0.05 and integration length 0.5 (i.e. ten leaps in

each iteration).

In spite of no prior knowledge of the gold distribution

(i.e. flat density), the sign of the convergence of the density

profile emerges reasonable fast [Figs. 5(c) and 5(d)]. We would

like to comment that with our less prudently chosen mass
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Figure 5
(a) Schematics of the thin-film waveguide and principle of the X-ray waveguide fluorescence holography. The meanings of involved parameters to be
optimized for are described in the text. (b) Fluorescence hologram on an area detector mounted in the plane of the film surface at a right angle with
respect to the incident plane. The hologram is integrated in the horizontal plane to obtain the one-dimensional intensity profile as a function of the exit
angle �f . Panels (c) and (d) are, respectively, the calculated XWFH and corresponding Au atomic number density profiles at different HMCMC
iterations. (e) Traces of PtBA layer thickness dptba , capping PS layer thickness dps, total film thickness dps+ptba , and the residual variance. ( f ) p-values of
the 30 CBS coefficients calculated from the last 1400 iterations. The dashed red line corresponds to a p-value of 0.05, i.e. a significance level of 95%.
(g) 95% confidence interval of the total XWFH, and median (50% percentile) contributions from the Au L�1, 2, Au L�2, 15, and elastic scattering
background. (h) 95% confidence of the Au atomic number density distribution profile. The solid line is the median.



matrix the profile becomes stable at about 600 iterations

[shown as the trace of the residual variance in Fig. 5(e)]. One

may be able to achieve faster convergence with more careful

preconditioning and better parameter initialization. Statistical

analysis of 1400 stationary samplings revealed that only one

(a9) CBS coefficient is significantly different from zero at the

95% level [Fig. 5( f) and Table 3], indicating that the distri-

bution of the gold is well described by a monolayer. Also, we

can ignore the contribution of the elastic scattering back-

ground because felastic is insignificant. This finding is consistent

with two natural experiment configurations of the XWFH

technique. First, the detector was mounted at a right angle for

minimal elastic scattering. Second, unlike many grazing-exit

X-ray fluorescence experiments with a normal incident beam,

XWFH was performed with a grazing-incident angle that is

below the critical angle of the Pd substrate to reduce the beam

penetration into the substrate and thus minimize the back-

ground scattering. Therefore, the statistical analysis with

HMCMC verified the advantages of the XWFH setup

configurations.

In addition, we also noticed that the PtBA/PS interface

roughness �ptba is not significant (i.e. large p-value), indicating

that the PtBA/PS interface is insensible in the data. This is

primarily because the scattering contrast between PtBA and

PS is negligible. Therefore, the PtBA and PS may be combined

as a single layer during the reconstruction, hence reducing the

model complexity. This approach is further confirmed by the

following two observations: first, dptba and dps are found to be

nearly perfectly anti-correlated with a correlation coefficient

of �0.992 and their traces move in opposite directions

[Fig. 5(e)]; second, the t -statistics (Table 3) reveal that

modeling the entire polymer film as a single layer of thickness

dps+ptba yields a much higher t-stat value (i.e. more significant)

than dealing with two distinct polymer layers. The trace of the

total thickness obviously is much more stable than those of

individual layers. Such parameter-correlation analysis and

model-complexity assessment represent intrinsic benefits of

MCMC methods but they are not readily accessible with direct

cost-function minimization or �2 fitting. The confidence

intervals for the XWFH and the gold number density profile

are very narrow [Figs. 5(g) and 5(h)], indicating a high accu-

racy of the technique and high efficiency of the reconstruction.

This performance is due to the intrinsic advantages of the

XWFH technique, which combines the profiling information

from standing waves of different energies for both the incident

and exit angles. For comparison, we also attempted the

random-walk MCMC with a multivariate Gaussian proposal

function determined from the HMCMC result, but the rejec-

tion rate was too high to get it to converge with a reasonable

computation time and thus the result is not shown here.

4. Summary

HMCMC is still an ongoing research field. There have also

been numerous variations and implementations of the

HMCMC algorithm. For example, stochastic gradient

HMCMC estimates the gradient on randomly selected data

subsets from massive data volumes in order to speed up the

overall gradient calculation (Chen et al., 2014). Split HMCMC

separates fast and slow movements of the Hamiltonian in the

state space of divisible Hamiltonians to lower the overall

consumption of computing resources (Shahbaba et al., 2014).

Here, we showed the feasibility of applying Hamiltonian

MCMC methods to several classical X-ray scattering cases

and demonstrated its performance on parameter estimation,

confidence evaluation, and model assessment. While the

hyper-parameters for setting up the MCMC and HMCMC are

not ideally optimized in the demonstrations, we are still able

to observe the advantages of HMCMC in contrast to other

conventional methods. High-dimensional model predictions,

as well as model building and assessment, may become easier

with the Hamiltonian methods even in the presence of para-

meter correlations. Example data sets and MATLAB (The

Mathworks Inc.) scripts for the data analysis are available at

the GitHub Repository https://github.com/ennogra/HMCMC

or upon request.
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