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Two new methods of computer simulation of synchrotron radiation nano-

focusing with planar compound refractive lenses (PCRLs) are presented. The

methods are based on the results of analytical theory. In contrast to previous

works, the new methods take into account the PCRL aperture. It is especially

important at high photon energies, when absorption is low and the calculations

based on analytical theory, i.e. without taking into account the aperture, give

incorrect results. A computer program was created and specific results were

obtained for a silicon PCRL having an aperture of 50 mm, element length of

102 mm and minimum thickness of 2 mm. For an energy of 50 keVand number of

elements 300, it focuses the beam to 31 nm size at a distance of one and a half

times its length. Analysis of the calculation accuracy for the proposed methods

is performed, as well as a demonstration of the capabilities of the computer

program.

1. Introduction

Focusing of X-ray beams due to refractive effects was realized

only a hundred years after the discovery of X-rays (Snigirev et

al., 1996). Today, planar compound refractive lenses (PCRLs)

are one of the main X-ray optics tools at third- and fourth-

generation synchrotron radiation (SR) sources and X-ray free-

electron lasers. PCRLs make it possible to form beams in

focus with nanometre transverse size. They are created on

the surface of crystals (mainly silicon) by means of micro-

structuring methods and have a parabolic surface profile with

very high precision, which is required for compressing the

beam into such a small size.

Typical examples of PCRLs made of silicon are presented in

works by Snigirev et al. (2009, 2014) and Zverev et al. (2021).

They look like a sequence of elements in which each element

is a biconcave lens, as shown in Fig. 1. A large number of

elements is needed for two reasons. First, to eliminate aber-

rations it is necessary to gradually deflect the rays over the

entire width of the beam inside the aperture. This is especially

important for nanofocusing when the focal length is compar-

able with the length of the lens itself in the longitudinal

direction. Second, it is very difficult to accurately manufacture

a parabolic surface with a small radius of curvature and a long

length along the optical axis. This shape is needed for X-ray

lenses because the refraction of hard X-rays is very weak. It

is easier to make large-radius lenses and use them many times

in a sequence.

The theory of X-ray radiation propagation in such systems

has features that are absent in the optics of visible light. The

long PCRL propagator was first calculated analytically by

Kohn (2002, 2003). Two approximations were made in this
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calculation for the correct solution of the problem. First,

instead of discrete refraction at the boundaries of the surfaces

of the PCRL elements, a medium with a parabolic profile of

the electron density in the transverse direction and homo-

geneous in the longitudinal direction (the approximation of

smeared lenses) was considered. Second, the real aperture of

the PCRL was not taken into account, since it was assumed

that the rays entering the PCRL at the boundaries of the

aperture are completely absorbed.

Later, in works by Kohn (2009, 2012), another approach was

developed, which also did not take into account the PCRL

aperture, but used the compressed lens approximation. In this

model, refraction and absorption took place in a thin trans-

verse layer in the middle of the element length, and this is the

same as for the full thickness of the element. There was no

material between the layers. It was shown that in such a system

a Gaussian beam retains its shape and only its complex

parameters change. If a point source is deviated from the

optical axis, then three complex parameters are required for a

complete representation of the SR wavefunction. Recurrent

equations were obtained. As a result, any set of elements can

be easily computed numerically, using iterations to account for

each subsequent element.

The compressed lens approximation allows one to correctly

determine the effective aperture of the PCRL (Kohn, 2017),

and to calculate the rocking curve FWHM (full width at half-

maximum) and the coherence length for the long PCRL

(Kohn, 2018a). An online computer program was created

(Kohn, 2018b) to calculate all the specified parameters of the

PCRL. At the same time, this approximation, as well as the

previous approximation of smeared lenses, did not allow for

correctly determining the nanofocusing limits using the PCRL,

since for this purpose it was necessary to calculate the PCRL

with weak absorption, where the PCRL aperture plays an

important role.

The first attempt to take into account the aperture within

the framework of the analytical theory was made by Kohn &

Folomeshkin (2021), where it was shown that the minimum

beam size at the focus can be obtained only at high photon

energies, when absorption is minimal. Moreover, the smaller

the aperture, the lower the energy that can be used for this

purpose. However, the minimum beam size itself does not

depend on the energy and aperture.

This work is a continuation and development of the

analytical theory of focusing by means of PCRLs. It presents

two new methods for a relatively accurate and fast numerical

calculation of nanofocusing and gives a comparison with the

previously known iterative method, as well as with analytical

theory. It is shown that new calculation methods give beam

intensity profiles at the focus with sufficient accuracy and lead

to a reduction in the calculated time by a factor of 50 or more.

The new calculation methods are implemented in the frame-

work of a universal computer program, which is permanently

under development with the aim of using it on SR sources and

X-ray free-electron lasers to simulate all optical phenomena.

2. Methods of computer simulation of nanofocusing
SR by means of PCRLs

SR is generated by electrons moving along a circular orbit at

speeds close to the speed of light. Electrons create pulses of

electromagnetic radiation with a very short duration and

spontaneously. Different pulses are created at different time

instants. We consider the case when a lot of pulses hit a

detector during measurement. In such a case the experimental

results are described successfully in an approximation where

different points of the source cross section and different

frequencies in the wide radiation spectrum shine incoherently;

see, for example, the paper by Afanas’ev & Kon (1977).

Therefore, it is necessary to solve the Maxwell wave equation

for a point monochromatic source, and then to make a

summation of the radiation intensity at the detector over the

transverse size of the source and over the spectrum.

We assume that the experimental setup contains a mono-

chromator, and the spectrum of radiation incident on the

PCRL is very narrow. Therefore summation over the spectrum

is not necessary. On the other hand, the monochromator does

not influence the spatial properties of the X-ray beam, and we

can omit it in our theory. Sometimes the summation over the

transverse size of the source can be calculated as a convolu-

tion, but in general it can be a more difficult task. We assume

as well that the beam width is greater than the PCRL aperture,

and the finite angular divergence of SR does not influence

the results.

As a first stage, it is necessary to consider the nanofocusing

of X-ray radiation from a point monochromatic source. We

note that such a source is absent in nature. It is only a theo-

retical tool with the aim to consider the coherence properties

of SR. Let us choose the z-axis along the direction from the

source to the centre of the PCRL, and the x-axis along the

focusing direction. The PCRL does not influence the radiation

along the y-axis. SR is linearly polarized and dipole scattering

does not change its polarization. For this reason we are only

interested in the modulus of the electric field, which at a large

distance from the source can be represented as

Eðx; z; tÞ ¼ expðiKz� i!tÞAðx; zÞ; ð1Þ

where t is the time, K = !/c = 2�/� is the wavenumber, ! is the

circular frequency of radiation, c is the speed of light, and � is

the wavelength. The function A(x, z) changes slowly in space
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Figure 1
One element of the PCRL and its parameters.



compared with the exponential. Let us call it the wavefunction

(WF). We note that the WF depends on the frequency ! as

well as on many other parameters, but we are interested in the

WF spatial dependence.

Substitution of equation (1) into Maxwell’s wave equation

for E(x, z, t) leads to a parabolic equation for the WF,

dA

dz
¼ �iK�ðx; zÞAþ

i

2K

d2A

dx2
; ð2Þ

where � = � � i� = 1 � n, n = "1/2 is the complex refractive

index of the medium taking into account absorption, and " is

the dielectric function. In equation (2) the second derivative

over z is omitted in accordance with the paraxial approx-

imation. It is negligible compared with the first derivative due

to the large value of K for X-rays.

The standard calculation method for describing the propa-

gation of SR along the optical axis is as follows. There are

large distances in empty space when � = 0. In empty space, the

solution to equation (2) with the boundary condition in the

form of a delta function �(x) is the Fresnel propagator,

Pðx; zÞ ¼
1

ði�zÞ1=2
exp i�

x2

�z

� �
: ð3Þ

The solution of equation (3) is obtained by means of Fourier

transformation. Then the general solution is obtained as a

convolution,

Aðx; zÞ ¼
R

dx1 P x� x1; zð ÞA x1; 0ð Þ: ð4Þ

The convolution integral of equation (4) can be easily calcu-

lated by means of Fourier transformation. The standard way to

do this is by use of the fast Fourier transform (FFT) numerical

procedure proposed by Cooley & Tukey (1965).

2.1. The compressed lenses approach

In many cases objects have a relatively small thickness

along the z-axis. For small distances the contribution of the

second term in equation (2) can be neglected in comparison

with the first term. In this approximation, the solution can be

written as a product of two terms,

Aðx; zÞ ¼ TðxÞAðx; 0Þ: ð5Þ

The function T(x) is called the transmission function. Consider

homogeneous objects with complex shape. In this case, the

optical properties of the object material do not depend on the

coordinates; only the path length of the rays inside the object

material is variable. In this case,

TðxÞ ¼ exp �iK�tðxÞ½ �; tðxÞ ¼

Z z

0

dz1 s x; z1ð Þ: ð6Þ

Here the parameter � is a constant and the function s(x, z1)

equals 1 for the points where the material exists and 0 where

it is absent.

For one PCRL element in the form of a biconcave parabolic

lens (Fig. 1), it is easy to obtain the function t(x) in the form

tðxÞ ¼
x 2=Rþ dl; x< xa;
x 2

a =Rþ dl; x � xa;

�
ð7Þ

where R is the curvature radius at the apex of the parabola, dl

is the minimum thickness, and xa = A/2 is half of the PCRL

aperture. It is easy to understand that the parameter pl = t(xa)

is the length of one element of the PCRL along the z-axis. The

parameters xa, R, dl and pl are shown in Fig. 1. The solution

presented in equation (5) does not take into account the

length of the object along the z-axis in any way. It is believed

that the WF simply changes the phase as well as the amplitude

in accordance with the absorption, which is described by the

imaginary part of the phase.

The solution (7) is used in many works where the experi-

mental method of phase contrast imaging (Snigirev et al., 1995)

is simulated. In such simulations the length of the objects is

less than distances in empty space and can be neglected.

However, in our case a more correct approximation is

necessary where the lens adds a phase factor according to

equation (5) at its length centre, while before and after this

centre the radiation passes through empty space at a distance

of pl /2. These distances can be taken into account by use of

equation (4). For a PCRL with nl elements, first we must take

into account the distance pl /2, then (nl � 1) times the

combination of the function T(x) and the distance pl , then

again the function T(x) and the distance pl /2.

This method of calculation can be called the compressed

lenses approach (CLA). Further, it is referenced as the first

method. If the number of elements nl is large, the calculation

takes a relatively long time. Its advantage is that it is able to

take into account the aperture of the PCRL, as well as several

PCRLs in the transverse direction, that is, the bi-lens and

multi-lens interferometer. In addition, it allows one to

propagate an arbitrary WF.

2.2. The smeared lenses approach

The second method uses an analytical long PCRL propa-

gator, considered by Kohn (2002, 2003). It allows one to

significantly reduce the time for calculating the PCRL, which

consists of a large number of elements. In work by Kohn

(2003), an image propagator was obtained using the PCRL at

any distance before and after the lens. But the difficulty is that

this propagator does not take into account the lens aperture.

For this reason, we are not interested in the distance in front of

the PCRL and we need to consider the case of zero distance.

In this case, the aperture can be taken into account by

installing a slit in front of the PCRL with a size equal to the

size of the PCRL aperture. This, indeed, is often done in

experiments. The distance after the slit z can be left arbitrary.

This approach leads to the following general solution,

Aðx; zÞ ¼ C0 B0ðxÞ

Z
dx1 Pðx� x1; bÞB1ðx1ÞAðx1; 0Þ: ð8Þ

Here, P(x, b) is the Fresnel propagator for the complex

distance b,

B0;1ðxÞ ¼ exp �i�a0;1

x 2

�b

� �
; zc ¼

pl R

2�

� �1=2

; ð9Þ
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b ¼ zcL þ zc sL; a0 ¼ 1� cL; a1 ¼ a0 þ sL

z

zc

; ð10Þ

cL ¼ cos L=zcð Þ; sL ¼ sin L=zcð Þ; L ¼ pl nl: ð11Þ

It is important to remember that here the distance z is

measured from the end of the PCRL, and the function A(x1, 0)

corresponds to the beginning of the PCRL. The length L of

the PCRL is taken into account explicitly. The multiplier C0 =

expð�iK�dlnlÞ does not affect focusing. It simply reduces the

intensity of the beam by absorption in the flat area of the

material, which is necessary for technical reasons.

It should be noted that in the derivation of the long PCRL

propagator the opposite approximation of smeared lenses

was used. Namely, it was assumed that the function �(x, z) in

equation (2) is independent of z and has the form

�ðx; zÞ ¼ �
ðdl þ x2=RÞ

pl

: ð12Þ

Here, the parameter � on the right-hand side is again a

constant, and at each point along the x-axis it is taken with a

weight equal to the ratio of the thickness of the material in

the lens to the total thickness of the lens, that is, at x = xa.

However, for x > xa the equation remains the same, that is,

incorrect. It is believed that the WF there is already equal to

zero. If this is not the case, then the solution is incorrect and

cannot be used. That is why it is necessary to confine the beam

with a slit in front of the PCRL having a width equal in size to

the aperture of the PCRL, namely, 2xa. This second method

we will call the smeared lenses approach (SLA).

The presence of two methods for solving the problem in

directly opposite approximations makes it easy to assess the

accuracy of the results obtained. It will be determined by the

difference in solutions obtained in two ways. If they match, we

can conclude that both methods give the correct solution.

In equation (8), the integral has the form of a convolution

of two functions P( . . . ) and B1( . . . )A( . . . ) and it can be

calculated by the FFT method. In this case, the WF is first

multiplied by B1(x). Then the convolution is calculated.

Finally, one has to multiply again the result by C0 B0(x). Such a

calculation needs to be performed only once for any number nl

of PCRL elements.

The second method has an alternative when the WF is

calculated at z = 0, i.e. at the end of the PCRL. In such a

variant the distance z is taken into account by formula (4).

Practice has shown that this option is more resistant to the

accumulation of errors in using the FFT method, and it works

correctly with a wider choice of parameters of the computa-

tional grid. In this case, the increase in the calculation time

turns out to be small. The second method should be used if a

large number of calculations for various parameter values

are required.

2.3. The approximate smeared lenses approach

It is useful to consider a third method. It is approximate, but

even faster than the second method. The formula (8) at z = 0

can be rewritten as a matrix multiplication of the PCRL

propagator by the input WF,

Aðx;LÞ ¼

Z
dx1 PLðx; x1ÞAðx1; 0Þ; ð13Þ

where

PLðx; x1Þ ¼
C0

i 1=2 xL

B2ðxÞB2ðx1Þ expð�iqxx1Þ; ð14Þ

qx ¼
2�x

x2
L

; B2ðxÞ ¼ exp i�cL

x2

x2
L

� �
: ð15Þ

Here, xL = (�zc sL)1/2, and the parameters zc, sL and cL are

defined above.

It is easy to see that the integral is the Fourier transform.

But the wavevector qx is complex and it is impossible to

calculate the integral by standard methods. However, one can

obtain an approximate value of the integral by means of the

stationary phase method (Jeffreys & Swirles, 1966) assuming

that the input WF is slowly dependent on its argument. In the

integral (13), the stationary phase point x0 = x/cL. We replace

the function A(x1, 0) by the constant A(x0, 0) after which the

integral is calculated exactly and the result is obtained in the

analytical form

Aðx;LÞ ¼
C0

c
1=2
L

exp i� cL �
1

cL

� �
x2

x2
L

� �
A

x

cL

; 0

� �
: ð16Þ

Obviously, when a plane wave is incident along the optical

axis, this result is accurate. But this case does not suit us, since

the input WF should be limited by the slit. In the numerical

calculation, the imaginary part of the parameter cL can be

neglected everywhere, except for the exponential. The real

part of cL can be calculated as

CL ¼ cosðL=LcÞ; Lc ¼ plR=2�ð Þ
1=2; ð17Þ

for the case with � = 0.

Interestingly, a physically important conclusion immedi-

ately follows from equation (16). If absorption is absent or

weakly affects the exponential, then the input beam, limited

by the slit in front of the PCRL, is compressed at the end of

the PCRL by a factor of CL. This fully corresponds to the

trajectory of the ray inside the PCRL, which starts at the edge

of the aperture. The ray trajectories were discussed by Kohn

& Folomeshkin (2021). This third method we will call the

approximate smeared lenses approach (ASLA).

3. Computer simulations and their analysis

The three calculation methods (CLA, SLA and ASLA)

considered in the preceding section were implemented in the

computer program XRWP11, which is permanently being

developed to simulate the propagation of a SR beam through

all elements of the optical scheme at stations of third- and

fourth-generation SR sources and X-ray free-electron lasers.

research papers

618 V. G. Kohn � SR nanofocusing with planar CRLs J. Synchrotron Rad. (2022). 29, 615–621

1 The program XRWP1 is not ready for free download. In case of interest,
please email the author (kohnvict@yandex.ru).



The program is written in the special command language ACL

(Kohn, 2021), which is executed by an interpreter program

written in the Java programming language.

One of the first nanofocusing PCRLs made of silicon

(Snigirev et al., 2009) had the following parameters for the

biconcave elements: aperture A = 50 mm, curvature radius R =

A/8, minimum thickness dl = 2 mm, length of one element pl =

dl + A2/4R. Later, PCRLs with apertures of 30 mm (Snigirev et

al., 2014) and 10 mm (Zverev et al., 2021) were manufactured

with the same ratios for the other parameters as indicated

above.

As shown by Kohn & Folomeshkin (2021), all three types of

PCRLs reach the size limit for nanofocusing, equal approxi-

mately to wc = �/(8�)1/2, which depends only on the optical

properties of the material. This means that the transverse size

(FWHM) of the SR beam at the focus cannot be smaller. This

estimate was first proposed by Bergemann et al. (2003) for all

focusing devices of X-ray optics. For PCRLs, it is fulfilled only

at high photon energies E when absorption does not play a

significant role. Moreover, the larger the aperture, the higher

the energy required for this.

Obviously, the minimum size of the SR beam is reached at

the end of the PCRL. We will consider such a PCRL as having

the maximum possible length. However, the second half of

the PCRL length works less efficiently, and it is sufficient to

consider the PCRL with a length approximately half of the

maximum size. It is much more difficult to obtain an analytical

estimate for the depth of focus; that is, the distance along the

z-axis at which the minimum beam size is approximately

maintained. The easiest way to estimate this is by direct

computer simulation.

Fig. 2 shows the distribution of the relative intensity of the

SR beam on the (x, z) plane near the focus for a PCRL with an

aperture of 50 mm and for the number of elements nl = 300

at E = 50 keV. The calculation was performed using an alter-

native version of the second method described in the previous

section. The distance from the point source to the beginning of

the PCRL is z0 = 50 m. The convolutions were calculated using

the FFT numerical procedure (Cooley & Tukey, 1965). The set

of points with a constant step d = 0.00125 mm and number of

points N = 216 = 65536 was used. Such a large number of points

is necessary because the size Nd of the region has to be larger

than the aperture, and the narrow beam at the focus has to be

shown with a relatively high resolution.

Intensity I0 corresponds to the intensity at the entrance face

of the PCRL, in front of which there is a slit. The slit size is

equal to the size of the aperture. It follows from the figure that

the focal length, measured from the end of the PCRL, is

4.347 cm. This value is the same as that calculated by the

online calculator developed by Kohn (2018b). On the other

hand, this distance is slightly larger than the PCRL length L =

3.06 cm. The distance can be used to insert a PCRL with a

smaller aperture, which will focus the beam in the y direction.

Let us define the depth of focus (DF) as the width at half the

height of the intensity distribution curve along the optical axis.

The calculation shows that the DF can be estimated as 0.3 mm

(the height of the green region in Fig. 2), which is 104 times

larger than the transverse size of the beam, equal to 31 nm.

Fig. 3 shows the relative intensity distribution at a focal

length of 4.347 cm, calculated using four different methods.

Three of the methods (CLA, SLA and ASLA) are described

in the previous section; the fourth one makes use of equations

(17) and (18) of Kohn (2003), taking into account the distances

before and after the PCRL, but without taking into account

the aperture. Let us indicate the curves by the number of

the calculation method. Fig. 3 presents the first curve (CLA

method) as black, the second one (SLA method) as red, the

third (ASLA method) as blue, and the fourth as black again.

The fourth curve is, by definition, a Gaussian function with

a higher maximum and lower FWHM. The first three curves

practically coincide. In this case, only the blue curve is visible,

which is drawn last. The black and red curves are very slightly

different from the blue curve. The effect of the aperture can be

judged by the difference in the shape of the blue and black

curves. The effect of the aperture leads to a decrease in the

maximum, an increase in FWHM, and the presence of weak

additional maxima outside the main maximum.

As shown by Kohn & Folomeshkin (2021), the fourth curve

is not correct because the parameters do not satisfy the

condition Ae < A/2 when the effect of the aperture can be
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Figure 2
Relative intensity distribution near the focal distance. See details in
the text.

Figure 3
Relative intensity distribution at the focal distance. See details in the text.



neglected. Here Ae is the effective aperture of the PCRL due

to absorption. The online program for the parameters of the

considered calculation gives the value Ae = 30 mm, which is

greater than 25 mm. But the fourth curve does not differ much

from the results of the more accurate calculation because the

difference of Ae from A/2 is small.

The difference between the second and the first curves gives

an estimate of the accuracy for both calculation methods, since

the calculations were performed in directly opposite approx-

imations of smeared and compressed PCRL elements. This

difference is shown by the black curve in the inset of Fig. 3.

The slight lack of symmetry and small oscillations in the curve

are due to diffraction at the slit and the fact that the data are

obtained by linear interpolation from a large data set with a

small step.

The smeared lens method (second curve) gave a higher

maximum in Fig. 3, but lower values on the tails. However, the

relative difference is 0.005 at the maximum. The second curve

is also calculated 50 times faster than the first curve. The

difference between the second and third curves is shown by

the blue curve in the inset; this difference is even smaller. The

reason for this is that the source is located at a large distance

of 50 m in the case under consideration, and the incident wave

is close to a plane wave. For a plane wave, the third method

gives an accurate result.

It is interesting to compare the results of the accurate

calculation by means of program XRWP1 with the known

results of the approximate analytical theory for the focus

distance. It is clear that with a small L/F ratio a long lens can

be roughly considered as a short one, placed in its middle.

Here F = R/2nl� is the focal length for a short lens, which does

not take into account its length L. It was shown by Kohn and

co-workers (Kohn et al., 2003; Kohn, 2003) that a more

accurate focal length for a parallel beam will be equal to FL =

F + L/6. This result takes into account only the first term of the

expansion in the small parameter L/F. For the computer

simulation, we used the parameters F = 5.4 cm, FL = 5.91 cm.

The accurate result for the focal length measured from the

middle of the PCRL length and converted to a parallel-beam

case is Fa = 5.87 cm. The approximate estimate for the focal

length exceeds the accurate calculation, but the difference is

small, although the ratio L/F = 0.57 is not so small. But the

difference is still greater than the depth of focusing.

Up to now we have considered a point source. However, a

real source of SR has a transverse size. It contains many point

sources distributed along the x-axis. As shown by Kohn (2009,

2012), when the point source is displaced and has the coor-

dinate xs, the beam, focused by the long PCRL, will be

displaced without distortion in the opposite direction at the

distance Mxs, and the magnification factor M = (z + Z1)/

(z0 + Z0), where the distance z is counted from the end of the

PCRL to the detector. The parameters Z0 and Z1 are calcu-

lated by the online program (Kohn, 2018b). So, for the PCRL

under consideration, we obtain Z0 = 77 cm, Z1 = 1.7 cm. Since

z0 = 5000 cm, the influence of the parameter Z0 is small, and

Z1 > L/2 = 1.53 cm. The results of accurate calculation

correspond to the M values obtained from the online program,

at least at relatively small point source displacements, of no

more than 100 mm.

We have considered a simple example of calculating the

focusing of an X-ray beam using a nanofocusing PCRL

only for the purpose of demonstrating the operation of the

program. The program is able to perform calculations for

more complex experimental schemes, in which real objects are

depicted, an interference pattern is formed, a PCRL cascade

with various apertures is used, and so on. Fig. 4 shows an

example of a more complex system, where a tungsten wire of

diameter 10 mm is located at zero distance in front of the slit

and the PCRL.

The calculation was performed by the same method as used

for Fig. 2. It should be noted that in calculations using the

FFT procedure the correct choice of calculation parameters,

namely the step and the number of points, is very important.

If the parameters are chosen incorrectly, then the result may

contain artefacts in the form of oscillations with a small

period, or may be completely wrong with even abnormally

large numbers, many orders of magnitude larger than the real

ones. In particular, in order to obtain the correct result of

calculation in Fig. 4, it was necessary to increase the grid step

twice, i.e. d = 0.0025 mm. Calculation by the third method in

this case gave the same result as well.

4. Conclusion

Nanofocusing planar compound refractive lenses consist of a

large number of elements and an accurate calculation of their

focusing properties takes a lot of time. The analytical theory

developed by Kohn (2002, 2003) is inapplicable for such

lenses, because it does not take into account the size of the

aperture. In this work, two new methods for the computer

simulation of nanofocusing planar compound refractive lenses

are developed. They are based on the analytical theory, but

with careful consideration of the aperture size. New methods

make it possible to reduce the calculation time by 50 or more

times without loss of accuracy. An analysis of the accuracy of
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Figure 4
Relative intensity distribution near the focal distance for the parameters
as in Fig. 2, but with a tungsten wire in front of the PCRL. See details in
the text.



the new methods is carried out on a specific example of

nanofocusing lenses already used in experiments. The new

methods were implemented in a universal computer program.
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