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A novel approach to the remote-control system for the compact multi-crystal

energy-dispersive spectrometer for X-ray emission spectroscopy (XES)

applications has been developed. This new approach is based on asynchronous

communication between software components and on reactive design principles.

In this paper, the challenges faced, their solutions, as well as the implementation

and future development prospects are identified. The main motivation of this

work was the development of a new holistic communication protocol that can be

implemented to control various hardware components allowing both indepen-

dent operation and easy integration into different SCADA systems.

1. Introduction

Along with ongoing advances in the development of large-

scale particle accelerators such as X-ray free-electron lasers

(XFELs) and synchrotron facilities, these facilities continue

to operate in a ‘high demand and limited access’ mode. The

recent achievements in laser technologies open up new

possibilities for the construction of compact accelerators,

which will lead to an increase in the number and availability

of such facilities for users delivering new technologies to

universities, institutes, hospitals, etc. Two compact XFELs

have almost been built at the Deutsches Elektronen-

Synchrotron (DESY) (Kärtner et al., 2016) and Arizona State

University (ASU) (Graves et al., 2017). A mini-synchrotron,

the Munich Compact Light Source (MuCLS), operates at the

Technical University of Munich (TUM) (Günther et al., 2020),

and other developments are underway around the world.

This growth in scientific instruments has lead to a variety

of implemented Supervisory Control And Data Acquisition

(SCADA) systems to control the equipment. Thus, the control

of technical components of accelerators is implemented with

the DOOCS (Grygiel et al., 1996) and TINE (Bartkiewicz &

Duval, 2007) control systems, whereas the beamlines equip-

ment is controlled with TANGO (Götz et al., 2003),

KARABO (Hauf et al., 2019) or EPICS (Dalesio et al., 1994).

Such diversity of SCADA systems requires development of

complicated communication protocols when synchronization

and communication between different technical components

is needed, especially in the facilities where multiple SCADA

systems are used.

Frequently, the integration of new equipment at large-scale

facilities is done by adapting the existing control software used
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for other devices. Such a strategy often results in replication of

large databases and huge software infrastructure. In our work,

we propose a different approach based on the use of modern

software solutions, with the help of which one can quickly

achieve similar functionality with fewer resources.

While the number of various research techniques and

analytical instruments constantly grows, the idea of equipment

sharing may become reasonable in the near future. Following

this concept, analytical instruments for compact accelerators,

when possible, should also be sufficiently compact and

versatile, which includes the possibility of integration of their

control system into various facilities. Good and up-to-date

equipment control practice in newly developed facilities

should be envisaged.

The XES spectrometer was developed for the compact

XFEL beamline at DESY (the AXSIS project) and can be

used for the single-shot collection of XES spectra simulta-

neously with X-ray diffraction/X-ray scattering experiments in

a hard X-ray energy range (4–12 keV) with attosecond time

resolution. One of the requirements for the XES spectrometer

for the compact XFEL was its versatility, namely the possi-

bility of installing the spectrometer at different beamlines and

X-ray facilities. This requirement limits not only the weight

and size of the device but also requires the spectrometer

control system to be independent and easily integrated into

various SCADA systems.

In our paper, we present a new solution based on asyn-

chronous communication between software components and

on reactive design principles. Our approach to hardware

control can be implemented for controlling and commu-

nicating any technical equipment in real time regardless of its

manufacturer, scale and complexity. We show, as an example,

the implementation of the developed protocol for controlling

hardware components of the X-ray spectroscopy endstation of

the AXSIS project.

2. Challenges

2.1. Hardware challenges

To follow the ultrafast dynamics of chemical processes

achievable with a pulsed X-ray source working at a high

repetition rate, the XES spectrometer for the AXSIS project is

based on the von Hamos geometry (von Hamos, 1932). Due to

its cylindrical shape, each analyser crystal diffracts X-rays in

a specific energy range along the cylinder axis (dispersion

direction) and focuses the X-rays along the base of the

cylinder (focusing direction), allowing the entire XES spec-

trum from each individual X-ray pulse to be measured.

The principle of operation of the XES spectrometer is based

on the Bragg diffraction of X-rays from the crystal lattice

planes of multiple crystal-analysers. After interaction of the

incoming X-ray beam with the sample, the X-ray fluorescence

is diffracted by the crystal-analysers and focused into the

position-sensitive 2D detector following Bragg’s law n� =

2dsin�, where n is the diffraction order, � is the X-ray

wavelength, d is the distance between crystal planes, and � is

the Bragg angle.

In order to provide high efficiency in the measurement of

experimental data for the low-concentrated biological samples

or catalysts, the XES spectrometer was built from multiple

crystal analysers increasing a covered solid angle. Unlike other

existing solutions (Alonso-Mori et al., 2012a,b; Szlachetko et

al., 2012), we aimed to develop a highly efficient, high reso-

lution, compact and portable device at the same time. With

this objective, the XES spectrometer for the AXSIS project

consists of eight (2�4 matrix) independent crystal-analysers

cylindrically bent to 250 mm. Each crystal-analyser can be

moved by three individual motors to perform three different

tasks: (1) change the Bragg angle (and the energy range of the

detected spectra); (2) change the focus of the projection of the

XES spectra to the detector, or (3) position an individual XES

spectrum on a different area on the detector.

2.2. Software challenges

2.2.1. Lightweight, compact and modular. Thinking of how

the hardware tasks match with the existing software solutions

we face the following. Usually existing SCADA systems, which

operate with hardware, are huge and have solutions for lots of

problems. Most of them are of great complexity with their own

ecosystems such as libraries, servers, special tools, graphical

user interfaces (GUIs) etc., which require efforts and

resources to get into, and in-house support and development

from time to time. There is no possibility to use only a part of

it if the task is not big and if there are not so many drawbacks

to solve. We do not need special complicated features from

SCADA systems.

Hence we define the following challenge: our software

must be lightweight, i.e. has minimal number of third-party

dependencies, compact and modular – meaning that all the

features are ‘on-demand’ rather than ‘built-in’ the software

modules. Modules in turn should be easily interchangeable,

pluggable and also required only ‘on-demand’.

For instance, as we have a multi-crystal energy-dispersive

spectrometer there is no need to create and maintain a dedi-

cated database, polling system, black-box or data archivers

which are usually ‘built-in’ when using SCADA systems. So

most of the existing solutions were with redundant function-

ality for our task.

2.2.2. Portable across different beamlines. The possibility

of installing the spectrometer at different beamlines and X-ray

facilities was another important task to solve. Incompatibility

between different systems is the real case in this situation.

Devices from one SCADA system cannot be easily connected

to another one because they depend on different transport

protocols which are used in each SCADA system [for example,

TANGO uses CORBA (Henning & Vinoski, 1999), whereas

DOOCS uses SUN ONC (Srinivasan, 1995)]. The same applies

for visualization services. Indeed, there are some wrappers

from SCADA systems which allow connections with other

systems but deep knowledge of the systems is required to

implement these connectors. So when one wants to bring
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together two devices that use different SCADA systems, the

SCADA integration has to be written from scratch. This is not

convenient if the device is to be used in different facilities

where different SCADA solutions are operated. Our chal-

lenge is to design a common solution to cross-integrate

different SCADA systems.

2.2.3. Minimizing third-party dependencies and vendor
lock in a device server. Interconnecting different SCADA

systems and providing visualization are not the only chal-

lenges to be solved. We also want to provide a common

interface and tools to aggregate new device servers, not

connected to any established platform. Those stand-alone

device servers have general use-cases:

(1) Providing a way to create a device server that can

interact with several control systems. Currently, one needs to

create a custom device server implementation for each plat-

form in order to make the device pluggable into them. It

requires a significant effort and limits the number of devices

that could be used in a specific experiment.

(2) Using device servers in a stand-alone mode, without

integration with the other devices and very simple read-out

and visualization. Currently, most systems do not allow

running devices in this mode without setting up central naming

and communication services, configuration database, storage

database, etc.

The first case is rather self-explanatory. Device manu-

facturers obviously want to write a device server once using a

convenient tool-set instead of supporting a device server for

each platform (usually in different languages).

The second use-case mostly appears in small experiments

and during component testing. It does not make sense to

establish a whole SCADA system for a single device, but

the drivers (device servers) are already integrated in those

systems and could not be used alone. The LabVIEW platform

(Travis & Kring, 2007) provides some means to manage small-

scale systems, but is also limited when it comes to custom

hardware.

2.2.4. Making asynchronous communication a first-class
citizen. Most existing control systems are using synchronous

(request-response) and often one-direction communication

protocols when data are propagated from the lower layers

to the upper ones, e.g. when data are propagated from the

hardware to the GUIs on request (Birrell & Nelson, 1984;

Götz et al., 2013), also known as client polling. This means that

we either receive a command execution’s result or an error,

without knowing what is going on in between. Request-

response models are very good in peer-to-peer communication

(Schoder et al., 2005) where every node talks to another one

and only one at a time, but not in multiple peer connections

where a node talks to multiple nodes simultaneously. Request-

response-based systems are good until we want to scale up in a

multi-directional communication way. For instance, in the case

where we need to add more motors, devices or software

components that talk to each other, the code base quickly

becomes complicated with lots of if-else statements and nested

loops.

Summarizing, the synchronous communication scheme is

easy to implement, but it has several disadvantages (Hintjens,

2013):

(1) Synchronicity in most cases means blocking control flow,

see Fig. 1(a). This leads to latency and freezes in the whole

system.

(2) Synchronous systems based on peer-to-peer commu-

nication do not scale well, e.g. dozens of peers talking to each

other in a blocking way.

(3) Finally, such systems are very hard to load balance

(Alakeel, 2009).

One should note that some established systems like

TANGO or DOOCS now introduce an asynchronous model

on a client Application Programming Interface (API) level,

which is not an asynchronous communication for data

management. In fact, an asynchronous model on a client API

level uses standard synchronous RPC calls under the hood

(Rauschmayer, 2018). Sometimes an event subscription model
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Figure 1
An example of the difference between synchronous and asynchronous communication. Client 1 (GUI) sends a message with a command to change the
state of the motor from the current P1 position to P2 at the t0 time. After receiving the message, the motor begins to execute the command and changes
its states. The motor moves through intermediate positions P10, P10 0, P10 0 0 to reach the P2 position. Via synchronous communication the Client 1 (GUI)
receives response P2 at the t4 time. Whereas via asynchronous communication Client 2, Client 3 (these may be another GUI, other motors or systems),
which want to receive information about intermediate motor’s states, receive these intermediate positions simultaneously: P10 at t1 time, P10 0 at t2, P10 0 0 at
t3 and P2 at t4 time.



is mistakenly assumed as an asynchronous communication.

Event subscription models in SCADA systems with which

authors are working have critical limitations for our task and

design. For example, in the event subscription model the

subscription process itself is synchronous. Those limitations

do not allow to fully embrace asynchronous communication.

Asynchronous API and subscription have a secondary role in

the existing systems, not a first-class citizen.

In order to avoid the above-mentioned drawbacks, one may

use asynchronous communication (McCool et al., 2012) and

reactive design (Kuhn et al., 2017) (see detailed description in

the following chapter).

In our case, this means that if we send a command for the

motor to change position from P1 to P2, we want to obtain

intermediate positioning values of the motor (P10, P10 0, P1000).

An asynchronous way of communication can give us this

possibility without sending constant requests from the clients’

side. Moreover, when having something like a broker [see

Magix in Fig. 1(b)], all clients that want to get all information

from the motor receive it at the same time, and this infor-

mation is the same for all of them. In the case of peer-to-peer/

synchronous communication, if one of the clients requests the

motor’s position it may get a response with an intermediate

positioning value at a time while the other client requesting

for the position value will get another one. This leads to

information inconsistency at some time points, see Fig. 2.

Thinking of how these tasks could be addressed, we came

up with an idea of creating an open source interconnection

platform – the place where information from different

SCADA systems could meet and share information.

2.2.5. Being reactive by design. According to our tasks, we

need:

(1) To have a responsive solution when command execution

takes time. This is solved by relying on asynchronous

communication.

(2) To continue to operate in the case where one or more

components fail or, in other words, to have a resilient system.

This is provided by the way the errors are treated. Errors are

messages but not exceptions that stop the process.

(3) To operate without problems and delays when a

considerable number of clients (e.g. status monitors) are

connected to the instrument – to have an elastic system. This is

accomplished by dynamically deploying multiple broadcasters

[see Magix in Fig. 1(b)] instances.

(4) To use messages for communication between different

devices and SCADA systems.

The above statements indicate that our solution should be

responsive, resilient, elastic and message driven. This means

that it fits into a reactive definition or reactive manifesto

(Bonér et al., 2014). As we design a reactive system, message

flow or message transport is to be a reactive stream which

is specified in the ReactiveX Streams description (https://

www.reactive-streams.org/).

One of the benefits of reactive streams is that they have

a very rich ecosystem (i.e. libraries) also known as reactive

extensions (Rx) – libraries with Rx-supported platforms

(http://reactivex.io/languages.html) that can be attached to the

reactive streams to extract data (information in messages)

from them. These reactive extensions exist for almost all

platforms and are written in most of the known software

languages and provide similar functionality due to the stan-

dard reactive paradigm.

3. Solution

Our main goal is to provide a middleware software solution.

Its main idea is to make it possible for the spectrometer and

other hardware components to communicate with different

control systems, GUIs and third-party software components in

general. Data from one control system should be accessible for

another control system in case several systems are used at

once. This solution provides a generic way of communication

between different SCADA systems and the instrument

because there is no need to know each SCADA system to

operate it. The approach, as it is, is quite widely used in web-

development [especially in so-called microservice architecture

(Wolff, 2016)], but is not yet fully adopted in SCADA systems.

The solution is based on work done by Khokhriakov et al.

(2014, 2017) and the ‘Troitsk nu-mass’ experiment in search

of masses of active and sterile neutrinos (Abdurashitov et

al., 2015).

3.1. Message specification

The elementary unit of the communication process is a

message. Each message is a predefined structure filled with

information. This structure has been defined after analysis of

SCADA systems (TANGO, TINE, DOOCS, EPICS) for more

than five years and written in a Request for Comments (RFC)

way (Daigle, 2007) which means that the structure can be

updated if needed. Thus, for different SCADA systems the

structure of the message is the same. Once a message is

created it can be used/applied by clients (other SCADA

systems, GUI or algorithms), see Fig. 3.

Each box in Fig. 3 (green, yellow or gray) is a solution’s

component which is a stack of technologies. Depending on the

functional requirements a set of components can be adjusted,

thus allowing to build the required system as from Lego

blocks.
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Figure 2
Example of synchronous communication and polling. Three clients at a
different time start to ask for the motor’s position value with the time slot
polling of 5. The first client C1 receives the final value of P2 at the t4 time
while the second client C2 and the third C3 would receive this value only
at time t6 and t7. Until the t7 time all three clients see different position
values.



3.2. Asynchronous communication

By design the solution implies an asynchronous way of

messages’ interchange between components (see Fig. 3).

When required, an asynchronous way can always be trans-

formed into synchronous. Components may also establish

peer-to-peer communication as in existing SCADA systems

because the solution extends SCADA systems, not replaces

them.

The core component of the solution – Magix – provides

broadcasting of messages and subscribing capabilities.

Messages are delivered by a transport which can be imple-

mented by any existing transport frameworks (e.g. ZMQ,

Kafka, etc.) depending on the requirements. For instance, for

small instruments when the whole system is on a single host

the solution can be packed into a single process. In this case,

the transport may be implemented by ZMQ in-process sockets

(http://api.zeromq.org/2-1:zmq-inproc). For mid to large

instruments the transport may be implemented by Apache

Kafka (https://kafka.apache.org/) – an event streaming plat-

form – or D-Bus (Palmieri, 2005) or ZMQ inter-process socket

(ZMQ intreprocess, http://api.zeromq.org/2-1:zmq-ipc).

3.3. Reactive design

Thinking about the solution, we rely on the reactive design

approach. Another key feature of our solution is transport

agnostic, i.e. irrelevance to the underlying transport imple-

mentation. The solution is implemented using the reactive

stream paradigm and is not based on any existing Remote

Procedure Call models (Corbin, 2011) or frameworks but

based on microservices which asynchronously communicate

with each other. Thus, the solution is very container friendly

and can be packed into widely used Docker (Poulton, 2016)

containers and orchestrated using, for example, Kubernetes

(Poulton & Joglekar, 2019) to manage multiple Docker

containers.

Summarizing, the main important features of the solution

are:

(1) Transport agnostic.

(2) Reactive system by design.

(3) Lightweightness, compactness and modularity.

(4) Its role is to be a middleware between client applications

and upstream control system(s) or third-party components.

It gives the possibility of an agile approach to software

development through microservices within the reactive para-

digm and makes a more convenient workflow for operating

experiments, see Fig. 4.

Hence, our solution gives a variety of possibilities to

connect to the streams with messages which can come from

SCADA systems, drivers or any other third-party components

or microservices. We deal only with a reactive stream that

brings standard defined messages and there is no need to

know the details of the SCADA systems, drivers or any other

third-party components or microservices; we only need to

understand data from messages. The messages’ structures are

defined in the RFCs and the structure of the message is known

in advance. Therefore, the approach allows us to use different

SCADA systems as stated among the challenges.

3.4. Device server

Microservices are independent functional units (see green,

yellow or gray boxes in Figs. 3 and 4). In order to address

the challenge of reducing proprietary third-party dependen-
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Figure 4
As in Fig. 3, here Magix is a core component responsible for the message flow between counterparts. Each counterpart is a software component or a
microservice. Every microservice has its own lifecycle independent from others. The only thing they have in common is that they all attach to a reactive
stream produced by Magix using reactive extensions (Rx) and defining observers. Observers ‘glue’ Rx and microservice’s logic.

Figure 3
Overview of the interconnection platform. Here Magix is a core
component responsible for the message flow between components. Each
software component, shown as yellow boxes, deals only with incoming
messages without knowing any details of the counterparty component.
All communication is asynchronous.



cies, and especially to avoid vendor

lock, we have started to design a new

framework which is a combination of

Rx extension (gives us the possibility

to connect to the data stream and

get information from messages)

and Rx observer (http://reactivex.io/

documentation/observable.html) (trans-

forms message’s information in an

understandable way for the recipient)

which is attached to the reactive

streams. The framework supports

passing device property changes in and

out of the device via reactive streams

and Magix.

By design, the solution does not

require any dedicated component that

will implement the name resolution

service. In other words, it does not require any particular

database to be running. Small installations may benefit from it

as less resources are required to set up and maintain the

system. However, for large-scale installations the name reso-

lution service can be implemented.

Since Magix compatible device servers do not have limita-

tions on their own infrastructure (like timing services and local

storage support), they could be easily built on top of existing

vendor-provided solutions (e.g. drivers). This allows to both

utilize existing libraries, not compatible with the chosen

control system, and write new ones if they do not suffice.

The key details of implementation of this approach are

shown in the next chapter.

4. Implementation

4.1. Hardware

In order to comply with the required tasks, three main

scenarios for positioning of each individual crystal of the XES

spectrometer are envisaged:

(1) Positioning each crystal in the dispersion direction

(changing the Bragg angle) by moving one actuator in the

positive or negative direction relative to the reference position

(see green arrow in Fig. 5).

(2) Changing the position of each crystal in the focusing

direction by moving the three actuators sequentially or

simultaneously in the positive and negative direction relative

to the reference position (see red arrows in Fig. 5).

(3) Moving each crystal as a whole in a positive or negative

direction relative to its original position.

All of the above-described displacements can be different

for each crystal.

Fig. 6 shows a schematic representation of the implemented

communication network for controlling the XES spectro-

meter. To realize these scenarios, we used 24 linear actuators

driven by two controller modules (Motor 1 and Motor 2 in

Fig. 6). To ensure the possibility of integrating the spectro-

meter into any equipment control system, a local network that

includes a Raspberry PI computer and a router has been built.

The Raspberry PI computer contains all the required software

and libraries to control 24 linear actuators of the XES spec-

trometer. The router is used to provide a network commu-

nication between a remote PC and constituent elements of

the spectrometer.

Any command received from the GUI on the PC is trans-

mitted to the server deployed on the Raspberry PI. Once a

command is assigned, it is redirected to the appropriate motor

(or device) and its current status is returned to the user. All

communications are performed asynchronously, which allows

various actions to be performed in parallel.

All the software components of our system are packed

in Docker containers and deployed on the Raspberry PI

in Microk8s cluster (Hartwell, 2019; axsis-kube, https://

github.com/Ingvord/axsis-kube).

4.2. Software

In this section we give an overview of the key details of the

software solution’s implementation. First, let us have a look at

the GUI end of the system. As stated within the tasks, our

GUI must provide a way for the user to adjust the position of
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Figure 6
Schematics of the local network to control the XES spectrometer.

Figure 5
(Left panel): one crystal driven by three linear actuators. Right panel: a view of the XES
spectrometer.



each crystal as a whole by changing the Bragg angle or the

focus, as well as interact with every motor independently.

Obviously, it also has to be able to initiate the experiment

session, connecting to the upstream components, in our case

Magix and software device controllers. Information from the

device server is packed into a message described in Waltz-

Controls RFC-1 Message (https://github.com/waltz-controls/

rfc/tree/master/1). This information can be unpacked by the

control system’s connector or the GUI. The software device

server is running on a dedicated host, communicating with

upstream hardware devices via TCP over Ethernet or directly

through USB ports. The data from devices can be visualized

directly on the computer where it is acquired, see Fig. 7.

The XES spectrometer GUI is implemented on the Waltz

GUI platform (https://github.com/waltz-controls/waltz) (Götz

et al., 2019; Khokhriakov et al., 2019) as it is possible to create

a user interface conforming to our needs. Moreover, it is an

open source web-based solution. As a web application it does

not depend on the system and can be run on Windows, Linux

and mobile platforms. The XES spectrometer GUI is a typical

front-end project that utilizes the ecosystem of NodeJS and

JavaScript (Brown, 2014), i.e. dependencies management and

builds are done using the npm package manager (https://

www.npmjs.com/). The XES spectrometer GUI’s source code

resides on GitHub (XES spectrometer GUI’s source code,

https://github.com/Ingvord/axsis-xes-gui). For the graphical

part we use the Webix UI library (https://webix.com) with

its widgets collection (https://docs.webix.com/desktop__

components.html) that provides a huge set of predefined

widgets as well as a very intuitive and straightforward way of

defining custom widgets and it is also distributed under an

open source license.

Two points of interest within the GUI source code are

asynchronous and synchronous communication with the

upstream device controller. Synchronous communication

with the upstream device controller is encapsulated in Pi

device synchronous controller (PiAxsisController, https://

github.com/Ingvord/axsis-xes-gui/blob/master/src/controllers/

pi_controller.js), asynchronous communication in the Magix-

Controller component (https://github.com/Ingvord/axsis-xes-

gui/blob/master/src/controllers/magix_pi_controller.js).

A part of the MagixController component code example is

presented in Fig. 8 to show the reactive paradigm approach.

Fig. 8 shows the code snippet responsible for updating motor

positions in the GUI. An asynchronous client to Magix is

implemented in the reusable plugin waltz-magix-plugin

(https://github.com/waltz-controls/waltz-magix-plugin). It

provides an implementation of the Magix client API

specification defined in the Waltz-Controls RFC-2 (https://

github.com/waltz-controls/rfc/tree/master/2). Technically this

plugin is not only bound to the GUI of this applications but

can be used in any JavaScript application, as it is available in

the NPM repository. We get the Magix client instance from the

application’s context, see line 33. In lines 34–39 we observe

incoming messages from the upstream device controller and

update the GUI (40–42). The messages’ specification is

defined in RFC-6.

The software device controller in this setup is implemented

using Python 3 and Pi Python library, i.e. vendor library. The

source code for this component resides in the XES device

controllers’ source code on GitHub (https://github.com/

Ingvord/axsis-xes).

To export a synchronous communication channel, we use

the Flask framework for building REST services (Richardson

et al., 2013). This provides a very convenient way to commu-

nicate with the device controller as the HTTP eco-system,

on which REST services are based, is extremely rich. For

example, we can use just a plain browser to communicate with
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Figure 8
Example of a reactive update for ‘move’ action for motors.

Figure 7
Control system implementation for the XES spectrometer. The software
components may communicate both asynchronously and synchronously
with other microservices via message’s flow which is used to transfer data.



the device. In general, REST is more preferable to conven-

tional request-response-based solutions like CORBA, see, for

example, RESTful Architectural Principles by Burke (2009).

To export asynchronous communication, we developed a

reusable Python client implementation for Magix (RxPython

MagixClient, https://github.com/waltz-controls/magix-python-

client, https://pypi.org/project/magix-client/0.4/) and attached

an observer to it (see Fig. 7). The observer extracts incoming

messages and delegates execution. All routines are non-

blocking and performed within the async.io event loop.

An alternative implementation of the software device

controller (Data acquisition framework based on DataForge,

https://github.com/mipt-npm/controls.kt/tree/dev) is being

developed in Kotlin using kotlin-multiplatform (https://

kotlinlang.org/docs/multiplatform.html) (Nozik, 2019) tech-

nology, which has perfect instruments for implementing

asynchronous communication. It allows us to share code

between the Java virtual machine (JVM), browser and native

targets. The key feature of the alternative implementation is

bypassing vendor’s dll and direct communication with the

upstream hardware devices, thus eliminating third-party

dependency and fulfilling one of our challenges. The project is

developed in a JetBrains Research fellowship and currently

features a library for creating asynchronous device servers of

different complexity as well as communication plugins that

follow the Magix specification for REST/SSE, ZMQ and

RSocket transport layers.

As for the Magix component, in addition to the Kotlin

implementation, we developed an experimental reusable

implementation based on HTTP2.0 and SSE written in Java

(source code is on Magix component’s GitHub page, Source

code for HTTP2.0 and SSE written in Java, https://github.com/

waltz-controls/magix-war-plugin). Following RFC-2, it imple-

ments two methods – ‘subscribe’ and ‘broadcast’ – as REST

endpoints.

The implementation of the solution can be considered as a

reactive system. The system has to fulfill certain requirements

(Bonér et al., 2014) to be reactive: message driven, elastic,

resilient and responsive. The implementation is naturally

message driven. Synchronous HTTP communication is, in fact,

message driven due to the asynchronous nature of JavaScript

(https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Reference/Global_Objects/Promise) (ZeoLearn, 2018). It

is elastic as it is easy to imagine horizontal scalability by

increasing the number of Magix instances and the balance

load between them. The natural limitation for scalability is the

upstream hardware devices as we have a fixed number of

motors. However, it is easy to leverage the load applying back-

pressure strategies (Reactive Manifesto Glossary, https://

www.reactivemanifesto.org/glossary#Back-Pressure) (Phelps,

2019) provided by Reactive extensions. Resilience is achieved

by early failure interception in the software components and

emitting an ‘error’ message. Finally, it is responsive as there

are no blocking calls in the communication channels.

An important feature of our implementation is that it does

not require the setup – the only thing one needs is to plug

the router into the on-premise network and access the GUI

using a browser. Naturally, one can switch to a different

computer without stopping the measurements and restarting

the acquisition.

As a proof of concept of cross integration with Tango

Controls we see a virtual Tango database (virtual-tango-host,

https://github.com/IK-Company/virtual-tango-host) and a

dynamic Tango server that utilize dynamic attributes and

commands (Götz et al., 2015). The idea is to have a Tango

Controls API as a front-end to our system while the back-end

is connected to Magix. Hence, native Tango tools and clients

can be used directly with our system. Integration with DOOCS

can be implemented in a similar way, e.g. doocs-json (https://

github.com/mipt-npm/doocs-json). Basically, integration with

any third-party software component, which can be, for

instance, a SCADA system or an archiving or a GUI, is done

by defining corresponding messages’ specification and imple-

menting a simple micro-service that translates those messages

into upstream API calls. The deep overview of this integration

approach is the subject of a separate article.

5. Conclusions and perspectives

In this paper, we have presented tasks, challenges, solutions

and implementation of the XES spectrometer and its control

system. Specifically, our hardware solution has to be compact

and versatile, also in terms of software, and can be easily

integrated into existing instruments.

In terms of hardware tasks for the short-working-distance

multi-crystal von Hamos spectrometer, we ended up with a

non-commercial customized solution that meets the require-

ment of the AXSIS project at DESY.

The software control system must provide the possibility

to understand what is happening with the hardware while

executing the commands. This presents us with the following

challenges: the software solution must be responsive, resilient,

elastic and message-driven.

To meet the software challenges, we developed a system

based on the reactive paradigm whereas existing solutions are

typically RPC systems and are not suitable as they do not

provide asynchronous communication and also typically are

very complex and complicated for our compact device. They

also demand the creation and maintenance of a database,

which we would like to avoid.

Our solution is transport agnostic and we foresee compo-

nents implemented in other languages or technology stacks,

e.g. Python and Kotlin-Native. Moreover, using Magix we

can extend the capabilities of any existing SCADA, distrib-

uted control system (DCS) solution allowing easy integration

of new protocols, smooth migration to new protocols, or event

technology stacks.

The resulting implementation is open source. Most of the

components are reusable and reside under the Waltz-Controls

organization on GitHub (https://github.com/waltz-controls).

Magix-related components are aggregated in the Piazza

project (https://github.com/waltz-controls/piazza). The soft-

ware device server is implemented in both Kotlin and Python

research papers

J. Synchrotron Rad. (2022). 29, 644–653 Igor Khokhriakov et al. � Accelerators and beamline hardware components 651



languages. This implementation can be easily scaled to inte-

grate more hardware and software components.

In this paper, we intentionally omit the part of the system

responsible for integration with, for example, Tango Controls,

and present a general overview of the challenges and the

solution. Being short, integration with Tango Controls is

implemented by providing a virtual Tango database (virtual-

tango-host) and a dynamic Tango server. There is also some

work done with the integration with DOOCS (doocs-json). A

common solution to cross-integrate different SCADA systems

is foreseen within the Piazza project.

At first, it may seem that the solution is over-engineered,

especially in terms of the variety of technology stacks used;

this was done on purpose just to demonstrate that the solution

is very flexible, lightweight, compact and modular. Almost any

technology stack can be used to implement its components;

the only dependency is a reactive extension for a given

platform.

The advantage of our solution is that it is based on messages

defined in RFCs. These messages can be implemented in

any language. This is a different implementation method

compared with other existing control systems known to the

authors of this article.

The solution has been adopted for a slow control system

developed for the BabyAIXO project; see, for example,

Section 8.3 of Abeln et al. (2021).

The XES spectrometer and its control system have been

successfully tested during a research and development (R&D)

beam time at Pohang Accelerator Laboratory X-ray Free

Electron Laser (PAL-XFEL).
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