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A new approach for performing quantitative structure-factor analysis and

density measurements of liquids using X-ray diffraction with a pink-spectrum

X-ray source is described. The methodology corrects for the pink beam effect by

performing a Taylor series expansion of the diffraction signal. The mean density,

background scale factor, peak X-ray energy about which the expansion is

performed, and the cutoff radius for density measurement are estimated using

the derivative-free optimization scheme. The formalism is demonstrated for a

simulated radial distribution function for tin. Finally, the proposed methodology

is applied to experimental data on shock compressed tin recorded at the

Dynamic Compression Sector at the Advanced Photon Source, with derived

densities comparing favorably with other experimental results and the equations

of state of tin.

1. Introduction

Over the last two decades marked improvements have been

made to both the experimental and analytical techniques

associated with the study of dense liquid states using X-ray

diffraction and static high-pressure techniques (Eggert et al.,

2002; Morard et al., 2014). Typically, studies of high-pressure

liquids (P < 100 GPa) have relied on the diamond anvil cell

(DAC) apparatus, which consists of two opposing diamond

anvils that compress a sample (surrounded by a pressure-

transmitting medium) in a metallic chamber compressed

between the two anvils. While much important research has

been conducted using static compression techniques at rela-

tively low pressures, e.g. the observation of first-order liquid–

liquid phase transitions (Katayama et al., 2000; Soper &

Benmore, 2008), and the critical point in sulfur near 2.0 GPa

(Henry et al., 2020), there is an inherent limit to the accessible

pressure states imposed by the strength of the diamonds in

the cell, as well as an upper temperature limit imposed by

the physical geometry of the DAC apparatus (Anzellini &

Boccato, 2020). Additionally, the thick diamonds used in the

DAC setup are known to make a significant contribution to

the X-ray diffraction signal collected during high-temperature,

high-pressure liquid experiments, along with scattering

contributions from the surrounding medium. The removal of

these parasitic features can be non-trivial and is essential for

the proper analysis of the X-ray scattering from the material

of interest (Eggert et al., 2002; Morard et al., 2014). The recent

implementation of Soller slits has facilitated the collection of

high-quality diffraction data from low-Z liquids at pressures

just over 1 Mbar (Weck et al., 2017); however, small sample
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sizes and the practical difficulties of using DACs under these

conditions mean that it has so far been impossible to access

the multi-megabar regime for these types of experiments

(P > 200 GPa).

The advent of fourth-generation light sources such as the

Linac Coherent Light Source (LCLS) presents a new method

of probing dense liquid states as generated through laser-

driven dynamic compression experiments. The short time-

scales of such experiments require highly brilliant X-rays

in order to obtain single-exposure diffraction data of high

enough quality to perform quantitative analysis of liquid

scattering data (Briggs et al., 2019a). These shock-compression

experiments grant access to pressure states up to several

Mbar, vastly broadening the scope of the study of dense

liquids. Liquid diffraction data have been successfully

collected at LCLS (Briggs et al., 2017a; Gorman et al., 2018;

Coleman et al., 2019); however, the detector coverage and the

accessible momentum transfer or q-range over which diffrac-

tion data may be obtained can be limited. Recent years

have seen the addition of such laser systems to synchrotron

beamlines, meaning that laser-driven dynamic compression

experiments can now also be conducted at facilities that have

produced high-quality liquid diffraction data from DACs over

the previous two decades. These facilities have the capability

to collect diffraction on sub-nanosecond timescales as well

as providing detector coverage from a single-panel detector

for full azimuthal coverage making them excellent candidates

for probing dynamically compressed liquids. The dynamic

compression sector (DCS) at the Advanced Photon Source

(APS), having recently installed a 100 J laser system, is one

such facility that affords users the opportunity to dynamically

compress samples (Wang et al., 2019). This beamline is

equipped with a U17 undulator, providing a non-monochro-

matic X-ray source, commonly referred to as a pink beam.

A representative X-ray photon flux versus energy curve for

the X-ray free-electron source at LCLS and the as-measured

spectral flux from the U17 undulator at APS is shown in Fig. 1.

The full width at half-maxima (FWHM) for the energy–flux

distribution at DCS is �0.785 keV, which is a 3.3% spread

around the energy of peak flux. The FWHM at LCLS is

�0.2%. It is also worth noting that the relative flux at

LCLS-II is about three orders of magnitude brighter

compared with DCS.

The scattering of X-rays from a liquid sample produces a

broad diffuse signal that contains information on the short

range order of the atoms. The shape and location of the broad

liquid peaks are affected by the X-ray source type. A mono-

chromatic X-ray beam (with bandwidth �E/E � 1%) will

typically produce peaks at a scattering angle defined by the

average atomic positions. However, if the X-ray source is a

pink-beam source, with an intensity profile characterized by a

sharp Gaussian fall-off at higher energies and an exponential

tail to lower energies with �E/E ’ 3% (as is the case for the

U17 undulator at DCS), then there is an artificial shift of

the liquid peak locations to higher scattering angles and an

asymmetry in the peak profile (Bratos et al., 2014). Analysis of

the liquid scattering intensities as a function of momentum

transfer, q (where q = 4� sin �=�, � is the scattering angle, and

� is the X-ray wavelength), provides the liquid structure

factor, which in conjunction with the mean density can be used

to determine the radial distribution function (Kaplow et al.,

1965; Eggert et al., 2002).

In this paper, we present a new approach to quantitative

structure factor and density determination in liquid diffraction

data obtained using a pink X-ray source. The implementation

of a Taylor series expansion of the spectra can be used to

account for the artifacts introduced by the pink X-ray beam.

Furthermore, the corrected spectra can be used in an opti-

mization procedure to determine the density of the

compressed liquid state. We will only focus on the case of

monatomic liquid in this manuscript. The extension to the case

of polyatomic liquids, although tedious, follows the same

general steps. The Methods section briefly describes the scat-

tering of X-rays by monatomic liquids. Diffraction signal

modulation in the presence of a pink X-ray beam is also

described. A method based on the Taylor series expansion of

the coherent diffraction intensity to correct for this effect is

presented. Finally, we describe the optimization scheme to

derive liquid densities from data collected in a pink X-ray

beam. We present the results of the outlined procedure on two

datasets: a simulated pink beam diffraction spectrum derived

using the radial distribution function from a quantum mole-

cular dynamics (QMD) simulation, and an experimental

spectrum recorded at the dynamic compression sector for

liquid tin. The densities derived for the experimental data are

compared with other experimental studies and the Sesame

2161 EOS table. We conclude the paper by providing a brief

summary and some practical considerations while using the

proposed scheme.

2. Methods

This section mathematically describes the main ideas of this

work. The section proceeds in the following steps: a brief
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Figure 1
Plot of representative (not measured) X-ray photon energy versus flux at
the Linac Coherent Light Source (blue) and U17 flux measured at the
Dynamic Compression Sector (red).



overview of the coherent diffraction intensity for a monatomic

liquid using the Debye scattering equation is presented. Next,

following the work presented by Bratos et al. (2014), the

modulation of this diffracted intensity in the presence of a

pink X-ray beam is outlined. The section describes the pink

beam correction using a Taylor series to approximate the

change in diffraction intensity as a function of momentum

transfer. Finally, the density optimization algorithm using the

pink beam correction is presented.

2.1. Monatomic liquids

X-ray scattering from a disordered group of N atoms is

given by the Debye scattering equation as (Debye, 1915)

I cðqÞ ¼ N f ðqÞ2 þ
XN

i

XN

j 6¼ i

fiðqÞ fjðqÞ
sin qrij

qrij

: ð1Þ

Here, rij is the distance between atoms (i, j), q is the

momentum transfer and f is the atomic form factor. For

monatomic liquids, the structure factor, S(q), is related to the

experimentally observable coherent diffraction intensity, I c

(ignoring central scattering), by

SðqÞ ¼
I cðqÞ

N f 2ðqÞ
: ð2Þ

The structure factor is related to the radial distribution func-

tion, g(r), by the following equation,

SðqÞ ¼ 1þ
4��

q

Z 1
0

�
gðrÞ � 1

�
r sinðqrÞ dr

¼ 1þ
1

q

Z 1
0

FðrÞ sinðqrÞ dr: ð3Þ

Here, F(r) = 4�� [g(r) � 1]r and � is the mean density of the

liquid. Readers are referred to Warren (1990) for a detailed

overview of scattering by liquids.

2.2. Structure factor from experimental scattering intensities

The experimental diffraction signal recorded from liquids

can be converted to the structure factor, S(q), by computing a

normalization factor. The normalization factor, �, is computed

as the value which minimizes the quantity

X
q

q2 � IexptðqÞ � �� IincðqÞ � f 2
ðqÞ

� �
:

Here, Iexpt denotes the experimentally recorded diffraction

intensity, � refers to multiple scattering, Iinc denotes the

theoretically calculated incoherent intensity and f 2 refers to

the the squared atomic scattering factor of the liquid. � is

independent of q and is another free variable along with �
in the optimization problem. The theoretical incoherent

scattering and atomic form factors for different atoms have

been tabulated as a function of the scattering parameter,

s = q/4� (Smith et al., 1975; Brown et al., 2006). The structure

factor is obtained from the experimental diffraction intensity

using the following formula,

SðqÞ ¼
� IexptðqÞ � IincðqÞ

f 2ðqÞ
: ð4Þ

All symbols have been previously defined. The readers are

referred to the classic papers of Ashcroft & Langreth for more

details (Ashcroft & Langreth, 1967a,b, 1968). The structure

factor obtained after this is then used in an iterative loop to

reduce the oscillations at small atomic distances, r, below the

first interatomic peak of the monatomic liquid. This iteration

typically converges in a few steps. The readers are referred

to Eggert et al. (2002) for further details about this iterative

procedure.

2.3. Signal modulation by pink X-ray beam

The coherent scattering signal from a liquid is modified in

the presence of a pink X-ray beam. This is given by a weighted

sum of the scattering by the liquid for the different energies,

E 0, in the pink beam (Warren, 1990; Bratos et al., 2014). The

weights, w, as well as the limits of the integration, Emin and

Emax , are given by the energy spectrum produced by the

undulator. Mathematically,

I c
pinkð�Þ ¼

Z Emax

Emin

wðE 0; �Þ I c E 0; �ð Þ dE 0: ð5Þ

Here, I c denotes the coherent diffraction intensity. Instead of

using the variable �, it is useful to transform equation (5) in

terms of the momentum transfer, q. Let E M be some energy

in the pink spectrum with non-zero photon flux. The pink

coherent scattering intensity, I c
pink, as a function of the scat-

tering angle � can be transformed to an equivalent scattering

intensity as a function of the momentum transfer variable q M,

where q M = 4�E M sin �=hc, where h and c are Planck’s

constant and the speed of light, respectively. Equation (5)

transforms to

I c
pinkðq

M
Þ ¼

Z Emax

Emin

w E 0; q M=E M
� �

I c E 0; q M=E M
� �

dE 0: ð6Þ

Since the weights, w, are only dependent on the energy, its

dependence on � through the variable Q M/E M will be dropped

for all subsequent equations. An obvious choice for E M would

be the photon energy with the highest flux, but there is no

a priori reason for this. As we shall see later, we treat this

energy as another variable to be determined during density

optimization.

2.4. Pink beam correction

As discussed in Section 2.4, the liquid diffraction signal

recorded in a pink X-ray beam is a linear combination of

the diffraction signal resulting from each energy in the X-ray.

Therefore, the usual analysis methods used for monochro-

matic X-ray beams cannot be employed directly. However, if

the pink beam has a narrow energy bandwidth, as is the case at

the Dynamic Compression Sector, the pink beam diffraction

spectra scan be corrected to an equivalent quasi-monochro-

matic diffraction signal. Once this correction is performed, the

known analysis methods for monochromatic liquid diffraction
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spectra are valid. This section outlines the procedure for

performing this correction. The change in the scattering signal

as a function of q can be approximated by a Taylor series as

I c
ðqþ �qÞ ¼ I c

ðqÞ þ
@I cðqÞ

@q
�qþ

@2I cðqÞ

@q2
ð�qÞ2 þ . . . : ð7Þ

In the limit �q=q� 1, this expression is well approximated by

the first-order term. For the U17 undulator spectrum at DCS,

the flux decreases by a factor of 1/e over the energy range

�E’ 0.88 keV. This corresponds to �q/q’ 0.037, significantly

smaller compared with 1. The pink beam sources at other

synchrotron sources, such as the European Synchrotron

Radiation Facility (ESRF), are sharper compared with DCS

(�q/q ’ 0.024) (Wulff et al., 2003). We will make this

assumption for the rest of this manuscript. Substituting the

expression for I c(q) from equation (2), the derivative of the

coherent scattering intensity is given by

@I c

@q
¼
@

@q
Nf 2ðqÞ SðqÞ
� �

¼ N 2f ðqÞ
@f ðqÞ

@q
SðqÞ þ f 2ðqÞ

@S

@q

� �
: ð8Þ

Using the expression for the liquid structure factor from

equation (3) results in the following expression for the deri-

vative of the structure factor with respect to q,

@S

@q
¼
@

@q
þ

1

q

Z 1
0

FðrÞ sinðqrÞ dr

� �

¼

Z 1
0

FðrÞ
qr cos qr� sinðqrÞ

q2

� �
dr: ð9Þ

Using the expression for the derivative of the scattering factor

in equation (9) and replacing it in equation (8) results in the

following expression for the derivative of the coherent scat-

tering intensity,

@I c

@q
¼ N

�
2f ðqÞ

@f ðqÞ

@q
SðqÞ

þ f 2ðqÞ

Z 1
0

FðrÞ
qr cos qr� sinðqrÞ

q2

� �
dr

	
: ð10Þ

The form factors, f(q), in the previous equations are tabulated

for each atom as a function of the parameter s = q/4�. The

form factors are expressed as a weighted sum of Gaussians of

different widths and a constants term. Since these functions

are smooth, the derivatives of the form factors are trivial to

compute as well. The expression is presented in the following

equations. The values of Ai, Bi for different atoms have been

tabulated and can be found in the International Tables of

Crystallography (Brown et al., 2006),

f ðqÞ ¼
X4

i¼ 1

Ai exp �Bi s2
� �

þ C;

@f ðqÞ

@q
¼

1

4�

X4

i¼ 1

�2AiBi s exp �Bi s2
� �

:

ð11Þ

The derivative of the coherent scattering intensity with respect

to the momentum transfer can be converted to the derivative

with respect to the photon energy E by using the chain rule,

@I c

@E
¼
@I c

@q

@q

@E
¼

q

E

@I c

@q
: ð12Þ

Substituting the above expression in equation (10) results in

the following equation for the derivative of the scattering

intensity with the photon energy,

@I c

@E
¼

Nq

E

�
2f ðqÞ

@f ðqÞ

@q
SðqÞ

þ f 2
ðqÞ

Z 1
0

FðrÞ
qr cos qr� sinðqrÞ

q2

� �
dr

	
:

The expression for the derivative presented in the previous

equation can now be plugged into equation (5) to compute the

modulation of the scattered X-rays as a result of the pink

X-ray beam. This is given by

I c
pinkðq

M
Þ ¼

Z Emax

Emin

wðE 0Þ I c
ðE 0; q M=E M

Þ dE 0

¼

Z Emax

Emin

wðE 0Þ

�
I cðE M; q M=E MÞ

þ
@I c

@E 0






E M

ðE 0 � E MÞ

�
dE 0: ð13Þ

Notice that I c(E M, q M/E M) and @I c=@E 0jE M are independent

of the integration variable. This allows us to write the above

equation as

I c
pinkðq

M
Þ ¼ I c

ðE M; q M=E M
Þ

þ
@I c

@E






E M

Z Emax

Emin

wðE 0Þ ðE 0 � E MÞ dE 0: ð14Þ

The integral can be computed with the knowledge of the pink

beam spectra. Note that, for symmetric undulator spectra, this

integral goes to zero. Therefore, in the first-order approx-

imation, the correction term goes to zero for a symmetric

profile. However, this is not true if higher terms are included in

the Taylor series. The effective monochromatic spectra can be

computed by subtracting the correction term from the pink

beam spectra. The effective monochromatic spectrum is

given by

I c
ðE M
Þ ¼ I c

pinkðq
M
Þ �

@I c

@E






EM

Z Emax

Emin

wðE 0Þ ðE 0 � E M
Þ dE 0:

ð15Þ

The above equation is only valid for a monatomic liquid. A

similar correction for polyatomic liquid can also be calculated

using the formalism described above but is beyond the scope

of this work.

2.5. Termination function

To partially eliminate effects of limited q-range in the

measured signal, the termination function described by

Kuwayama et al. (2020) was used. This method extends the
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structure factors beyond the recorded limit, qmax , using the

following equation,

SextendðqÞ ¼

SðqÞ; q � qmax;

1� ð1=qÞ
R rcutoff

0

�
4��N þ ð2=�Þ

�
R qmax

0 q½SðqÞ � 1� sinðqrÞ dq
�

dr;
q> qmax:

8>>><
>>>:

ð16Þ

Here, �N refers to the number density. The other symbols have

previously been defined in the text.

2.6. Density optimization

The above formalism assumes the knowledge of F(r) to

compute the derivative of the coherent scattering intensity.

However, this information is not known a priori and needs to

be extracted from the measured diffraction intensity. There-

fore, a bootstrap method was used. This is outlined in the

algorithm below:

(1) Compute g(r) [inverse Fourier transform of equation

(3)] without any correction and assuming a monochromatic

spectrum using the measured signal.

(2) Compute correction factor using equation (13) and g(r)

from step 1.

(3) Use correction factor from step (2), correct for pink

beam using equation (15) and recompute g(r).

(4) Use the corrected g(r) to update the current values for

the input parameters.

(5) Repeat steps (2)–(4) until converged.

It should be noted that, due to the limited q-range of the

measured signal, iterative application of the correction can

lead to a growing fluctuation in S(q). This is related to the

rapidly oscillating nature of the derivative of the sinc function

[second term on the right in equation (10)]. Practically, only

one iteration leads to acceptable results and avoids numerical

instability. The corrected structure factor is then fed into a

similar optimization procedure to the one outlined by Eggert

et al. (2002) to extract the density. The optimization problem

seeks to minimize the following function,

	2 ¼

Z rcutoff

r0

�
FðrÞ þ 4��n

�2
dr: ð17Þ

Here, �n defines the number density in atoms/Å3. The opti-

mization is performed over four variables, namely �n, bkg,

rcutoff and E M, where bkg is the constant background signal,

rcutoff denotes the interatomic distance below which the radial

distribution function should vanish, and E M, defined in

Section 2.3, denotes the energy in the Taylor series approx-

imation. Fig. 2 outlines the density optimization algorithm.

The optimization parameters are updated using the

BOBYQA optimization algorithm (Powell, 2009; Cartis et al.,

2019). Note that the algorithm accepts bounds constraints on

variables. In our experience, constraints of 	0.2–0.3 Å for

rcutoff around an initial guess derived from QMD simulations

and	1 keV around an initial guess of the peak flux energy for

E M are a good choice.

2.7. Uncertainty estimation

The main contribution to the uncertainty in liquid density

obtained from this analysis originates from the residual errors

after correcting for the non-monochromatic X-ray source.

Using simulated liquid diffraction intensities derived from

QMD trajectory simulations of high P–T liquid Sn, it was

estimated that the error in density is�0.75% when diffraction

intensity is available up to 12 Å�1. The errors increase to

�2% when the intensities are only available up to 8 Å�1. The

q-range at DCS is closer to the latter case. The estimation was

done by performing thousands of optimizations for different

initial guesses for the four optimization parameters and

calculating the distribution of the derived densities. This

uncertainty is a systematic error, with the final estimate from

the analysis always lower than the true value resulting in

asymmetric lower and upper uncertainty bounds (the upper

bound is larger). The second source of uncertainty arises from

the spread in the final converged value of density for a number

of randomly chosen initial guesses. Therefore, density opti-

mization is started from a number of initial guesses and the

standard deviation of the final converged values is added

to the systematic uncertainty. Finally, uncertainty in the

geometric calibration of the X-ray detector also leads to some

uncertainty in the derived density. This value is much smaller

than the other two values and will be ignored for this study.
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Figure 2
Density optimization algorithm. Symbols have been defined in the text.



The total uncertainty in density is a sum of the individual

contributions. The method described here has been employed

for experimental silver data, applying uncertainty bounds to

coordination number determined from density measurements

in shock compressed liquid states up to 330 GPa (Coleman et

al., 2022).

3. Results

This section presents results of the outlined procedure for

two different cases: a simulated pink beam diffraction signal

derived from QMD simulation and an experimental diffrac-

tion signal recorded at the Dynamic Compression Sector. The

simulated results have a known ground truth and provide a

good measure for the efficacy of the proposed method. The

density derived from the experimental diffraction signal is

compared with densities derived from other shock compres-

sion and gas gun studies as well as the Sesame 2161 pressure–

density table.

3.1. QMD simulations – tin

QMD simulations based on density functional theory

were performed for liquid Sn using a cubic cell with 128

atoms. We use the Baldereschi k point (Baldereschi, 1973) of

(1/4; 1/4; 1/4)2�/a to sample the Brillouin zone. Here, a is the

side length of the simulation cell. We choose the Perdew–

Burke–Ernzerhof for solids (PBEsol) exchange-correlation

functional (Blöchl et al., 1994), 400 eV cutoff for the plane

wave basis, and a projected augmented wave (PAW) pseudo-

potential that has a core of 3.0 Bohr and treats 5s2 5p2 as

valence electrons as provided in the Vienna Ab-Initio Simu-

lation Package (VASP) (Kresse & Furthmüller, 1996). A Nosé

thermostat was used to generate MD trajectories in a cano-

nical (NVT, i.e. constant number of atoms, constant volume,

and constant temperature) ensemble. The MD trajectory

consisted of 12000 steps with a time step of approximately

1.5 fs. The radial distribution function is calculated by

analyzing interatomic distances along the MD trajectory after

the system reaches equilibrium, from which the structure

factor is calculated following the procedure outlined by Zhang

& Morales (2020). We note that the simulation being reported

here corresponds to a temperature of 5000 K. We have

performed additional calculations at 	1000 K, using different

cell sizes (up to 256 atoms), finite k mesh, and other exchange-

correlation functionals, and found similar results for the

calculated pressure and g(r) profile.

The radial distribution function was extracted from QMD

simulations, and equations (2), (3) and (5) were used to

generate the ‘experimental’ diffraction signal for pink X-ray

beam. The energy–flux distribution recorded for the U17

undulator at DCS as shown in Fig. 1 was used for this calcu-

lation. The procedure outlined in this work was then used to

extract the structure factor, radial distribution function and

mean density. This is represented by the ‘corrected’ curved in

Figs. 3(a) and 3(b). The ‘uncorrected’ curves do not account

for the non-monochromatic source and assumes that the

coherent diffraction signal was recorded at a monochromatic

source with X-ray energy corresponding to the energy with the

peak flux in Fig. 1 (red curve�23.53 keV). This data set lets us

benchmark the algorithm for the ideal case where the mean

density is already known.

The theoretical density (in g cm�3) along with the densities

obtained for the uncorrected and corrected cases are listed in

Table 1. rcutoff and E M converged to the physically reasonable

values of 2 Å and 23.48 keV, respectively. The uncertainties

were estimated using the method described in Section 2.8. The

starting density was uniformly sampled in the interval 10.5–

11.5 g cm�3. The uncertainties reported in Table 1 are the

standard deviation for 100 different starting values. It is

interesting to note that the uncertainties for the corrected

density are not large enough to account for the deviation of

the estimated density with the theoretical value. This indicates

that, although the approximation clearly improves the esti-

mate, the Taylor series approximation is not exact and intro-
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Figure 3
(a) Structure factor and (b) radial distribution function for tin derived from QMD simulations at 11.0 g/cc and 5000 K. The finite size of the QMD
simulation cell results in structure factors below �2 Å�1 being unreliable. The difference curve of the corrected and uncorrected curves with the QMD
results is shown as well.

Table 1
Theoretical mean density and densities obtained by the outlined
optimization procedure before and after correcting for the pink beam
effect.

Percentage errors from the theoretical value are given in parentheses. All
densities are in units of g cm�3.

Theoretical density Uncorrected density Corrected density

11.0 12.250 (2) 10:92þ0:09
�0:01

(6.90%) (0.73%)



duces a small (<1%) error in the final estimate. This is likely

a result of the first-order approximation made in this work.

However, including higher-order terms is infeasible due to

the limited q-range in experimental data. This introduces

unwanted fluctuations in the corrected structure factors and

leads to erroneous estimates of density. The QMD results for

the structure factor and radial distribution functions, along

with the uncorrected and corrected spectra for these quan-

tities, are presented in Fig. 3.

3.2. Experiment – tin

Laser shock compression experiments were carried out at

the Dynamic Compression Sector of the Advanced Photon

Source synchrotron, Argonne National Laboratory (Wang

et al., 2019). Shock targets consisted of 50 mm of polyimide

ablator, glued to 29.5 mm Sn foils (99.75%, Goodfellow). A

500 mm-thick single-crystal LiF window was glued to the rear

surface of the target package and velocimetry measurements

were collected at the Sn/LiF interface using a point VISAR

system. Pressure was determined by impedance matching the

measured Sn/LiF particle velocity and comparing with the Sn

EOS (Sesame 2161) (Greeff et al., 2005).

X-ray images were collected on a Rayonix SX165 area

detector (2048 � 2048 pixels) and timed with respect to the

laser pulse such that diffraction was collected just before the

shock wave reaches the Sn/LiF interface. Consequently, a

small portion of ambient diffraction from uncompressed Sn

ahead of the shock wave is masked from diffraction profiles so

that only liquid scattering signal is considered for analysis.

Single-crystal Laue diffraction spots from the single-crystal

LiF window are also masked. Finally, the detector response is

removed from the shocked images before azimuthally inte-

grating using Dioptas (Prescher & Prakapenka, 2015). This

approach was shown to work well for data collected at the

LCLS (Briggs et al., 2019a) and at DCS (Briggs et al., 2019b).

However, the contribution of background signal from the

plastic ablator will be more significant for lower-Z materials

and would require additional background subtraction, similar

to the removal of empty cell background as described by

Eggert et al. (2002). In this work the ratio of the squares of

atomic numbers, representing the scattering cross-section for

Sn and Kapton (CH), is �100, and the contribution of the

50 mm plastic ablator is negligible (we observe no amorphous

or crystalline signal from the plastic ablator) at �23.5 keV.

Consequently, a small portion of ambient diffraction from

uncompressed Sn ahead of the shock wave is masked from

diffraction profiles so that only liquid scattering signal is

considered for analysis. Single-crystal Laue diffraction spots

from the single-crystal LiF window are also masked. The

readers are referred to Briggs et al. (2019a) for details about

the background removal procedure. See Fig. 4(a). The

detector response was removed from the shocked images,

before azimuthally integrating using Dioptas (Prescher &

Prakapenka, 2015).

The sample detector distance, rotation, and tilt were cali-

brated using the diffraction lines of polycrystalline Si and

cross-checked with CeO2 (NIST). The azimuthally integrated

intensity after removing the diffraction from crystalline Sn and

LiF window as well as the shadowed regions from the blast

shield and the VISAR mirror is shown in Fig. 4(b). A pressure

of 74 (5) GPa was estimated from VISAR as shown in

Fig. 4(c). Similar experiments were performed on the Matter

in Extreme Conditions (MEC) instrument using the mono-

chromatic X-ray Free Electron Laser at the Linac Coherent

Light Source (LCLS-II) to achieve similar densities. The

results have been previously reported by Briggs et al. (2019a).

The study reported a mean density of 11.2 (1) g cm�3. This

corresponds to an estimated pressure of 79 (8) GPa on the

Sesame 2161 Hugoniot. Earlier work using multi-anvil appa-
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Figure 4
(a) Raw diffraction profile collected at DCS. Single-crystal spots from the LiF window material, which are masked from the integrated profiles, are
highlighted by green circles. All remaining spots are ambient 
-Sn peaks (ambient material ahead of the shock wave) that are also removed from the final
integrated profile, leaving only the diffuse scattering from liquid tin. The X-ray shadows from the VISAR mirror and blast shield are also highlighted.
(b) Partial azimuthally integrated intensity as a function of momentum transfer from (a) ignoring the areas with shadows from the blast shield and the
VISAR mirror. The beam energy used for converting from 2� to q was 23.53 keV. (c) Point VISAR data. The dashed line shows the average Sn/LiF
particle velocity at shock breakout, with uncertainty bounded by the yellow shaded region; the shock pressure of 74 (5) GPa is determined using
impedance matching of the Sn sample with the LiF window. The arrow indicates the time at which there is a significant loss of reflectivity.



ratus studied liquid tin only up to 20 GPa (Narushima et al.,

2007) at temperatures just above the melting curve (Briggs et

al., 2017b).

Density optimization without accounting for the pink beam

resulted in a mean density of 13.67 (7) g cm�3. Accounting for

the pink beam effect resulted in a density of 11.0 (2) g cm�3.

The QMD simulations from the previous example in Section

3.1 had a pressure of 80 GPa, comparable with the value

estimated from VISAR analysis. The structure factors and the

radial distribution functions obtained using the data recorded

at DCS and MEC along with the QMD simulations are

presented in Fig. 5. Since the temperatures are not measured

during experiments, the precise thermodynamic state of the

melted tin is not known. This makes the direct comparison

between the two experimental measurements and the QMD

simulations difficult. The purpose of presenting these datasets

is not to perform a quantitative comparison but to demon-

strate that the algorithm outlined in this work leads to

reasonable estimates of the radial distribution functions for

liquid tin of comparable densities. The coordination number

of the corrected spectra, related to the area under the first g(r)

peak, shows agreement with the QMD simulations and the

MEC data once the correction is applied. The coordination

number (CN) was determined using the following equation

(Morard et al., 2014),

CN ¼

Z rmin

r0

4�nr2gðrÞ dr: ð18Þ

Here, n is the number density and r0 and rmin are the inte-

gration limits corresponding to the left edge of the first peak

and the first minima in g(r), respectively. There are competing

methods prescribed to evaluate rmin , where rmin corresponds

to the first minima of the function 4�r2g(r) (Waseda, 1980).

This convention was used by Briggs et al. (2019a) to compute

the coordination number. Table 2 lists the coordination

number obtained by using the definition of rmin in Morard et al.

(2014) (method I) and Waseda (1980) (method II). The values

indicate that using the same cutoff value for rmin leads to

consistent results.

Due to the higher density estimate, the uncorrected radial

distribution function overestimates the coordination number

significantly. Zhang & Morales (2020) used method II to

compute the CN and argue that, since the body-centered-cubic

phase of tin has 8 first nearest neighbors and 6 second nearest

neighbors, a coordination number close to 14 is reasonable for

the liquid phase, and indicates that these two shells merge into

one. These results are summarized in Table 2. The uncertainty

in the mean density for both the uncorrected and corrected

spectra is estimated by initializing the optimization at 100

uniformly sampled density values in the interval 10.5–

11.1 g cm�3.

To put our density estimates into a broader context, the

estimated densities were compared with other experimental

data points as well as the tabulated Sesame 2161 Hugoniot.

This has been presented in Fig. 6. The density estimate, after

applying the pink beam correction, agrees very well with

previously measured data as well as the Sesame 2161 tables for

tin. The density estimate without accounting for the pink beam

artifacts, shown by the green glyph, is extremely poor and

shows the significant impact of the pink beam on the density

estimates.

4. Discussion and conclusions

In this paper, we have outlined a new methodology to correct

for the artifacts introduced in the diffraction signal produced

by liquids in a pink X-ray beam. The correction relies on the

first-order Taylor’s series expansion of the coherent diffraction

intensity. The proposed method is bench-marked with simu-

lated tin data of known density and temperature. The method

was able to correct for the pink beam effect to less than 1%

error. Finally, the method was demonstrated for an experi-

mental liquid scattering signal from tin recorded at the

Dynamic Compression Sector. The mean density and radial

distribution function compare favorably with both experi-
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Table 2
Densities and coordination numbers for liquid tin from different datasets.

Two different methods used for calculating the CN, as discussed in Section 3.2,
have been presented as method I and II.

Data source
Pressure
(GPa)

Density
(g cm�3)

CN
(method I)

CN
(method II)

DCS (uncorrected) 74 (5) 13.67 (7) 15.5 (1) 13.2 (1)
DCS (corrected) 74 (5) 11:0þ0:42

�0:2 13:5þ0:4
�0:2 11:4þ0:4

�0:2

XFEL @ LCLS-II 79 (8) 11.2 (1) 13.7 (1) 11.1 (1)
QMD simulations 79.95 (8) 11.0 13.6 12.0

Figure 5
(a) Structure factor and (b) radial distribution function from shock melted tin for measurements at LCLS-II, DCS (corrected and uncorrected) as well as
the QMD simulations. While a direct comparison is not possible (see text), the proposed algorithm leads to reasonable results for liquid tin of
comparable pressures and densities.



mental results recorded with a monochromatic source at the

Linac Coherent Light Source as well as QMD simulations. The

density estimates after applying the correction are in excellent

agreement with other experimentally recorded data as well as

the Sesame 2161 tables for tin.

The above treatment is a practical one as there are no

theoretical guarantees that the algorithm will converge.

However, in most scenarios the methodology is able to correct

for the measurement artifacts introduced by the pink X-ray

beam. Furthermore, introduction of new variables into the

optimization problem makes it harder to find the global

minima. Care must be taken in choosing the initial starting

values and the bounds specified. QMD can be used to guide

the starting values and expected ranges of these parameters.

Alternatively, a more robust global optimization algorithm

can be utilized. This comes at an increased computational cost.

Finally, a limited q-range in the measured data can introduce

unwanted fluctuations in the corrected structure factor and

radial distribution function. Therefore, the results need to be

evaluated with caution to ensure that such a fluctuation is not

interpreted as a true feature in the data.

Acknowledgements

We thank Pinaki Das, Yuelin Li, Paulo Rigg, Adam Schuman,

Nicholas Sinclair, Xiaoming Wang and Jun Zhang at DCS for

their assistance during laser experiments. The research was

supported by the Laboratory Directed Research and Devel-

opment Program at LLNL (project No. 18-ERD-012). This

work of was performed under the auspices of the US

Department of Energy at Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344 (LLNL-

JRNL-819849). This publication is based upon work

performed at the Dynamic Compression Sector, which is

operated by Washington State University under the US

Department of Energy (DOE)/National Nuclear Security

Administration award No. DE-NA0003957. This research

used resources of the Advanced Photon Source, a DOE Office

of Science User Facility operated for the DOE Office of

Science by Argonne National Laboratory under contract No.

DE-AC02-06CH11357.

References

Altshuler, L. V., Bakanova, A. A., Dudoladov, I. P., Dynin, E. A.,
Trunin, R. F. & Chekin, B. S. (1981). J. Appl. Mech. Tech. Phys. 22,
145–169.

Altshuler, L. V., Bakanova, A. A. & Trunin, R. F. (1962). Sov. Phys.
JETP, 15.

Altshuler, L. V., Krupnikov, K. K. & Brazhnik, M. I. (1958). Sov.
Phys. JETP, 34.

Anzellini, S. & Boccato, S. (2020). Crystals, 10, 459.
Ashcroft, N. W. & Langreth, D. C. (1967a). Phys. Rev. 156, 685–692.
Ashcroft, N. W. & Langreth, D. C. (1967b). Phys. Rev. 159, 500–510.
Ashcroft, N. W. & Langreth, D. C. (1968). Phys. Rev. 166, 934.
Baldereschi, A. (1973). Phys. Rev. B, 7, 5212–5215.
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Figure 6
Tin densities on the Hugoniot derived from gas gun experiments (Walsh
et al., 1957; Altshuler et al., 1958; McQueen & Marsh, 1960; Altshuler et
al., 1962, 1981; Marsh, 1980) with density derived from the current study
plotted with the red glyph. The SESAME 2161 pressure–density table is
shown with the solid black line (Greeff et al., 2005). The density without
accounting for the pink beam is shown by the green glyph. It should be
noted that the reported liquid density using dynamic compression
experiments in Briggs et al. (2019a) (blue glyph) was estimated by pinning
the VISAR pressure on the Sesame 2161 hugoniot. Quantitative estimate
was not possible using the collected diffraction signal.
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