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On X-ray beamlines and telescopes, glancing-incidence mirrors with parabolic

profiles are used to collimate, focus, and collect light. Here, analytic descriptions

for paraboloidal, plane-parabolic, and parabolic cylindrical mirrors in several

congruent geometries that are commonly used in fabrication, metrology, and

modeling are provided. The exact expressions are derived directly from

Fermat’s principle, without coordinate transformations, in several mirror-

centered coordinate systems, including one with the surface tangent to the

central point of intersection. Coefficients for a sixth-order polynomial series

approximation are calculated for that coordinate system.

1. Introduction

Parabolic surfaces are used in a wide variety of light-concen-

trating and light-collimating applications, across the electro-

magnetic spectrum, from satellite dishes to automobile

headlamps. The properties of parabolas as conic sections

have been studied since antiquity by scholars including

Menaechmus, Apollonius, Pappus, and Archimedes. Legend

states that to protect Syracuse from Roman ships, Archimedes

arranged 60 men armed with ‘burning mirrors’ to set ships

ablaze with focused sunlight (Valiullin & Tarabarin, 2010).

Parabolic mirror shapes have long been used at glancing

angles of incidence in Wolter-type X-ray telescope designs

(VanSpeybroeck & Chase, 1972). For more than 40 years,

concave parabolic mirrors have provided collimation of

diverging X-ray beams and focusing of collimated beams

(Eberhardt et al., 1978; MacDowell et al., 2004). Such mirrors

are essential optical elements for beamlines with mono-

chromators that operate in collimated beams, such as double-

crystal monochromators.

Parabolic mirror profiles can be achieved through

mechanical bending (Underwood & Turner, 1977; Johnson,

1982; Heald, 1982; Franks et al., 2000), and they can be

fabricated in their natural shape with relatively high quality

(Thiess et al., 2010). Their focusing properties have been

studied theoretically, with ray and wave optics, and experi-

mentally (Raimondi & Spiga, 2010). Refractive parabolic

lenses are also in use (Lengeler et al., 2002) with hard

X-ray beams.

In this article, we describe three classes of mirror shapes all

with parabolic tangential profiles. (1) Paraboloidal mirrors

are surfaces of revolution defined by a generating parabola

rotating about its axis of symmetry. They collimate a point

source to a plane wave or vice versa. (2) Plane-parabolic

mirrors are uniform (i.e. flat) in the sagittal direction, and

collimiate (or focus) only in one direction. (3) Parabolic

cylinders have a uniform sagittal radius of curvature along

their tangential length allowing them to simultaneously focus
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and collimate in orthogonal directions. However, their sagittal

focusing suffers from aberrations for non-paraxial rays.

Diaboloid mirrors are ideal surfaces with parabolic tangential

profiles that simultaneously collimate and focus without

aberrations. They are described by Yashchuk et al. (2021) and

Sanchez del Rio et al. (2021).

Parabolic curves in a plane are fundamental shapes that are

easily described with second-order equations and simplify in a

coordinate system where one axis runs parallel to the axis of

symmetry. However, in arbitrary arrangements, their descrip-

tion is somewhat more complex.

We seek convenient solutions with two or three parameters:

the distance to focus, the glancing angle of incidence at the

central point of intersection, and, in the cylindrical case, the

distance to the horizontal source point. Such descriptions

avoid cumbersome coordinate transformations and are most

convenient for fabrication, testing, and modeling in X-ray

optics. In particular, the coordinate system with the mirror

surface tangent to the xy plane (i.e. zero slope at the center) is

the most generally applicable for X-ray optical descriptions.

Furthermore, all surface descriptions are given with the

coordinate origin at the central point of intersection.

This approach addresses some of the key challenges in

accurately and precisely modeling X-ray optics designed for

wavefront preservation. Consider the fact that conjugate

distances can be from meters to tens of meters or more;

mirrors can be on the order of 1 m long in some cases, and

several cm wide; and optical modeling requires sub-nm and

sub-nrad surface shape accuracy. Thus, numerical calculations

must accommodate precision far exceeding 11 orders of

magnitude. In such cases, we find that polynomial series

approximations are challenged by mirrors that are long or

wide. Empirical surface mesh solutions (e.g. for ray tracing),

which can be transformed into arbitrary positions, must

contain a high density of points, reducing calculation effi-

ciency. Having closed-form single expressions for the mirror

surfaces enables efficient description and modeling with

arbitrary precision.

1.1. Conventional parabola description and definitions

There are several available definitions of the parabola. In a

mathematically simple form, the parabola is the locus of points

in a plane that are equidistant from both the directrix and the

focus. Oriented in the xy plane with the axis of symmetry along

the x-axis (Fig. 1), with the focus at (0, a), and the directrix at

x = �a, the equation for this shape is

y2
¼ 4ax: ð1Þ

In optics, however, the most important functional definition

is that all incident rays parallel to the axis of symmetry are

reflected toward the focus (e.g. the green line in Fig. 1).

Conversely, all rays leaving the focus are reflected parallel

to the axis of symmetry. Following West & Padmore (1987),

Peatman (1997), and Takei et al. (2016), we find a = q sin2 �,
where q is the distance from the focus to the center of a mirror

segment (as represented in Fig. 1), and � is the glancing angle.

In this coordinate system, the intersection point is ðx0; y0Þ =

ða= tan2 �; 2a= tan �Þ.1 Peatman provides coefficients for

polynomial series expansion of the surface about the central

point in the coordinate system with orthogonal axes tangent to

and perpendicular to the center of the mirror. We address this

surface approximation in Section 8.

Other helpful descriptions of parabolas are provided by

Schuster et al. (1999) and Protopopov et al. (2000) who

describe optical coatings for high X-ray reflectivities with

varying incidence angles.

2. Three mirror geometries

We can describe parabolic surfaces in three typical glancing-

incidence orientations, shown in Fig. 2. These descriptions are

congruent, varying only in the orientation with respect to the

coordinate axes. They simplify the surface description when

the incident or reflected beams run along the y-axis, or when

the center of the surface is tangent to the xy plane.

We describe six related geometries labeled as Types I, II,

and III, and with orientations A and B. In each case, the

concave reflective surface faces upward. We use a coordinate

system that is common in glancing-incidence X-ray optics, with

x as the sagittal coordinate, y as the tangential coordinate,

in the general direction of propagation, and z as the surface

height of the mirror. The surface of interest is z(x, y).

The surfaces pass through the origin at the central point,

so z(0, 0) = 0.

Type I paraboloids focus collimated light that is parallel to

the y-axis. Type II paraboloids are illuminated with an off-axis

collimated beam and focus light in the direction parallel to the

y-axis. Type III paraboloids have zero slope at the central

point of intersection: collimated light is incident and is

reflected at an angle from the y-axis. The Type III description

is most convenient for manufacture and metrology since the

part has no tilt at the center and the overall tilt is minimized.

The other, congruent descriptions may be more convenient for

modeling because they describe the exact surface, in place,

without rotation or translation.
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Figure 1
A section of a parabola showing the focus and the directrix line, and a ray
reflected from the surface (green). The x-axis becomes the axis of rotation
for a paraboloid.

1 Some sources take the incidence angle defined relative to the surface normal
vector. Here we use the glancing angle.



Each of these shapes can be oriented with the input and

output reversed. Type A indicates that incident collimated

light is focused to a point at distance q; while Type B takes

diverging light from a source at distance p and collimates

it upon reflection. For example, in an X-ray beamline built

around a double-crystal monochromator, we might select a

Type IIB plane-paraboloid as the first element, vertically

collimating light from a point source, and a Type IA para-

boloid or parabolic cylinder after the monochromator to

focus the collimated light in two directions to a common point.

Of course, with matching p or q and �, two related surface

descriptions are congruent: it is only the mathematical

descriptions that vary to facilitate modeling or manufacture.

3. Applying Fermat’s principle

In geometrical optics, descriptions of optimal surfaces follow

from Fermat’s principle of least time, where all ray paths

through an optical system have equivalent length. In our case,

the surface reflection breaks the ray paths into two segments;

the total path lengths are computed from their sum. For

convenience, we describe the surfaces as passing through the

origin. Furthermore, we neglect phase changes upon reflec-

tion, which may be angle- and polarization-dependent in

some cases.

In the following sections, mathematical derivations are

made for the Type A cases. Type B cases follow from simple

substitution. We can describe the path lengths of the incident

collimated rays using the distance from an inclined plane

or line source, upstream of the mirror. In the solution, the

distance to this source is arbitrary and falls out of the calcu-

lation, so it simplifies the derivations to pass this source line or

plane through the origin, with no loss of generality. In this

position, distances from points on the surface to the source

may be positive or negative, and the sign must be preserved in

the total-ray-distance calculation.

The reflected light is focused to a distance q relative to the

center of the mirror. In all cases, � is the central, glancing angle

of incidence.

The following derivations are made for paraboloids. Plane-

parabolic mirrors follow the same equations with the x term

set to zero. Cylindrical parabolic mirrors are defined from

the plane-parabolic shape with a uniform sagittal radius, as

discussed in Section 7.

4. Type I paraboloid derivation

The central ray is incident parallel to the y-axis from a source

in an xz plane. With an angle of incidence �, the reflected ray is

inclined at 2� from the axis. For Type I paraboloids, light is

focused either to a point ðx; y; zÞ = ð0; q cos 2�; q sin 2�Þ or

from a point ðx; y; zÞ = ð0;�p cos 2�; p sin 2�Þ as shown in

Fig. 3. The statement of Fermat’s principle in the Type IA case

is the sum of the two ray segments,

yþ x2
þ ðq cos 2� � yÞ

2
þ ðq sin 2� � zÞ

2
� �1=2

¼ C: ð2Þ

At the origin, x = y = z = 0, thus C = q.

The solution proceeds by isolating the square root and

squaring both sides. Grouping terms with respect to powers of

z, the intermediate equation is

z2 � ð2q sin 2�Þ zþ x2 þ 2qyð1� cos 2�Þ
� �

¼ 0: ð3Þ

We can solve for z using the quadratic equation. Of the two

solutions, we take the negative root to obtain the upward-

facing, concave surface that passes through the origin,

IA: zðx; yÞ ¼ q sin 2� � q2 sin2 2� � 2qyð1� cos 2�Þ � x2
� �1=2

;

ð4Þ

IB : zðx; yÞ ¼ p sin 2� � p2 sin2 2� þ 2pyð1� cos 2�Þ � x2
� �1=2

:

ð5Þ

Equation (5) comes from equation (4) with the substitutions

q! p and y! �y.

5. Type II paraboloid derivation

In the Type IIA case, collimated light is incident from above

the y-axis, and is reflected in the direction parallel to the

y-axis. Light is focused to a point (x, y, z) = (0, q, 0), as shown

in Fig. 4. The source plane from which the rays emanate has

normal n̂n = ð0; cos 2�;� sin 2�Þ, inclined downward. In the

Type IIB case, diverging light from a point source at (x, y, z) =

(0, � p, 0) is centered about the y-axis and is collimated in an

upward direction, inclined by 2� from the y-axis.
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Figure 3
The Type IA paraboloids focus a collimated beam incident parallel to the
y-axis. Type IB collimates light from an off-axis point source at distance p.

Figure 2
Three congruent descriptions of a concave, tangentially parabolic mirror
geometry shown as a cross-section in the meridional plane (x = 0). The
mirror is used to focus a collimated beam, or to collimate a divergent
beam in one direction. The mirror (thick line) is a section of a parent
parabolic curve (gray line).



In the Type IIA case, the distance from the source plane to a

point on the mirror surface is

d ¼ ðx; y; zÞ � n̂n ¼ ðx; y; zÞ � ð0; cos 2�;� sin 2�Þ

¼ y cos 2� � z sin 2�: ð6Þ

Here, the calculation simplifies when we allow the source

plane to pass through the origin and allow negative distances

in the ray path lengths. If an arbitrary source distance were

applied, that source position would ultimate fall out of the

calculation.

The statement of Fermat’s principle for the Type IIA case is

the constant sum of the two ray segments,

dþ x2
þ ðq� yÞ

2
þ z2

� �1=2
¼ C: ð7Þ

Again, the mirror surface passes through the origin, where x =

y = z = 0, thus C = q. Equation (7) can be written as

y cos 2� � z sin 2� þ x2
þ ðq� yÞ

2
þ z2

� �1=2
¼ q: ð8Þ

As in Section 4 above, we isolate the square root and square

both sides. Then the powers of z are grouped and the second-

order equation is solved using the quadratic equation. The

solutions are

IIA: zðx; yÞ ¼
n
ðq� y cos 2�Þ sin 2�

�
�
q2 sin2 2� � 2qy cos 2�ð1� cos 2�Þ

� x2 cos2 2�
�1=2
o�

cos2 2�; ð9Þ

IIB : zðx; yÞ ¼
n
ðpþ y cos 2�Þ sin 2�

�
�
p2 sin2 2� þ 2py cos 2�ð1� cos 2�Þ

� x2 cos2 2�
�1=2
o�

cos2 2�: ð10Þ

Equation (10) arises from equation (9) with the substitutions

p! q and y! �y.

6. Type III paraboloid derivation

In the Type III descriptions, the surface is tangent to the xy

plane at the central point of intersection. This is the most

common, mirror-centered coordinate system description for

X-ray mirrors in modeling, fabrication, and metrology. For

Type IIIA, collimated light is incident from above with glan-

cing angle �, as shown in Fig. 5. The light is reflected upward

toward the focal point at distance q, with ðx; y; zÞ =

ð0; q cos �; q sin �Þ. Similarly for Type IIIB, incident diverging

light from a source at distance p is collimated as a beam

inclined upward.

In the Type IIIA description, the arbitrarily placed source

plane, from which the rays emanate, has a surface normal

n̂n = ð0; cos �;� sin �Þ, inclined downward. To simplify the

calculation, as before, we take this plane to pass through the

origin. The distance from a point on the mirror surface to the

source plane is

d ¼ ðx; y; zÞ � n̂n ¼ ðx; y; zÞ � ð0; cos �;� sin �Þ

¼ y cos � � z sin �: ð11Þ

The statement of Fermat’s principle is this distance plus the

distance to focus,

dþ x2 þ ðq cos � � yÞ
2
þ ðq sin � � zÞ

2
� �1=2

¼ C: ð12Þ

With x = y = z = 0, we find that C = q. Once again, we isolate

the square root and square both sides, group powers of z and

apply the quadratic equation,

IIIA : zðx; yÞ ¼
�
ð2q� y cos �Þ sin �

�
�
4q2 sin2 � � 4qy sin2 � cos �

� x2 cos2 �
�1=2� �

cos2 �; ð13Þ

IIIB : zðx; yÞ ¼
�
ð2pþ y cos �Þ sin �

�
�
4p2 sin2 � þ 4py sin2 � cos �

� x2 cos2 �
�1=2� �

cos2 �: ð14Þ

7. Parabolic cylinder mirrors

For narrow ray bundles, focusing in the sagittal x direction can

be performed with cylindrical or toroidal mirrors which have a

uniform, concave, circular cross section in the sagittal direc-

tion. Such elements can be mechanically bent along the

tangential direction to have a parabolic profile in the yz plane

(Franks et al., 2000).

Coddington’s equation (Kingslake, 1994) provides the

optimal sagittal radius for paraxial rays, based on the p and q

distances and the glancing angle of incidence, �,

Rs ¼ 2 sin �
pq

pþ q
: ð15Þ

When the incident light is collimated, p ! 1, and Rs =

2q sin �: Similarly, when diverging light is collimated, q!1,

and Rs = 2p sin �.
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Figure 5
The Type III plane-parabolas are aligned with the surface tangent to the
y-axis at the central point of intersection. This is the coordinate system
most convenient for fabrication and metrology.

Figure 4
The Type IIA paraboloid focuses a collimated beam to a distance q with
the reflected central ray parallel to the y-axis. Type IIB collimates light
from a point source at distance p with the incident ray along the y-axis.



Since the object or image distance varies along the part, the

ideal shape has a tangentially varying sagittal radius [as in

equations (13) and (14)]. The recently described diaboloid

shape satisfies this ideal focusing condition (Yashchuk et al.,

2021). Generally speaking, fabrication is simplified with a

uniform sagittal radius.

To mathematically describe parabolic cylinder mirrors, we

first extract the central parabolic shape of the Type III para-

boloids from equations (13) and (14), in the meridional (x = 0)

plane, and then add a uniform sagittal �z(x) term that

includes a constant sagittal radius of curvature, Rs,

�zðxÞ ¼ Rs � R2
s � x2

� �1=2
: ð16Þ

Combined, these become

IIIA: zðx; yÞ ¼
ð2q� y cos �Þ sin � � 2 sin � q2 � qy cos �ð Þ

1=2

cos2 �

þ Rs � R2
s � x2

� �1=2
; ð17Þ

IIIB : zðx; yÞ ¼
ð2pþ y cos �Þ sin � � 2 sin � p2 þ py cos �ð Þ

1=2

cos2 �

þ Rs � R2
s � x2

� �1=2
: ð18Þ

8. Series expansions

Many researchers and optical designers use polynomial series

expansions about the mirror center to describe surface shapes.

Here we present Maclauren series expansions that approx-

imate the Type IIIA/IIIB paraboloids, and the parabolic

cylindrical shapes. We compare fourth- and sixth-order

expansions with the ideal surfaces.

A conventional series expansion used in X-ray optics takes

the form

z ¼
X1
i¼ 0

X1
j¼ 0

a ij x j yi: ð19Þ

We define the center of the mirror to be zero height (a00 = 0).

With zero tilt at the center, terms with i = 1 or j = 1 are equal to

zero. Furthermore, symmetry about the y-axis dictates that all

odd-ordered terms in x must be zero.

8.1. Paraboloid and plane-parabola approximation

For the Type IIIA paraboloid (focusing an incident colli-

mated beam) the series expansion coefficients, up to (i + j)� 6,

are as follows. Symbolic calculations were made with verifi-

cation in Mathematica (Wolfram Research Inc., 2020),

a20 ¼
sin �

4q
; a30 ¼

cos � sin �

8q2
;

a40 ¼
5 cos2 � sin �

64q3
; a50 ¼

7 cos3 � sin �

128q4
;

a60 ¼
12 cos4 � sin �

512q5
;

a02 ¼
1

4q sin �
; a12 ¼

cos �

8q2 sin �
;

a22 ¼
3 cos2 �

32q3 sin �
; a32 ¼

5 cos3 �

64q4 sin �
;

a42 ¼
35 cos4 �

512q5 sin �
;

a04 ¼
cos2 �

64q3 sin3 �
; a14 ¼

3 cos3 �

128q4 sin3 �
;

a24 ¼
15 cos4 �

512q5 sin3 �
;

a06 ¼
cos4 �

512q5 sin5 �
:

For Type IIIB paraboloids, substitute q! p in the above, and

flip the sign on terms in odd powers of y: aij!�aij for odd i.

For plane-parabolic surfaces, additionally set all coefficients of

non-zero powers of x to zero (i.e. aij = 0 for all j > 0).

8.2. Paraboloid series approximation example

Figure 6 compares the ideal paraboloid shape with two

series approximations up to fourth order and sixth order,

respectively, in the combined exponents. Comparison is made

across a domain of |x | < 5 mm, and |y | < 100 mm, where the

maximum surface height is 320.925 mm. The q and � values are

4 m and 5 mrad, respectively. Relative to the ideal surface, the

peak height error from the fourth-order approximation is

59.082 nm, and from the sixth-order approximation it is

0.770 pm. We observe that a fourth-order approximation may

not be sufficient for demanding beamline mirror designs with
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Figure 6
Comparison of the ideal surface to two polynomial expansions. (a) Ideal
paraboloid, computed for q = 4 m, � = 5 mrad. (b) Point-by-point
comparison with a series expansion up to (i + j) � 4. (c) Comparison with
a series expansion up to (i + j)� 6. Note that the rendering of the domain
is not isometric.



nanometer tolerances. The sixth-order approximation has its

largest error magnitude in the downstream corners, and so it

would meet a fraction-of-a-nanometer tolerance requirement

across a center-weighted beam footprint.

8.3. Parabolic cylinder approximation

The parabolic cylinder series expansion has no xy cross-

terms because the variables are separable in equations (17)

and (18). The x dependence is purely circular. The coefficients

are as follows,

a20 ¼
sin �

4q
; a30 ¼

cos � sin �

8q2
;

a40 ¼
5 cos2 � sin �

64q3
; a50 ¼

7 cos3 � sin �

128q4
;

a60 ¼
21 cos4 � sin �

512q5
; a02 ¼

1

2Rs

;

a04 ¼
1

8R3
s

; a06 ¼
1

16R5
s

:

As above, a sixth-order expansion will be necessary to achieve

nanometer tolerances in the sagittal direction, using the

example geometry above.

9. Conclusion

Parabolic mirror shapes will continue to be used in X-ray

optics, either individually or paired with other surfaces, in the

most demanding applications. The most convenient descrip-

tions of the parabolic mirror shapes may be different for

modeling or manufacturing, depending mainly on the tilt of

the part and the direction of the incoming or outgoing rays

relative to the coordinate axes. Metrology and fabrication are

simplified by surface descriptions that have zero slope at the

center, minimizing both the peak tilt value and the net tilt

across the surface. This configuration is labeled Type III in our

discussion. In practice, on beamlines, parabolic mirrors are

often used with either the collimated light or the focused

light parallel to the general direction of propagation. Those

configurations are labeled Type I and Type II, respectively.

For each case, with different central tangential tilts, we have

presented direct expressions for the surfaces that are not

derived from coordinate transformations.

Since Type A mirror shapes with matching q values (or

Type B mirror shapes with matching p values) are mutually

congruent, corresponding equations for the three mirror

orientation types all describe the same surface. This property

facilitates the use of these equations in different modeling and

metrology scenarios with confidence that the rotated surfaces

are correct and will match from one use-case to another.

Comparison of the ideal shape with polynomial series

approximations in a relevant design case shows that limiting a

calculation to fourth order may result in a surface height error

of tens of nanometers, while a sixth-order description can be

accurate to tenths of a nanometer.
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