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While the general effects of experimental conditions such as photon flux and

sample thickness on the quality of data acquired by scanning transmission X-ray

microscopy (STXM) are widely known at a basic level, the specific details are

rarely discussed. This leaves the community open to forming misconceptions

that can lead to poor decisions in the design and execution of STXM

measurements. A formal treatment of the uncertainty and distortions of

transmission signals (due to dark counts, higher-order photons and poor spatial

or spectral resolution) is presented here to provide a rational basis for the

pursuit of maximizing data quality in STXM experiments. While we find an

optimum sample optical density of 2.2 in ideal conditions, the distortions

considered tend to have a stronger effect for thicker samples and so �1 optical

density at the analytical energy is recommended, or perhaps even thinner if

significant distortion effects are expected (e.g. lots of higher-order light is

present in the instrument). (Note that X-ray absorption calculations based on

simple elemental composition do not include near-edge resonances and so

cannot accurately represent the spectral resonances typically employed for

contrast in STXM.) Further, we present a method for objectively assessing the

merits of higher-order suppression in terms of its impact on the quality of

transmission measurements that should be useful for the design of synchrotron

beamlines.

1. Introduction

Many forms of X-ray microscopy, and especially scanning

transmission X-ray microscopy (STXM), rely on measure-

ments of the incident and transmitted photon flux in order

to determine the absorption of the sample. This can be

performed as a function of position for imaging, of energy for

spectroscopy, or both for spectro-microscopy, but the nature

of the signal remains the same. The quality of the measure-

ment results is well recognized to depend on the signal

statistics and the following sections will explore the effects

of other experimental parameters such as sample thickness

and complicating factors such as dark counts and spectral

contamination. This complements previous discussions of

X-ray signal quality, normalization, calibration and distortion

issues (Nordfors, 1960; Watts et al., 2006; Collins & Ade, 2012),

as well as radiation damage (Wang et al., 2009; Späth et al.,

2014; Berejnov et al., 2021).

This article is written from the perspective of soft X-ray

STXM, but with an effort to keep discussions general in

nature. While the physics remains largely the same across the

X-ray spectrum (and across techniques applying transmission

X-ray measurements), the scale and importance of each effect

can vary significantly.
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2. Signal uncertainty

The precision of a measurement output, such as a spectrum or

image, depends on the precision of the measurements it is

based on and the way in which they are combined. STXM

measurements are typically based on the counting of photons,

which follows the statistics of a Poisson distribution. When

the count is sufficiently large (>� 100) (Lawrence, 2019), the

uncertainty in the number of counted photons, �I , is given by

the square root of the count, I,

�I ¼
ffiffi
I
p

;
�I

I
¼

1ffiffi
I
p : ð1Þ

The forward propagation of uncertainty in measured values by

their combination in a mathematical formula can be estimated

by Taylor series expansion (Ku, 1966). Some useful forward

uncertainty propagation formulas involving the uncorrelated

variables, A and B (whose respective standard deviation is �A

and �B), include

f ¼
A

B
! �f ¼ f

�� �� �A

A

� �2

þ
�B

B

� �2
� �1=2

; ð2Þ

f ¼ a ln bAð Þ ! �f ¼
a�A

A

��� ���; ð3Þ

f ¼ a expðbAÞ ! �f ¼ f
�� �� b�A

�� ��: ð4Þ

Transmission measurements involve observing the photon flux

passing through a sample area, I, and comparing it with the

incident flux, I0 (observed via an empty region of the sample),

to calculate the optical density, OD, by the Beer–Lambert law,

OD ¼ � ln
I

I0

; I ¼ I0 expð�ODÞ: ð5Þ

The fractional error in the optical density then follows as

�OD

OD
¼

1

OD

1

I
þ

1

I0

� 	1=2

: ð6Þ

Substituting equation (5) allows the simplification

�OD

OD
¼

1

I0ð Þ
1=2

1þ expðODÞ½ �
1=2

OD
: ð7Þ

It is reassuring that equation (7) shows an I
�1=2

0 factor to

demonstrate that the measured transmission signal quality

follows the same Poisson statistics as the component photon

count measurements. Fig. 1(a) displays a plot of the second

factor of equation (7), separating the effect of sample thick-

ness from that of counting statistics, and corresponds to the

fractional error being expressed in units of I
�1=2

0 . Interestingly,

the curve minimum occurs at 2.2OD (corresponding to 10.9%

transmission) and the fractional errors at 1OD and 4OD are

both about 130% of the optimum, indicating that high-quality

data can be measured with samples much thicker than the

typical recommendation of about 1OD. Further, the uncer-

tainty in transmission measurements climbs rapidly as sample

thickness decreases below 1OD, meaning that obtaining

high-quality results from samples thinner than 1OD requires

increasingly higher statistics (i.e. counting time).

STXM signals based on the emission of fluorescent photons,

or photo-emitted electrons show statistics based on the

number of absorption events, Nabs, the probability of relaxa-

tion leading to the desired emission type, PE, the probability

that the emitted particle escapes the sample volume, Pesc, and

the solid angle of the detector, AD. Hence, a general ‘emission

yield’ (EY) measurement would be composed of

EY ¼ ADPEPesc

Nabs

I0

: ð8Þ

Assuming a homogeneous, flat sample material, an attenua-

tion rate of the sample-emitted signal that is n times greater

than that of the exciting beam, and a detector positioned on

the upstream side of the sample, the detected signal strength is

EY ¼
ADPE I0 1þ exp � nþ 1ð ÞOD½ �


 �
nþ 1ð Þ I0

ð9Þ
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Figure 1
(a) The fractional error of a transmission signal plotted as a function of
optical density, with the curve minimum indicated by a circle at 2.2 OD.
The left-hand y-scale shows the fractional error in units of I

�1=2
0 , while the

right-hand y-scale describes the fractional error as a percentage of the
optimum value. (b) A comparison of fractional error curves for a
transmission signal (blue), as well as fluorescence signals caused by the
photo-excitation of the C, Al and Au K-edges (orange, green and red
curves, respectively, assuming a detector solid angle of 0.24 sr), and an
example TEY signal (dashed). Shaded regions indicate the effect of the
penetration power of the emitted X-rays decreasing by up to tenfold.



and therefore the fractional error in the emission signal is

given by

�EY

EY
¼

1ffiffiffiffi
I0

p
nþ 1ð Þ

ADPE 1� exp � nþ 1ð ÞOD½ �

 �þ 1

 !1=2

: ð10Þ

Plots of the fractional error of the fluorescence signals caused

by photo-excitation of the C, Al and Au K-edges are

compared against that of a transmission signal in Fig. 1(b),

assuming an AD of 0.24 sr [matching the situation at TwinMic

(Gianoncelli et al., 2009)] and PE values of 0.001, 0.033 and

0.964, respectively (Schoonjans et al., 2011). The fractional

error of the fluorescence signals displays a weaker dependence

on OD than the transmission signal does and so becomes more

advantageous for thinner samples. Shaded regions indicate

upward movement of the fluorescence fractional error curves

as the penetration power of the emitted X-rays decreases by

up to tenfold. Electron emission signals are an extreme

version of this effect, with the electron signal experiencing an

attenuation rate a few orders of magnitude greater than the

exciting X-ray beam (Wang et al., 2009). A fractional error

curve for an example total electron yield (TEY) signal is also

included in Fig. 1(b), which shows good statistics due to the

amplifying effect of the secondary electron cascade, and a

wide, flat minimum due to the extremely limited sample depth

from which the signal can escape.

Measurements of the incident photon flux, I0 , in a STXM

cannot be practically performed in parallel with a measure-

ment because the only part of the X-ray beam path truly

representative of the I0 incident on the sample occurs in the

narrow gap between the order selecting aperture (OSA) and

the sample surface, which is typically only a few hundred

micrometres wide. Hence, measuring the sample and I0 in

series is typically performed. This leaves the experiment

susceptible to time-variations in I0 , either by changes in the

alignment of the X-ray optics or in the current and orbit of

the synchrotron electron beam. Since a high-quality STXM

measurement can take many minutes, or even hours, repeating

a measurement with the sample removed can result in a

significant time delay and hence poor correspondence

between the actual and measured I0 values. The accuracy of

the I0 measurement can be improved by reducing this time

delay with an interleaved measurement strategy whereby the

spatial regions of the measurement are divided between parts

that include the sample material of interest and parts where it

is absent. This leads to the question of what proportion of the

measurement should be devoted to the I0 measurement, which

can be examined by considering a set of spatial resolution

elements (i.e. pixels) where x corresponds to regions where

the sample is absent and are averaged to produce the I0

measurement, while the remaining (1 � x) sample regions

are averaged to produce the I measurement. Including such

statistical proportions in equation (6) gives

�OD

OD
¼

1

OD

1

ð1� xÞ I
þ

1

x I0

� �1=2

: ð11Þ

Substituting equation (5) and simplifying then gives

�OD

OD
¼

1ffiffiffiffi
I0

p
OD

expðODÞ � 1þ ð1=xÞ

1� x

� �1=2

: ð12Þ

Fig. 2(a) shows the dependence of a measurements fractional

error on the proportion of statistics divided between the

sample and incident flux, and the sample OD, as described by

equation (12). The optimum I0 proportion corresponds to the

minimum of each curve (indicated by circles) and is observed

to move from 50% for very thin samples towards lower I0

proportions as the sample OD increases. This is in line with the

expectations that the statistics are optimized when the I and I0

measurements have an equal number of counts. The curves

are observed to have steep walls at the extreme ends of the

I0 proportion scale where either the I0 or I measurement

becomes statistically poor, but the middle section shows quite

wide and shallow basins where significant changes in the I0

proportion away from the optimum tend to incur only minor

fractional error penalties. This effect can be seen more clearly

in Fig. 2(b) where the optimum I0 proportion is plotted against
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Figure 2
(a) The dependence of the fractional error of a measurement on the
proportion of the measurement devoted to I0 for a set of different sample
OD values. Circles indicate the curve minima. (b) The optimum I0

proportion for a measurement as a function of sample OD and contours
for fractional errors of 1, 5 and 10% above the optimum. The black circle
corresponds to a statistical optimum of 2.2 OD and 24.7% I0 proportion,
and the horizontal blue line indicates that an I0 proportion of 40% is a
safe choice for a reasonable range of sample OD values.



the sample OD together with

contours showing increases of 1%,

5% and 10% fractional error above

the corresponding optimum. These

contours are surprisingly wide

and demonstrate that one has to

stray unreasonably far from the

optimum I0 proportion to observe

a noticeable degradation of the

measurement results. At the statis-

tical optimum sample thickness

of 2.2OD, we observe that the

optimum I0 proportion is approxi-

mately 25%. However, further

exploration of the transmission

measurement quality in later

sections of this work will provide

reasoning for designing samples

with OD values lower than the

statistical optimum, and an I0 proportion of 40% [horizontal

blue line in Fig. 2(b)] is a reasonable choice for most sample

OD values below the statistical optimum, and especially for

the range near 1OD.

3. Signal distortions

Separate from the statistical issues discussed above, another

important consideration in assessing the quality of a

measurement is the factors that can distort the measurement

results. Such distortions are typically a consequence of the

experimental conditions not matching the model by which the

data are interpreted and analysed. The corollary of this is that

properly including such issues in the data analysis model

can mitigate their effects. However, unlike statistical signal-to-

noise effects, integrating measurements over longer time

periods will not reduce the distortions.

A commonly encountered signal distortion involves an

X-ray independent background signal causing an offset to

each measurement. These ‘dark’ signals, so called because

they are usually observable when the X-rays are blocked with

a closed shutter, add a constant value, d, to both the I and I0

measurements in a STXM experiment such that the difference

between the apparent and actual optical density, �OD, is

given by

�OD ¼ � ln
I þ d

I0 þ d
þ ln

I

I0

¼ � ln
1þ ðd=I0Þ expðODÞ

1þ ðd=I0Þ
: ð13Þ

Here, we see that the ratio of dark counts to the incident

photon flux, d=I0, is a critical parameter in the distortion, with

further amplification coming from the OD of the sample. In

cases where the I0 spectrum has significant variation, such as

at the carbon K-edge where contamination of the optical

elements preferentially absorbs the photons (Watts et al., 2006,

2018), the relative proportion of the dark signal will vary

accordingly and the structure of the I0 spectrum will be

imprinted on the distorted measurement. Fig. 3(a) shows plots

of the fractional distortion versus the dark count fraction,

d=I0, for a set of common sample OD values. The curves

demonstrate how the distortion increases with both increasing

dark signal and increasing sample thickness. Note that non-

trivial measurements of both images and spectra will neces-

sarily involve variations in the observed sample OD and so the

distortion will affect each section of the measurement differ-

ently. Since the dark signal is easily measured by simply

performing a measurement with the X-ray shutter closed,

removing such artefacts is straightforward and effective.

However, it is better practice to fix the underlying issues in

order to reduce the dark signals to a negligible count rate.

While some types of detector have a small rate of background

counts inherent to their operation, sources of larger dark

signals can often be reduced by simple adjustments of the

instrumentation such as shielding the detector from stray light

sources (e.g. scattered interferometer light, infrared light from

position encoders), shielding electrical cables from noise

(especially those carrying weak signals), appropriate adjust-

ment of pulse discriminator thresholds, and eliminating elec-

trical ground-loops. In cases where stray light sources inside

the experiment chamber form part of the dark signal, it may be

observed to vary with the positions of the stages, including the

zone plate Z-axis that moves according to the photon energy.

A more complicated situation is encountered when the

beamline delivers an impure spectrum. An X-ray mono-

chromator will typically pass multiple diffraction orders that

allow some photons with integer multiples of the fundamental

photon energy to remain in the beam that is delivered to the

experiment. This higher-order light is usually more pene-

trating due to the greater photon energy and so makes the

sample appear to have a lower OD. If we consider the

observed photon flux to be composed of X-rays from the

fundamental (requested) energy, I 00, and another energy, I 000 ,

then the distortion is given by the difference between the

actual and intended measurements,

research papers

J. Synchrotron Rad. (2022). 29, 1054–1064 Benjamin Watts et al. � Quantifying signal quality in STXM 1057

Figure 3
The distortions affecting a transmission spectrum measurement due to higher-order light vary in
magnitude depending on (a) the presence of dark counts, (b) the proportion of higher-order light (with a
sample that is twice as transparent to the higher-order light) and (c) the relative absorption strength of
the first- and higher-order photons by the sample material (with 10% higher-order flux).



�OD ¼ � ln
I 0 þ I 00

I 00 þ I 000
þ ln

I 0

I 00

¼ � ln
I 00 expð�OD0Þ þ I 000 expð�OD00Þ

I 00 þ I 000

I 00
I 00 expð�OD 0Þ

� �

¼ � ln
1þ a exp½OD0ð1� bÞ�

1þ a
; ð14Þ

where a and b are the proportional higher-order light intensity

(I 000 = aI 00) and the proportional sample absorption (OD00 =

bOD0), respectively, and d is the dark signal. While equation

(14) does not directly depend on I0, variations in the I 00
spectrum are unlikely to be matched in I 000 and so will be

reflected in the photon energy dependence of a and thus help

distort the shape of the measured spectrum. Another factor

influencing the photon energy dependence of a is the detector

efficiency, which can be a complicated function of photon

energy with many contributing factors. In the soft X-ray range,

both phosphor-coupled photomultiplier tubes (Fakra et al.,

2004) and silicon photodiodes (Scholze et al., 1996; Idzorek

& Bartlett, 1997) typically have detector efficiencies that

increase significantly with increasing photon energy and peak

at about 800 eV and 1000 eV, respectively. Since the statistics

and distortions of a transmission signal only concern the

observed signal, explicitly deconvolving the detector efficiency

and actual photon flux is not necessary for the current

discussions. However, the detector efficiency has a direct

impact on the radiation dose rate relative to the measurement

count rate and so affects the quality of a measurement via

radiation damage of the sample (Leontowich et al., 2012) and

carbon deposition (Watts et al., 2018).

Figs. 3(b) and 3(c) illustrate equation (14) to demonstrate

how the signal distortion varies with the proportion of spectral

impurity, the relative transparency of the sample, and the

sample OD. The similarity of Figs. 3(a) and 3(b) show how

higher-order light can produce similar distortions as a simple

signal offset (i.e. dark signal). However, higher-order light is

also much more difficult to characterize sufficiently well to

correct its distorting effects due to its greater complexity (e.g.

varying contributions while scanning the monochromator,

varying sample absorption and detector efficiency). In cases

where it can be isolated from the main signal well enough to

characterize it, removing it to perform the experiment with a

more pure beam is nearly always preferable.

4. Higher-order suppression

As discussed above, removing higher-order spectral contam-

ination can significantly improve experimental measurements.

The basic tools for removing these higher-energy, shorter-

wavelength photons from the monochromated beam include

transmission filters, reflection filters and specially crafted

diffraction structures. Most of these are difficult and expensive

to implement and so are often only considered during the

design of a beamline. While detailed discussion of the design

of such tools is beyond the scope of this work, let us briefly

examine the available options in order to encourage greater

utilization of higher-order suppression facilities already

available. Transmission filters consist simply of a thin

membrane (or a gas) made of a material that preferentially

absorbs the higher-order photons while remaining relatively

transparent to the desired spectral range. These are simple to

design and install and so are the most likely type of higher-

order suppression to be added to an existing beamline. In the

soft X-ray range, transmission filters tend to be effective in

removing second-order photons, but not third-order and

above since such higher-energy photons tend to be more

penetrating. The most effective transmission filters tend to

involve a single element with a strong absorption edge just

above the desired spectral range, for example second-order

light could be removed from the C K-edge spectral range by a

nitrogen gas filter (Kilcoyne et al., 2003) (for an attenuation

length ratio at 300 eV of 4.1 for first : second order and 1.4

for first : third order) or a thin film of titanium dioxide (for an

attenuation length ratio at 300 eV of 2.8 for first : second order

and 1.07 for first : third order). At the C K-edge, it is common

to observe strong reductions in the X-ray beam intensity due

to absorption by carbon contamination on the beamline optics

(Watts et al., 2018). In this case, the carbon contamination

is acting like a high-pass transmission filter and working to

remove it will provide much greater improvements in spectral

purity (and additional photon flux) than implementing addi-

tion filters.

Reflection filters have a material response aspect similar to

a transmission filter, but also a geometrical aspect due to the

reliance of X-ray mirrors on total external reflection for effi-

cient beam reflection (Attwood & Sakdinawat, 2017). The

critical angle for total external reflection varies strongly across

the soft X-ray spectrum such that lower-energy photons can be

efficiently deflected through significantly larger angles than

higher-energy photons. Therefore, a strategic choice of both

the reflective coating materials and deflection angle of a

mirror can very efficiently filter all higher-order photons and

can even have an adjustable cut-off through variation of the

deflection angle (Frommherz et al., 2010). Web-based calcu-

lators for the efficiency of both transmission and reflection

filters are provided by Gullikson (1995). Since reflection filters

change the beam trajectory, they are difficult to incorporate

into existing X-ray experiments, especially considering the

vacuum and positional stability requirements. Since soft X-ray

monochromators are typically based on reflection gratings,

the grating itself can be considered a reflection filter and its

reflective coating and various line shape parameters are

usually optimized to suppress higher-order reflections in

particular spectral regions. Plane-grating monochromators

often include the ability to adjust the angle of incidence in

order to trade between higher-order suppression and overall

photon flux via choice of a parameter called the fixed-focus

constant, cff (Follath & Senf, 1997). The details of the effects of

varying cff will depend on the details of the monochromator

design, but most synchrotron beamlines utilizing plane-grating

monochromators will have calculations available in their

documentation.

While bend-magnets provide a broad, continuous spectrum

of synchrotron radiation (as do wigglers to a lesser degree),
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undulators provide discrete emission peaks (with a funda-

mental photon energy and higher-order harmonics analogous

to the diffraction orders of a grating) that offer some possi-

bilities for higher-order suppression. Firstly, undulators emit

their odd-order photons along the beam axis, while the even-

order photons are emitted as a hollow cone and therefore

the even orders of their emission can be removed by spatial

filtering, whereby the beam is passed through an aperture to

block the even-order photons (Attwood & Sakdinawat, 2017).

Undulator-based beamlines can also be designed with a quasi-

periodic structure in either the monochromator grating

(Fujisawa et al., 2001) or the magnetic lattice of the undulator

(Bahrdt et al., 2001) such that the higher-order harmonics of

one are shifted to no longer exactly match the other, and so

are not efficiently passed through to the experiment. A similar

order-shifting effect can also occur in multilayer gratings (Senf

et al., 2016). As diffractive elements, Fresnel zone plates also

have multiple orders and have an effect on the spectral purity

of the beam that passes through the OSA. The diameter and

positioning of the central stop and OSA should be designed

to block the first-order focus of the higher-order spectral

components (which will have longer focal lengths in propor-

tion to their higher photon energy), but the nth-order focus

of the nth-order spectral component will follow the same

geometry as the first-order focus of the requested photon

energy. For a binary zone plate, the even focus-orders are

suppressed while the n odd orders have a relative efficiency of

1/n2 (Attwood & Sakdinawat, 2017). More complex zone

plates can have different focus-order efficiencies that depend

heavily on the fabrication parameters (Marschall et al., 2017).

Quantifying the different types of signal quality provides

opportunities to make objective comparisons between them.

A commonly considered question in the design of an X-ray

beamline and its configuration for a particular measurement

is the level to which higher-order light should be suppressed

versus the resulting loss of first-order photon flux from the use

of transmissive or reflective filters. If we consider the statistical

variance and distortions described in equations (7) and (14) to

be of equal significance, then we can combine the two into a

measure of total signal error, ET,

ET ¼
�OD

OD
þ

�OD

OD

����
���� ð15Þ

¼
1þ expðODÞ½ �

1=2

OD
ffiffiffiffi
I0

p þ
1

OD
ln

a exp
�
OD 1� bð Þ



þ 1

aþ 1
:

Plots of such total signal error curves calculated for an

experiment in realistic conditions that involve a 10% higher-

order light contribution (that is absorbed at a rate of 0.6 times

that of the main X-ray energy) are shown as grey-scale dotted

lines in Fig. 4(a) for varying levels of incident photons per

resolution element. Green dots show the minima of the error

curves and the solid green line describes the trajectory of

the optimum sample thickness as a function of the scale of

statistics. Note that the total signal error curves have quite

broad minima and the light green shaded area describes

the range of sample thicknesses that lie within 10% of the

optimum signal quality. This range is relatively broad and

indicates that, when working with an impure probe beam, a

sample thickness of about 1OD should work reasonably well

for most statistical levels. Fig. 4(b) shows a wider view of the

balance between statistical and distortion issues by calculating

the signal error mimima curves for different levels of the

higher-order light contributions. [Note that the legend of

Fig. 4(b) matches that of Fig. 3(b).] The dotted lines in Fig. 4(b)

demonstrate the points at which the aforementioned optimum

sample thickness curves intersect the total signal error curves

at a specific level of counting statistics. These two sets of

curves illustrate how consideration of the optimum sample

thickness weighs the effects of noise against signal distortions,

with each starting close to an OD of about 2 in the low-

statistics region and shifting towards lower OD with improving

statistics at rates determined by the severity of the distortions

caused by the experimental conditions. This trend in Fig. 4(b)
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Figure 4
(a) Signal quality curves for 10% higher-order light (absorbed at a 0.6 relative rate) and varying levels of counting statistics are shown as dotted grey-
scale contours and minima positions labelled with green circles. The solid green curve shows the trajectory of the minima and the shaded region indicates
the sample OD range corresponding to an increase of signal error of up to 10% above the minima. (b) Curves of optimum signal quality corresponding to
measurements with higher-order contributions shown in Fig. 3(b). The corresponding statistics contours are shown as dotted lines, while the vertical
dashed line shows the optimum sample OD of 2.2 for ideal measurement conditions.



demonstrates that thinner samples (e.g. �0.5OD) are

recommended for measurements at instruments with poor

spectral purity and higher photon flux, while thicker samples

(i.e. 1–2OD) are recommended for use with instruments with

high spectral purity and/or lower flux. The fact that every line

plotted in each part of Fig. 4 does not meet the origin also

demonstrates that very thin samples cannot completely elim-

inate distortions and that the presence of spectral impurity

puts a hard limit on the achievable quality of transmission

measurement results.

Fig. 5 illustrates equation (15) from a more general

perspective via a contour map of ET values resulting from the

measurement conditions in terms of statistics, higher-order

light, and sample OD. It is clear that compared with the set of

contours for OD = 1 (solid lines), the OD = 2 dashed contours

tend to be shifted down and to the left, while the dotted OD =

0.5 contours are shifted up and to the right, demonstrating

the statistics advantage of thicker samples and the resilience

against distortion by thinner samples. Operating the PolLux

beamline at the carbon K-edge (�300 eV) without the higher-

order suppression mirror system (Frommherz et al., 2010) will

result in a higher-order light contribution of about 30% and

about 10 MHz of first-order photon flux, which translates to an

I0 of about 104 with 1 ms of counting time per scan point. This

situation results in an ET value of about 0.13 and places the

measurement towards the right hand side of Fig. 5, as marked

with an open square symbol. Applying the higher-order

suppressor with a mirror angle of 1.5� will reduce the 300 eV

flux by about half while reducing the higher-order fraction by

about an order of magnitude (Frommherz et al., 2010). This set

of conditions is indicated in Fig. 5 by a filled circle symbol and

the improvement in transmission measurement performance is

illustrated by the 0.1 and 0.05 ET contours lying between the

two symbols. Further, the filled circle is now toward the left

side of the plot where the contours have a lower gradient;

from this position, an increase in statistics through increasing

the counting time would move our position vertically upwards

into lower-ET regions near the upper left corner of the figure

for further improvements in measurement quality. In contrast,

the position without higher-order suppression (open square

symbol in Fig. 5) is surrounded by almost vertical contours and

so any increase in counting time would not provide a signifi-

cant improvement in measurement quality under these

conditions.

5. Spatial resolution

Microspectroscopy investigations are often concerned with

measuring the spectrum of small sample targets. To properly

isolate the target area, one must make sure that the spatial

resolution, focusing and positioning of the probe beam are all

sufficient. This can be judged by examining how well resolved

the target object appears in an image scan. In cases where the

illuminated area is larger than the spatial separation of sample

materials, the beam will interact with materials (or lack

thereof) adjacent to the target and the resulting spectrum will

be some mixture of the spectra of the intended target and the

other materials that intercept the X-ray beam. Fig. 6 shows

schematics of an X-ray beam passing through two materials,

OD1 and OD2, in series or parallel. Let us first examine the

series case from Fig. 6(a) where the sample materials are

stacked along the direction of the beam axis and so the spatial

resolution is not relevant. Applying the Beer–Lambert law to

these materials individually gives

OD1 ¼ � ln
I1

I0

; OD2 ¼ � ln
I2

I1

: ð16Þ

However, in practice it is typically not possible to measure

I1 and we are restricted to interpreting the analysis of

measurements of I0 and I2. This fortunately turns out to simply

give the sum of the two component spectra,
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Figure 6
Schematic of an X-ray beam transmitting through two materials, OD1 and
OD2, in (a) series and (b) parallel with a fraction, x, of the beam passing
through OD1 and the remaining fraction, (1 � x), passing through OD2.

Figure 5
A contour map of total signal error, ET, as a function of incident photons
per resolution element, I0 , the higher-order light contribution [parameter
a from equation (14)] and the sample OD. The black markers indicate the
conditions for C K-edge measurements at the PolLux beamline with
(filled circle) and without (empty square) the higher-order suppressor.



ODtotal ¼ � ln
I2

I0

¼ � ln I2 þ ln I0 þ ln I1 � ln I1

¼ � ln
I1

I0

� ln
I2

I1

¼ OD1 þOD2: ð17Þ

This works out neatly because a basic property of logarithms

is that the logarithm of a product is equal to the sum of the

logarithms of the factors. On the other hand, the analysis of a

beam passing through two materials in parallel, as shown in

Fig. 6(b), does not provide the same kind of eloquent result

since there is no corresponding property for the logarithm

of a sum. If the two materials and their Beer–Lambert law

interactions with an X-ray beam are given by

OD1 ¼ � ln
I1

I0

; OD2 ¼ � ln
I2

I0

; ð18Þ

then let us examine the amount of distortion, �OD, in a

measurement as the difference between the actual analysis

(logarithm of combined beams) and the naı̈ve expectation of

the weighted sum of the component material spectra, OD1 and

OD2, proportional to the corresponding fraction of the X-ray

beam, x and (1 � x), passing through each material compo-

nent,

�OD ¼ ODtotal � xOD1 � ð1� xÞOD2

¼ � ln
xI1 þ ð1� xÞ I2

I0

þ x ln
I1

I0

þ ð1� xÞ ln
I2

I0

¼ ln
I x

1 I 1�x
2

xI1 þ ð1� xÞ I2

¼ ln
exp

�
� xOD1 � ð1� xÞOD2



x expð�OD1Þ þ ð1� xÞ expð�OD2Þ

: ð19Þ

Equation (19) only gives zero for the trivial cases where x =

0, 1 or OD1 = OD2 and so some kind of distortion should

always be expected in transmission measurements where some

part of the probe beam falls outside the target area; for

example, measuring the spectrum of a nanoparticle with a

poor focus. Fig. 7(a) illustrates these distortions as a function

of the optical density of the target material, OD1, and for

different fractions of the probe beam intercepted by the

target, x, in the situation where the probe beam partially goes

through a hole in the sample (i.e. OD2 = 0). Here we observe

a series of parabolas that indicate a distortion term that is

roughly proportional to the square of the target optical

density. The other extreme case of a thick object (OD2 = 10)

blocking part of the beam is demonstrated in Fig. 7(b) and this

time we observe a set of roughly horizontal lines, indicating

that the measured spectrum differs from the target spectrum

by an approximately constant offset. These results tell us that

the expected linear combination of parallel-mixed transmis-

sion measurements is overshot by one term in each direction,

with the lower OD component receiving a roughly constant

offset and the higher OD component receiving a quadratic

scaling factor.

It is important to note that the above discussion of parallel

transmission measurements applies to all kinds of sample

inhomogeneity that create contrast in the transmission signal;

chemical, dichroic, thickness or density fluctuations with a

transverse length scale below the beam spot size will all cause

an imperfect averaging of the component spectra. The concept

of thickness/density fluctuations causing spectral distortions in

an otherwise homogeneous material is surprising, but equa-

tion (19) applies to any situation where the unresolved sample

regions have non-identical OD at any photon energy involved

in the measurement of a single resolution element. One should

therefore be wary of transmission spectra measured from an

agglomeration of particles, or from very rough, highly porous

or irregularly shaped samples that are not spatially resolved

since the mixture of different optical paths can introduce

distortions. Another situation applicable to equation (19) is

the measurement of a very thick sample in the neighbourhood

of a large open area, such as across the edge of a thick film or

microtome slice, where the outer side-lobes of the zone plates

illumination can result in a small fraction of the probe beam

going around the sample material. This could correspond to

the red, x = 0.95, line towards the right edge of Fig. 7(a) where

research papers

J. Synchrotron Rad. (2022). 29, 1054–1064 Benjamin Watts et al. � Quantifying signal quality in STXM 1061

Figure 7
Distortion estimates for situations where only a fraction of the beam
(given by x) intercepts the intended sample material and the remaining
beam goes through (a) empty space (i.e. 0 OD) or (b) a strongly absorbing
object (10 OD).



significant distortion can be expected with very little extra-

neous light. Marcus et al. (2021) recently examined similar

situations in detail and demonstrated how the finite point

spread function of a zone plate can distort conventional

STXM measurements in the neighbourhood of an interface

such that it differs from a linear combination of the compo-

nent spectra. However, they do not consistently differentiate

between the simple mixing effects of a finite beam–sample

interaction volume and the distortions caused by inequivalent

optical paths. Further, they overstate the severity of the

effect by using the very unrealistic and impractical example of

measuring a 2 nm-thick polymer [which equation (7) shows

to be a challenge in itself] at an interface with a material 100

times thicker. It is unfortunate that they do not mention probe

deconvolution (Jacobsen et al., 1991; Loroña Ornelas et al.,

2018) which is a post-processing method that mitigates such

effects by directly accounting for the finite size of the probe.

Note that the probe deconvolution must be performed on the

transmission data (i.e. before converting to OD) in order to

avoid the distortions described by equation (19).

The central stop and OSA components of a STXM work

together to block the direct (zero-order) X-ray beam. Poor

size-matching or alignment of these components, as well as

materials not thick and dense enough to be opaque, would

allow a significant, broad-area beam to surround the focused

beam and produce situations corresponding to Fig. 7 with low

x values, depending greatly on the sample OD over a wide

area (similar to the OSA diameter). Fabricating the central

stop for a zone plate presents a technical challenge that is

often unappreciated; an integrated central stop adds stress to

the zone plate’s support membrane and so the thickness of the

stop must be compromised to avoid breakage. On the other

hand, a separate central stop requires extra positioning stages

and regular effort to keep properly aligned.

Interestingly, cases where the spectral resolution is poor

relative to the gradient of the samples absorption spectrum

also count as a mixture of inequivalent optical paths and so

equation (19) is relevant to understanding the measurement

conditions. Consider an X-ray beam composed of two photon

energies, illuminating the same area of a homogeneous sample

and experiencing different absorption rates due to the

component photon energies being on and next to a sharp

absorption resonance. Therefore the two beam components

would see different OD values in the same sample and, if

we call these OD1 and OD2, and their flux proportions as x

and (1 � x), then the error in assuming that the parallel

measurement results in a weighted average is already stated in

equation (19). Utilizing equation (19) to understand experi-

ments conducted with an X-ray beam in which two photon

energy components differ by a factor of two or three illustrates

how it can also be considered as an alternative view of the

distortions caused by higher-order light.

6. Sample thickness

So far we have restricted discussion of the sample to OD,

which is independent of the sample composition, density and

thickness, as well as the photon energy of the X-ray beam.

However, practical application of the topics discussed above

requires an understanding of how these parameters interact.

Generally, the OD of a sample increases with increasing

thickness, density, higher atomic number elements, and longer

X-ray wavelengths (decreasing photon energy). While the

sample OD is simply proportional to the material thickness

and density, its dependence on other parameters can be

complex. Optical density is defined as the degree to which a

medium reduces the transmission of light, as expressed in

equation (5) with 1OD being equivalent to a reduction to 1=e

of the original intensity. This matches the attenuation length of

a material, defined as the path length through a material that

will reduce light to 1=e of the original intensity. (Note that the

attenuation length is also the reciprocal of the linear attenua-

tion coefficient.)

An estimation of a material’s attenuation length can be

calculated from published atomic scattering factors (Henke et

al., 1993) together with its elemental composition and density.

Such calculations can be conveniently performed with online

calculators (Gullikson, 1995; Chantler et al., 2019). However, it

is important to be mindful that these calculated values do not

include any of the near-edge fine structure, as illustrated in

Fig. 8. Fig. 8(a) compares the measured C K-edge spectrum of

a 262 nm-thick polystyrene film with a spectrum calculated

from the Henke et al. (1993) scattering factors using the

chemical formula C8H8 and a mass density of 1 g cm�3. The
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Figure 8
Comparisons between experimental transmission measurements of films
of (a) polystyrene and (b) permalloy (Fe19Ni81) and corresponding
calculations based on the Henke scattering factors (Henke et al., 1993)
and material parameters. The left-hand y-axis scale is presented in OD,
while the right-hand y-axis scale displays the corresponding attenuation
length.



calculated spectrum fits the measurement closely in the pre-

edge (below 282 eV) and post-edge (above 320 eV) regions,

but the near-edge resonances differ significantly from the

calculation. It is important to consider the near-edge reso-

nances since they are typically targeted in measurements

in order to provide contrast between constituent sample

materials, or to indicate physical parameters like magnetiza-

tion or molecular orientation (Ade & Stoll, 2009; Watts &

Ade, 2012). The y-axis scale on the right hand side of Fig. 8

reflects the attenuation length corresponding to the OD values

shown in the y-axis scale to the left. The 256 nm-thick poly-

styrene film matches 1OD for measurements at 320 eV (i.e.

polystyrene has an attenuation length of 256 nm at 320 eV),

but the 1s ! � �C¼C resonance near 285 eV that peaks at

3.66OD in this measurement would require a sample thickness

of 70 nm in order for this point in the spectrum to be measured

as 1OD. When trying to obtain contrast between polystyrene

and other organic materials, the unusually intense 1s! � �C¼C

resonance near 285 eV is naturally a common choice to

include in the set of photon energies to be measured as it often

provides strong contrast; however, it would be wise to limit the

sample thickness in such experiments to �100 nm (or perhaps

less) in order to limit the polystyrene 1s ! � �C¼C resonance

peak to about 1.5OD and hence limit the associated signal

distortion issues. In cases where the ability to choose the

sample thickness is limited, one could consider instead

performing the analysis with weaker resonance peaks.

Fig. 8(b) compares X-ray magnetic circular dichroism

(XMCD) measurements of a 50 nm-thick permalloy film (in

the presence of a 3 T out-of-plane magnetic field) with a

spectrum calculated from the Henke et al. (1993) scattering

factors using the chemical formula Fe19Ni81 and a mass density

of 8.71 g cm�3. Note how the Fe L2,3 near-edge resonances

differ significantly from the calculated spectrum and also vary

in intensity depending on the circular polarization of the X-ray

beam. Other kinds of samples can display linear dichroism and

display a similar variation in peak intensity depending on

the alignment between the transition dipole moment of the

resonance and the electric field vector of the linearly polarized

X-ray beam. The thickness of the permalloy film shown in

Fig. 8(b) was chosen such that the maximum observed Fe L3

resonance would be approximately 1OD in order to limit

signal distortions caused by insufficiently opaque central stops.

An estimate of the desired sample thickness, tsample, in order to

measure a specific resonance at a chosen intensity, ODtarget,

can be calculated by comparing the relative OD of the target

resonance with a reference point in a nearby spectral region

without significant resonances,

tsample ¼ ODtarget L 0att ¼ ODtarget L 00att

OD 00

OD 0
; ð20Þ

where OD0, OD00, L 0att and L 00att are the absorption intensity and

attenuation length corresponding to the target resonance and

reference point, respectively. It is recommended to choose the

reference point in the post-edge region [e.g. at 340 eV and

740 eV in Figs. 8(a) and 8(b), respectively] where scattering

factor-based calculations tend to be accurate and the higher

absorption rate provides better precision than the pre-edge

region. Since the calculation uses a ratio of OD values, the

scaling of the spectrum does not affect the result, but a

background subtraction (often used to set the pre-edge to

zero) will. Note that spectra measured by other detection

modes such as total, partial and Auger electron yield (TEY,

PEY and AEY, respectively) or fluorescence yield (FY) are

not exactly the same as transmission measurements. For

example, AEY and FY modes where the observed signal is

specific to a particular element and electron shell (i.e. only

accept specific emission lines) should give zero intensity in

the pre-edge region, and so are equivalent to a transmission

spectrum after a background subtraction.

Knowing the strength of a resonance for a material one has

not yet measured presents the challenge of finding a suitable

reference spectrum. Since theoretical calculations of

NEXAFS spectra tend to be unreliable for lighter elements,

searching the literature for previously published measure-

ments is often a better strategy. Fortunately, the NEXAFS

spectrum of a mixture is typically equal to the linear combi-

nation of the component spectra (Stöhr, 2013) and so a

reference spectrum does not need to exactly match the

planned sample material in order to be useful for a thickness

estimate calculation. For organic materials, intermolecular

effects on NEXAFS spectra are subtle and rarely observed

(Zou et al., 2006), while intramolecular effects causing

departures from the building block model can be more

significant, but still rarely observed (Stöhr, 2013; Watts et al.,

2011). Reference spectra can often be quickly found by

searching the internet for images related to the material,

elemental edge of interest and the spectroscopy type; for

example, ‘polystyrene C K-edge NEXAFS’ and ‘permalloy Fe

L-edge XMCD’ will return results similar to Fig. 8. Note that

near-edge X-ray absorption fine structure (NEXAFS) and

X-ray absorption near-edge structure (XANES) spectro-

scopies are two names for the same technique that analyses

the resonance peaks that occur close to an absorption edge,

but extended X-ray absorption fine structure (EXAFS) is a

very different analysis that examines oscillations extending

into the far post-edge region (Norman, 1986).

7. Conclusions

We have shown that, in addition to the I
�1=2

0 dependence

expected from Poisson statistics, the statistical noise of trans-

mission measurements in ideal conditions is minimized for a

sample with a thickness of 2.2OD (although this minimum is

quite shallow, with sample thicknesses between 1.4 and 3.2OD

resulting in an increase of fractional error of less than 10%).

This is surprisingly thick, corresponding to only 10.9% trans-

mitted intensity, compared with the conventional wisdom that

transmission samples should be about 1OD thick. On the

other hand, we clearly observe that signal distortions due to

dark signals, higher-order spectral contributions and insuffi-

cient resolution are magnified in thicker samples. By summing

contributions from the statistical and distorting effects, we

obtain an objective measure for the quality of results to be
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expected from a transmission measurement and map out

the dependence of optimum sample thickness on the applied

number of photons and their spectral purity. We found that the

spectral purity of the probe beam is a major factor in deter-

mining the optimum sample thickness, which will be closer to

1OD at many instruments where more than a few percent of

higher-order light is expected and even �0.5OD in cases of

very poor spectral purity and high photon flux. Overall, these

results support the conventional wisdom that a sample thick-

ness of�1OD at the analytical energy is a safe choice that will

provide near-optimal results in most experimental conditions.

While 1OD is equivalent to a sample thickness equal to the

attenuation length of the material, one must keep in mind

that simple calculations of attenuation length based on the

elemental composition and density of the sample material will

not include the near-edge resonance peaks that are often

targeted in experiments. We therefore present a simple

method for estimating the attenuation length corresponding to

a near-edge resonance peak.

We further present a generalized map of the transmission

signal quality as a function of the higher-order light fraction

and the applied counting statistics and then use it to demon-

strate how the application of the higher-order suppressor

mirrors improve the quality of C K-edge measurements at the

PolLux STXM. This type of map could be useful in the design

of X-ray beamlines, and the planning of experiments, as an

objective measure of the consequences of higher-order

suppression.
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Schäfers, F., Siewert, F., Sokolov, A., Sturm, J. M., Waberski, C.,
Wang, Z., Wolf, J., Zeschke, T. & Erko, A. (2016). Opt. Express, 24,
13220.
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