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Ellipsoidal and plane-elliptical surfaces are widely used as reflective, point-to-

point focusing elements in many optical systems, including X-ray optics. Here

the classical optical path function approach of Fermat is applied to derive a

closed-form expression for these surfaces that are uniquely described by the

object and image distances and the angle of incidence at a point on a mirror

surface. A compact description facilitates design, modeling, fabrication, and

testing to arbitrary accuracy. Congruent surfaces in two useful coordinate

systems — a system centered on the ellipsoid’s axes of symmetry and a mirror-

centered or ‘vertex’ system with the surface tangent to the xy plane at the

mirror’s center — are presented. Expressions for the local slope and radii of

curvature are derived from the result, and the first several terms of the

Maclauren series expansion are provided about the mirror center.

1. Introduction

Elliptical and ellipsoidal surfaces are commonly used in

reflective optical systems where they ideally focus a point

object to a point image. They are conic sections in the plane of

incidence, with the object and image points occurring at the

foci of an ellipse. They are especially important in X-ray optics

where high reflectivities occur at glancing angles of incidence

(Compton, 1923).

Several types of elliptical surfaces are now used in optical

systems designed for X-rays and other wavelengths (Fig. 1).

Plane-elliptical mirrors, also called elliptical cylinders, have

an elliptical profile in the meridional plane (i.e. tangentially,

along the beam-propagation direction) and are uniform in the

sagittal (transverse) direction [Fig. 1(c)]. Such mirrors can be

used individually for one-dimensional focusing, and they can

be used in orthogonally oriented pairs. The Kirkpatrick–Baez

configuration uses two such sequential plane-elliptical mirrors

to form an anamorphic, two-dimensional imaging system

(Baez & Kirkpatrick, 1948). The ‘nested’ Montel configuration

places orthogonal plane-elliptical mirrors together, side-by-

side (Liu et al., 2011).

With sagittal curvature, a single ellipsoidal mirror can

be used for two-dimensional focusing in either an off-axis

configuration [Fig. 1(b)] (Yumoto et al., 2017) or on-axis, with

an annular shape [Fig. 1(a)] (Takeo et al., 2020). Rotational

symmetry around the major axis, connecting the foci (i.e. the

object and image points), requires that the sagittal cross-

sections must be circular in planes perpendicular to this axis.

The plane-elliptical and ellipsoidal mirror types share the

underlying meridional elliptical profile as a surface of rotation.

Ellipsoidal shapes can be described mathematically in a

number of ways. Solving for the generating ellipse (in a plane)

with fixed object and image distances (or positions) yields a
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family of ellipses with varying eccentricities, sharing the foci.

For each such ellipse, the total ray path length from the object

to the image, with a single surface reflection, will be equiva-

lent. Specifying the glancing angle of incidence at one point

constrains the solution to a single ellipse with fixed major and

minor axes. Importantly, we note that at all points on an

ellipsoidal surface the local sagittal and meridional radii of

curvature satisfy the Coddington equations for paraxial

focusing (Kingslake, 1994), given the spatially varying

distances and incidence angle.

In practice, X-ray mirror surfaces subtend a portion of the

parent ellipse or ellipsoid; the point at which they satisfy the

glancing angle condition can be taken as the center of the

mirror surface, but that is not required.

In the proceeding, we apply the classical optical path

function approach that arises from Fermat’s principle (Shaw,

1965) to write and solve a description of the surface in a

mirror-centered coordinate system. In Section 5, the closed-

form representation is used to derive a polynomial series

approximation. Alternate, published surface descriptions have

been based on coordinate transformations, and are discussed

in Section 6.

2. Two ellipse representations

Ellipses can be described using quadratic polynomials in a

two-dimensional plane. In three dimensions, an ellipsoid is a

surface of revolution with an ellipse as its generatrix, with the

line passing through the foci (containing the major axis) as the

axis of rotation.

We develop two congruent solutions for generalized ellipse

descriptions, differing by coordinate transformations, limited

to rotation and translation. Shown in Fig. 2, we refer to these as

Types I and II. We use the convention that x is the sagittal

direction, y is the direction of propagation (horizontal on

the page), and z is the surface height direction (vertical on

the page).

The Type I ellipsoid has its major and minor axes aligned

with the coordinate y and z axes, respectively, and is centered

at the origin. Type II is tangent to the xy-plane at the central

point of intersection. In both cases, the sagittal coordinate, x,

projects outward from the page.

For an X-ray optical system, the most convenient functional

description specifies the object distance, image distance, and

the central angle of incidence as design parameters. These

parameters are here labeled {p, q, �}, respectively, with �
defined from the glancing condition. [In other works, these

parameters appear as {r, r 0, �} (McKinney & Palmer, 1997;

Howells et al., 2000; McKinney et al., 2011) or as {R2, R1, �}

(Yashchuk et al., 2018, 2019).]

Following a commonly used coordinate system in X-ray

optics, we define the mirror surface height z as a function of

x, the sagittal (transverse) coordinate, and y, the longitudinal

(tangential) coordinate, with +y oriented in the general

direction of propagation. The mirror surface is tangent to the

xy plane at the origin.

Ellipses are described by a conventional set of parameters

that includes the major and minor axes, the eccentricity, and

the linear eccentricity. Since the ellipses in the two coordinate

descriptions are congruent, we can extract these parameters

from the Type I description, where they are easier to compute,

and apply them to the Type II case.

3. Type I ellipsoids

Type I ellipsoids are centered on the coordinate system origin

and the axes of the ellipse are aligned with the coordinate axes

(Fig. 3). With circular cross-sections in planes normal to the y-

axis, the ellipsoidal shape description is well known, and can

be represented by

y2

a2
þ

x2

b2
þ

z2

b2
¼ 1: ð1Þ

The semi-major axis, a, runs along the general beam propa-

gation direction, +y. The semi-minor axis is b in both trans-
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Figure 2
Two classifications of the same parent ellipse: Types I and II. Object and
image positions are shown at the foci. The mirror portion, containing the
point of intersection, is shown as a thicker segment of the parent ellipse,
in green.

Figure 3
Cross-section of the Type I ellipsoid in the yz plane, centered on the
coordinate origin, O. The direction of light propagation is indicated.

Figure 1
Three types of elliptical mirror elements: (a) annular ellipsoid, (b)
ellipsoidal surface, (c) plane-elliptical surface. Shapes (a) and (b) are
portions of a parent ellipsoidal surface. The coordinate axes used in these
descriptions are shown.



verse directions, x and z. Every ray leaving the object point

must be reflected toward the image point. Rotational

symmetry about the major axis therefore requires circular

cross-sections: the minor axes in the x and z directions are

equivalent. The elliptical curve defined in the meridional, yz

plane generates the surface by rotation about the major axis.

For an X-ray optical system design, the object and image

distances, p and q, respectively, are commonly dependent on

the magnification requirements, M = q /p, while the glancing

angle of incidence � is set by reflectivity considerations. The

values of a and b are not given in advance.

We can write the surface solution explicitly in this coordi-

nate system, solving for z from equation (1). To have an

upward-facing (+z) mirror, we choose the negative root of

equation (2).

zðx; yÞ ¼ � b 1�
x2

b2
�

y2

a2

� �1=2

: ð2Þ

Howells et al. (2000) provide geometric relationships among

the ellipse parameters for any cross-section containing the

y-axis. First, the major axis a is

a ¼
pþ q

2
: ð3Þ

Consulting Fig. 3, the linear or arithmetic eccentricity, c, can

be derived from the Law of Cosines [as shown by McKinney et

al. (2011)],

c ¼
p2 þ q2 þ 2pq cos 2�ð Þ

1=2

2
: ð4Þ

The two foci are at (0, �c, 0) and (0, c, 0). The square of the

semi-minor axis is given by b2 = a2
� c2. With equations (3)

and (4), this reduces to

b ¼ pqð Þ
1=2 sin �: ð5Þ

The Type I surface in equation (2) can now be written as a

function with parameters p, q, and �,

zðx; yÞ ¼ pqð Þ
1=2 sin � 1�

x2

pq sin2 �
�

4y2

ðpþ qÞ
2

� �1=2

: ð6Þ

The ellipse’s eccentricity, e, is

e ¼
c

a
¼

p2 þ q2 þ 2pq cos 2�ð Þ
1=2

pþ q
: ð7Þ

By congruence, we note that the relations that define a, b, c,

and e in terms of p, q, and � hold for all translations and

rotations of a Type I ellipsoid, including the Type II ellipsoid

described in the following section.

In the yz plane, the point of intersection on the surface

(0, y0 , z0) can be derived from the Law of Sines and the

relations above. The incident ray declines at an angle � from

the y-axis (Fig. 3),

sin � ¼
q sin 2�

2c
: ð8Þ

Recognizing that z0 = �p sin �, we substitute equations (4)

and (8),

z0 ¼ �
pq sin 2�

p2 þ q2 þ 2pq cos 2�ð Þ
1=2
: ð9Þ

The y0 value is solved from equation (1), with a and b from

equations (3) and (5). After reduction,

y0 ¼
p2 � q2

2 p2 þ q2 þ 2pq cos 2�ð Þ
1=2
: ð10Þ

In a more compact form,

ðx0; y0; z0Þ ¼ 0;
p2 � q2

4c
; �

pq sin 2�

2c

� �
: ð11Þ

Note that when p = q (unity magnification), symmetry

demands that y0 = 0, and the eccentricity reduces to e = cos �.

The slope of the mirror at the central point of intersection,

�, is

� ¼ � � �; or � ¼ tan�1 p� q

pþ q
tan �

� �
: ð12Þ

The equivalent second expression was derived by Yashchuk et

al. (2019) [equation (11) therein].

4. Type II ellipsoids

The Type II ellipsoid geometry is the most convenient

description for X-ray optics design, modeling, manufacturing

and testing. With the central point of intersection at the origin,

and the surface tangent to the xy plane at that location, the

mirror shape has a minimal net slope across its length.

Taking a cross-section of the surface in the yz plane, the

coordinate system and geometry are shown in Fig. 4. The two

foci of the ellipse are the object point, ð0;�p cos �; p sin �Þ,
and the image point, ð0; q cos �; q sin �Þ.

Here we solve the ellipsoid with the optical path function

approach, applying the constant path-length constraint that

arises from the Fermat principle. This approach was described

for other optical systems by McKinney & Palmer (1997). The

result is a solution valid to arbitrary precision.

The ellipsoidal and the plane-elliptical surfaces can be

generated from the same representation, differing only by the

treatment of the x coordinate. For plane-ellipses, removing the

x dependence makes the surface uniform in x.

The solution proceeds as follows. For a point (x, y, z) on the

surface of the ellipsoid, a constant total path length requires
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Figure 4
The Type II ellipsoid geometry is the most convenient description for
modeling, fabrication, and testing. The coordinate origin is placed at the
central point of intersection, where the surface is tangent to the xy plane.
Shown is the cross section through the yz, meridional plane. The direction
of light propagation is indicated.



that the sum of the distances from the foci to the surface be

constant and therefore equal to the distance at the central

point,

x2
þ ðp cos � þ yÞ

2
þ ðp sin � � zÞ

2
� �1=2

ð13Þ

þ x2
þ ðq cos � � yÞ

2
þ ðq sin � � zÞ

2
� �1=2

¼ pþ q:

Solving z(x, y) requires isolating square roots and squaring the

equation two times. As the expressions are expanded, many

terms cancel. Gathering the powers of z, which occur up to

second order, allows solution with the quadratic formula. For

Az2
þ Bzþ C ¼ 0; ð14Þ

the solutions are

zðx; yÞ ¼
�B � B2 � 4ACð Þ

1=2

2A
: ð15Þ

Expansion of (13) leads to equation (16). We define a recur-

ring term, h = ðp� qÞ cos �,

A ¼ h2
þ 4pq;

B ¼ 2 sin � ðpþ qÞðhy� 2pqÞ;

C ¼ ðpþ qÞ
2

x2
þ sin2 � y2

� 	
:

ð16Þ

Following reduction, the complete solution of the Type II

ellipse is

zðx; yÞ ¼
pþ q

4pqþ h2

n
sin � ð2pq� hyÞ ð17Þ

�
�
4pq sin2 � ðpq� hy� y2Þ � ð4pqþ h2Þ x2

�1=2
o
:

We choose the negative root for the concave, upward-facing

portion of the surface.

From equation (17), the tangential shape along the x = 0,

yz plane is the shape of the related plane-ellipse,

zð0; yÞ ¼
ðpþ qÞ sin �

4pqþ h2
ð18Þ

� 2pq� hy� 2 pqð Þ
1=2

pq� hy� y2
� 	1=2

h i
:

The sagittal shape along the y = 0, xz plane is also an ellipse,

zðx; 0Þ ¼
pþ q

4pqþ h2
ð19Þ

�

n
2pq sin � � ð2pq sin �Þ2 � 4pqþ h2

� 	
x2

� �1=2
o
;

4.1. Slope and radius of curvature

The slope and curvature, and their variation across the

surface, are important to the fabrication and testing of X-ray

mirrors. The meridional slope along the center-line, in the yz

plane (often referred to as the tangential direction), can be

computed from the first derivative of equation (18) with

respect to y,

dz

dy






x¼ 0

¼
ðpþ qÞ sin �

4pqþ h2

hþ 2y

1� ðhy� y2Þ=pq½ �
1=2
� h

� �
: ð20Þ

The curvature is closely related to the second derivative, being

its inverse when the slope is zero (e.g. at the origin),

d2z

dy2






x¼ 0

¼
sin �

2

pþ q

pq

� �
1

1� ðhyþ y2Þ=pq½ �
3=2
: ð21Þ

We can use equation (17) to compute the variation in the

sagittal radius of curvature along the length of a mirror,

d2z

dx2
¼

1

2 sin �

pþ q

pq

� �
1

1� ðhyþ y2Þ=pq½ �
1=2
: ð22Þ

From equations (21) and (22), we recognize that the radii of

curvature match the familiar Coddington radii (Kingslake,

1994) at the origin. For the meridional and sagittal radii,

Rm ¼
2

sin �

pq

pþ q

� �
and Rs ¼ 2 sin �

pq

pþ q

� �
: ð23Þ

The pq/(p + q) term is the paraxial focal length of the mirror,

defined below. Furthermore, since the mirror’s center-point is

arbitrary on the parent ellipsoid, we know that, locally, Rm(y)

will match this form as p, q, and � vary along the mirror

surface.

5. Series expansion

Many authors have used polynomial series expansions about

the mirror center to describe elliptical and ellipsoidal surface

shapes (Howells, 1980; Rah & Howells, 1997; Rah et al., 1997;

Peatman, 1997; McKinney et al., 2011; Yashchuk et al., 2019).

This mathematical approach simplifies understanding of

central curvatures and can provide an approximation to

surface shapes when closed-form representations are not

available. Series expansions have also been used to facilitate

solutions for mechanically bent mirror substrates, connecting

the shape description to beam-bending equations (Rah et

al., 1997; Howells et al., 2000; Zhang et al., 2010; Yashchuk et

al., 2018).

A conventional Maclauren series expansion in orders of x

and y takes the form

z ¼
X1
i¼ 0

X1
j¼ 0

aij x jy i: ð24Þ

The series expansion of equation (17) was calculated with

Mathematica (Wolfram Research, 2020), simplified, and tested

empirically. The coefficients up to fourth order, (i + j) � 4, are

listed in equations (26). We place the coordinate origin at the

center of the mirror, with zero height (a00 = 0). With the

surface tangent to the xy plane at that point, the first-order

(slope) terms (a10 and a01) are also zero. Symmetry about the

meridional (yz) plane dictates that odd-ordered terms in x

must also be zero.

It is helpful to define the paraxial focal-length, f, which

appears as a factor in each coefficient,

f ¼
pq

pþ q
; ð25Þ
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a02 ¼
1

4f sin �
; ð26aÞ

a20 ¼
sin �

4f
; ð26bÞ

a12 ¼
ðp� qÞ cos �

8fpq sin �
; ð26cÞ

a30 ¼
ðp� qÞ cos � sin �

8fpq
; ð26dÞ

a22 ¼
3ðp� qÞ2 cos2 � þ 4pq

32fp2q2 sin �
; ð26eÞ

a04 ¼
ðp� qÞ

2 cos2 � þ 4pq

64fp2q2 sin3 �
; ð26f Þ

a40 ¼
5 cos2 �ðp� qÞ2 þ 4pq
� �

sin �

64fp2q2
: ð26gÞ

For approximating plane-elliptical surfaces with no sagittal

curvature, set aij coefficients with j > 0 to zero.

Analysis in cases relevant to soft X-ray geometries shows

that fourth-order series approximations may be accurate to

tenths of a nanometer with the largest discrepancies in the

corners of the domain, where beam intensities may be low.

6. Alternative solutions

Several previous authors have offered solutions to the ellip-

soidal or plane-elliptical shape relevant for X-ray optical

designs, and these expressions take a variety of forms. The

accuracy of any solution is numerically verifiable by calcu-

lating the total path length from the object to the image point,

with a single reflection, considering all points on the surface:

the distance should be uniformly equal to p + q. Indeed, while

other solutions are derived from coordinate transformations,

equation (17) flows directly from the constant path length

requirement of Fermat’s principle.

For X-ray optics, the earliest published expression for the

ellipsoidal surface, and the resulting slopes and curvatures,

may have been given by Rah et al. (1997), using a set of

expressions based on the conjugate distances and the central

angle. Although the form of that equation is significantly

different than equation (17), it produces identical results

numerically. It is not clear from the context or the references

how it was derived.

Rommeveaux presented a geometric (2D) ellipse solution

(Rommeveaux et al., 2007) based on coordinate rotation and

translation from the Type I ellipse to the mirror-centered

coordinates. The solution utilizes the central slope of the

mirror (in the Type I coordinate system), �, that is not solved

in the text, but is given here in equation (12).

In the context of optimized mirror bending, McKinney et al.

(2011) also derived a planar ellipse description using a coor-

dinate transformation and a quadratic expression for the

elliptical shape. The mirror height function, equation (B6)

therein, contains an error of an omitted x. The final term in

the numerator should be x ðr� r 0Þ sin 2�, and when corrected

produces numerical results identical to equation (17).

McKinney et al. also comment on the relation of the solution

to the paraboloid case where p!1.

More recently, Yashchuk et al. (2019) provided a planar

ellipse solution involving a nested coordinate transformation,

from the Type I frame. In the x = 0 plane, it also proves to

be numerically identical to equation (17).

The reader is advised that some authors define the incident

angle from the surface normal, not by the glancing angle as

defined here.

7. Summary

We have derived closed-form expressions for ellipsoidal

surfaces most applicable in reflective optics, and X-ray optics

in particular, where these surfaces are widely used. Arising

from Fermat’s principle, the equations are based on the object

distance, image distance, and glancing angle of incidence at the

center of the mirror, {p, q, �}. Representation in the mirror-

centered coordinate system is most convenient for design,

modeling, fabrication, and testing; while a representation of

the congruent ellipsoid in the coordinate system where it is

centered and aligned with the axes simplifies the extraction of

the widely used ellipse parameters, a, b, c, and e.

Polynomial series approximations of the surface shape are

useful in many applications, and can simplify the extraction

of curvatures and slopes, yet the closed-form expression

enables calculations to be made with arbitrarily high accuracy

for computation.

Path-length optimization is commonly used to design or

study complex optical systems with one or more optical

surfaces. Yet tracing arbitrary rays through multiple reflec-

tions (or refractions) poses a challenge for analytical methods,

except in paraxial cases or with special surfaces. The analytical

approach applied here is effective largely because the input

and output waves are simple and there is only one reflection

to consider.
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