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X-ray topography exerting the super-Borrmann effect has been performed using

synchrotron radiation to display dislocation images with a high-speed and high-

resolution CMOS camera. Forward-transmitted X-rays are positively employed

instead of reflected X-rays to reveal dislocations in relatively thick crystals by

simultaneously exciting a pair of adjacent {111} planes owing to the super-

Borrmann effect. Before the experiment, minimum values of the attenuation

coefficients Amin
P for � and � polarizations of the incident X-rays in the three-

beam case are calculated. Results demonstrate that Amin
P for both polarizations

are almost 20 times larger than those in the two-beam (usual Borrmann effect)

case. The transmitted X-rays can be used to confirm the efficacy of taking

topographs under the super-Borrmann conditions, as well as under multiple-

diffraction conditions. Furthermore, super-Borrmann topographs can be

considered for relatively thick crystals, where a conventional Lang X-ray

topography technique is difficult to apply.

1. Introduction

The effect of anomalous transmission can be enhanced

(Borrmann & Hartwig, 1965) if the Bragg condition is satisfied

for the 111 and �1111 reflections simultaneously in the wide-

angle diagram of perfect germanium (Ge) crystals with

thickness t = 0.8 mm and 1.2 mm with Cu K� radiation.

Enhanced intensity spots for the 111 and �1111 reflections

appear at the Kossel line intersection of the T111 and T�1111

traces of the reflected beams, respectively. Furthermore,

enhanced intensity spots for the 111 and �1111 reflections appear

on the R111 and R�1111 traces of the transmitted (refracted in the

strict sense) beams, respectively, and are symmetrical to the

intersection point of the T111 and T�1111 traces with respect to

the respective reflecting planes. Calculation results and inter-

pretation for the decrease in the absorption coefficient was

provided (Hildebrandt, 1966, 1967) for the enhanced spots in

the 111; �1111=200 three-beam case (/hkl means �g–h when g =

111 and h = �1111). Later, the theoretical understanding based

on detailed calculation was advanced (Feldman & Post, 1972),

and was confirmed experimentally (Uebach & Hildebrandt,

1969; Hildebrandt, 1978).

Other combinations of simultaneous reflections for three-

beam cases such as 111; 1�11�11=022 (Umeno & Hildebrandt,

1975) and 220; �220�22=422 (Umeno, 1972) were investigated. The

Borrmann effect for four-beam and six-beam cases involving

220 reflections was found to be also enhanced (Joko &

Fukuhara, 1967). Theoretical explanations were also discussed

by Afanasev & Kohn (1975, 1976, 1977). This enhanced

Borrmann effect is called the ‘super-Borrmann’ effect

(Lang, 1998).
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In terms of the application of the super-Borrmann effect to

X-ray topography to image lattice defects in crystals, such as

dislocations, as well as conventional X-ray topography, few

reports have been published probably owing to a too low

X-ray source intensity and large X-ray beam divergence to

develop clear defect images for a wide visual field. However,

since the availability of synchrotron radiation, X-ray topo-

graphy can be applied for imaging lattice defects in crystals

by choosing the correct X-ray wavelength. In addition, it was

previously reported that topographs combined with a high-

speed and high-resolution CMOS camera taken by employing

forward-transmitted X-rays under multiple diffraction condi-

tions (bright-field X-ray topographs) can reveal dislocations

without noticeable image deformations (Tsusaka et al.,

2016, 2019).

Furthermore, as a major advantage, it is expected that the

forward-transmitted X-rays riding on the super-Borrmann

effect also reveal dislocations existing in relatively thick

crystals by simultaneously exciting a pair of adjacent {111}

planes such as (111) and ð�1111Þ where conventional Lang X-ray

topography is difficult to apply. Therefore, this study deals

with X-ray topography performed under three-beam multiple-

diffraction conditions for thick Ge crystals using synchrotron

radiation.

2. 111; �1111=200 three-beam case

Fig. 1 shows an example of 111; �1111=200 three-beam multiple

diffraction in reciprocal space of a perfect Ge crystal. Note

that the �1111 beam is not drawn here considering that it passes

symmetrical to the 111 beam with respective to the (100) plane

of symmetry in order to simplify calculation of the absorption

decreases controlling the super-Borrmann effect. Figs. 1(a)

and 1(b) demonstrate two cases of different energy of the

incident X-rays for E = E1 and E = E2, respectively, which is

higher than E1. The black dashed triangle in Fig. 1 comprises

the original Ko, K111 and g111, where Ko is the incident X-ray

wavevector, K111 is the 111-reflected X-ray wavevector and

g111 = K111 � Ko is the diffraction vector of the 111 reflection

lying on the same plane. Rectangles OPQR and PP 0O 0O

represent projections on ð01�11Þ and (100), respectively. The

lengths of sides PQ, OP and PP 0 are given as follows,

PQ ¼ OQ
�� �� cos ’ ¼

1ffiffiffi
3
p g111

�� �� ¼ 2ffiffiffi
3
p k sin �;

OP ¼ OQ
�� �� sin ’ ¼

ffiffiffi
2
pffiffiffi

3
p g111

�� �� ¼
ffiffiffi
8
pffiffiffi

3
p k sin �;

PP 0 ¼ XLo ¼ k sin!;

where ! is an elevation angle of Ko (or K111) from the

rectangle OPQR parallel to the 0�111
� �

entrance surface. It is

clear that both PQ and OP are independent of E; however,

PP 0 becomes larger when E increases, as observed in Figs. 1(a)

and 1(b). Then, we put a unit vector of Ko as so and unit

vectors of the polarization components of Ko as ro and po, for

horizontal and vertical polarizations, respectively. ro lies in the

01�11
� �

base plane and is perpendicular to so. Therefore, po is

also perpendicular to so and ro.

Next, we put K s
111½0�, K �

111½0� and K�
111½0� in Fig. 1 as compo-

nents of K111 in the so, ro and po directions, respectively. The

magnitudes of these vectors were calculated as k cos 2�,
ð2=

ffiffiffi
3
p
Þ k sin � and 2k sin � ½ð2=3Þ � sin2 ��1=2, respectively. The

lengths of sides OX and XP were found to have the following

values,

OX ¼ QX ¼ QLo cos! ¼ k cos!

¼

ffiffiffi
3
pffiffiffi

8
p 2k sin �ð Þ ¼

ffiffiffi
3
pffiffiffi

2
p k sin �;
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Figure 1
Schematic of 111; �1111=200 three-beam multiple diffraction in reciprocal
space of Ge, where only the 111 reflection is represented, considering the
�1111 beam travels in a symmetrical direction with the plane of symmetry
(100) at incident X-ray energies of E = E1 in (a) and E = E2 (> E1) in (b)
with rectangles OPQR and PP 0O 0O representing projections on the
01�11
� �

and (100) planes, respectively. 01�11
� �

: entrance surface; Ko: incident
X-ray wavevector; K111: 111-reflected X-ray wavevector; g111: diffraction
vector of the 111 reflection.



XP ¼ OP�OX ¼

ffiffiffi
2
pffiffiffi

3
p �

ffiffiffi
3
pffiffiffi

8
p

� �
2k sin �ð Þ

¼
1ffiffiffiffiffi
24
p 2k sin �ð Þ ¼

1

3
OX:

Then, we obtained cos! = ð
ffiffiffi
3
p
=
ffiffiffi
2
p
Þ sin � and sin! =

½1� ð3=2Þ sin2 ��1=2 as a result for the plane parallel to the

ð0�111Þ entrance surface.

Since K�1111 is symmetrical with K111, jK �
�1111½0�
j = �jK �

111½0�j;

however, the so, po components of K�1111 and K111 are identical.

Consequently, the refracted beam Ko and two reflected beams

K111 and K�1111 are summarized as follows,

Ko

K111

K�1111

0
B@

1
CA ¼

k

1 0 0

cos 2� � 2ffiffi
3
p sin � 2 sin � 2

3� sin2 �
� �1=2

cos 2� 2ffiffi
3
p sin � 2 sin � 2

3� sin2 �
� �1=2

0
BB@

1
CCA

so

ro

po

0
B@

1
CA: ð1Þ

3. Absorption coefficients in the three-beam
diffraction cases

Since the calculation process for the absorption coefficient in

the three-beam case under Cu K�1 radiation has already been

provided by Authier (2001), explanation of the calculation will

be kept to a minimum. Based on the fundamental equations

of X-ray dynamical theory, the projections of the electric

displacements D in the three-beam case to the plane normal to

Ko can be written for the three beams as follows,

K2
o � k2

k2
Do ¼ �oDo þ ��11�11�11D111 o½ � þ �1�11�11D�1111 o½ �;

K2
111 � k2

k2
D111 ¼ �oD111 þ �111Do 111½ � þ �200D�1111 111½ �;

K2
�1111
� k2

k2
D�1111 ¼ �oD�1111 þ ��1111Do �1111½ � þ ��2200D �1111½ �:

It is possible to rewrite the above equations by using excita-

tion errors �o, �111, � �1111,

2�oDo �k��11�11�11D111½o� �k�1�11�11D�1111½o� ¼ 0;
�k�111Do½111� þ2�111D111 �k�200D�1111½111� ¼ 0;
�k��1111Do½�1111� �k��2200D111½�1111� þ2� �1111D�1111 ¼ 0:

ð2Þ

Since the 200 reflection and �2200 reflectin are forbidden (�200 =

��2200 = 0), the above equations are expressed as follows,

2�oDo �k��11�11�11D111½o� �k�1�11�11D�1111½o� ¼ 0;
�k�111Do½111� þ2�111D111 þ0 ¼ 0;
�k��1111Do½�1111� þ0 þ2� �1111D�1111 ¼ 0:

ð3Þ

The two relations are obtained from the second and third lines

of equation (3) shown above,

D111 ¼
k�111

2�111

Do 111½ � ¼
k�111

2�111

Do �
K111 �Do

K111
2 K111

� �
;

D�1111 ¼
k��1111

2� �1111

Do½�1111� ¼
k��1111

2� �1111

Do �
K�1111 �Do

K 2
�1111

K�1111

 !
:

From Do[111] and Do½�1111� one can obtain D111[o] and D�1111 o½ � using

a vector formula A � (B � C) = (A �C)B � (A � B)C in a

similar way to that described by Authier (2001). By substi-

tuting D111[o] and D�1111 o½ � thus obtained in the first line of

equation (3), we obtain a relation involving only Do. If we

decompose Do into two components, D�
o, parallel to the plane

of symmetry, and D�
o , perpendicular to the plane of symmetry,

Do ¼ D�
oro þD�

o po:

The first line of equation (2), which is

X ¼ 2�oDo � k��11�11�11D111 o½ � � k�1�11�11D�1111 o½ � ¼ 0;

can be replaced using two scalar values D�
o and D�

o , given as

follows,

X ¼ AD�
oro þ B D�

opo þD�
o roð Þ þ CD�

o po ¼ 0; ð4Þ

where A, B and C are the coefficients of D�
oro, D�

opo þD�
o ro

and D�
o po, respectively,

A ¼ 8�o�111��1111 � k2�111��11�11�11 1�
4

3
sin2�

� �
2�111 þ 2��1111

� �
;

B ¼ k2�111��11�11�11

4ffiffiffi
3
p sin2 �

2

3
� sin2�

� �1=2
" #

2�111 � 2��1111

� �
;

C ¼ 8 �o�111��1111 � k2�111��11�11�11 1� 4 sin2 �
2

3
� sin2�

� �� 	
� 2�111 þ 2��1111

� �
:

Considering X can be separated into ro and po,

X ¼ AD�
o þ BD�

oð Þ ro þ BD�
o þ CD�

oð Þ po ¼ 0: ð5Þ

Therefore, we can derive the determinant as follows,

A B

B C

� �
D�

o

D�
o

� �
¼

0

0

� �
;

and hence, inevitably,

det
A B

B C

� �
¼ AC � B2 ¼ 0:

Note that the components of Ko, K111 and K�1111 are given by

equation (1) and �111 = ��1111. Therefore, we understand that B

vanishes, and hence AC also vanishes.

From the above considerations, A (coefficient of D�
oro) and

C (coefficient of D�
o po) should be null independently for ro

and po polarizations, respectively. As a result, we obtain

�o�111 ¼
1

2
k2�111��11�11�11 1�

4

3
sin2 �

� �

for ro polarization and
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�o�111 ¼
1

2
k2�111��11�11�11 1� 4sin2�

2

3
� sin2�

� �� 	

for po polarization.

Considering �o is minimum when |�o| = |�111|, the subsequent

values for �o can be given as

�o ¼ �
1ffiffiffi
2
p k �111��11�11�11

� �1=2
1�

4

3
sin2 �

� �1=2

ð6aÞ

for ro polarization and

�o ¼ �
1ffiffiffi
2
p k �111��11�11�11

� �1=2
1� 4 sin2 �

2

3
� sin2 �

� �� 	1=2

ð6bÞ

for po polarization.

In the two-beam case,

�o�111 ¼ �
2
o ¼

1

4
k2 P�111ð Þ P��11�11�11

� �
:

When |�o| = |�111|, satisfying the Bragg condition exactly,

�o ¼ �
1

2
kP �111��11�11�11

� �1=2
:

For a cubic crystal such as Ge, the structure factor F111 and

Fourier component of the dielectric susceptibility �111 for the

111 reflection are given as follows,

F111 ¼ 4 fGe 1þ ið Þ; �111 ¼ �
re�

2

�Vc

F111 r þ iF111 ið Þ;

where fGe is the atomic scattering factor of Ge, re is the clas-

sical electron radius, � is the wavelength of the X-rays, and Vc

is the volume of a unit cell of Ge. F111_ r and F111_ i are the real

and imaginary parts of the complex number F111, respectively.

The magnitudes of F111 and �111 can be derived from the

corresponding atomic scattering factors as follows,

F111

�� �� ¼ 4 12 þ ij j2
� �1=2

f
�� �� ¼ 4

ffiffiffi
2
p

f111 r þ f111 i

�� ��;
�111

�� �� ¼ � re�
2

�Vc

4
ffiffiffi
2
p

f111 r þ f111 i

�� ��
 �
:

Then,

�111 i

�� ��
�oi

�� �� ¼ 4
ffiffiffi
2
p

f111 i

8 fo i

¼
1ffiffiffi
2
p :

The minimum value of the absorption coefficient in the g,

h=ðg� hÞ = 111; �1111=200 three-beam case is given as follows,

	e ¼ 	o 1� P
�111 i

�� ��
�o i

�� ��
 !

; ð7Þ

where 	o is the normal absorption coefficient and �111_i and

�o_i are imaginary parts of �111 and �o, respectively.

The minimum attenuation coefficient is AP
min =

exp½�	eðt=
oÞ�, where t is the slab thickness and 
o = nhkl � so

is a direction cosine of the incident X-ray wavevector Ko (its

unit vector is so) to nhkl , the normal to the X-ray entrance

surface. In the 111; �1111=200 present three-beam case, it is

found from Fig. 2 that the direction cosine 
o is expressed as


o ¼ cos
�

2
� !


 �
¼ sin! ¼

XLo

�� ��
k
¼ 1�

3

2
sin2�

� �1=2

; ð8Þ

for Ko to n0�111.

However, the X-ray energy in the present experimental case

using synchrotron radiation was E = 10 keV and the Ge slab

thickness was t = 0.05 cm with the (100) entrance surface.

Because the lattice parameter of Ge is a = 0.56754 nm and

the Bragg angle of the 111 reflection becomes �111 = 7.2458�

leading to sin �111 = 1:23984=½2 a=
ffiffiffi
3
p� �

E � = 0.12613, we can

derive 
o for nhkl = n001 from Fig. 2 as follows,


o ¼ cos !�
�

4


 �
¼

1ffiffiffi
2
p cos!þ sin!ð Þ

¼
1ffiffiffi
2
p

ffiffiffiffi
3

2

r
sin � þ 1�

3

2
sin2 �

� �1=2
" #

¼ 0:85165;

which corresponds to 31.608� as an angle between n001 and so.

In this case, the polarization factors P for the ro and po

components are introduced from equation (6) as

P ¼
ffiffiffi
2
p

1�
4

3
sin2 �111

� �1=2

ð9aÞ

for ro polarization and

P ¼
ffiffiffi
2
p

1� 4 sin2 �111

2

3
� sin2 �111

� �� 	1=2

ð9bÞ

for po polarization

This makes it possible to calculate the effective absorption

coefficient 	e and the minimum attenuation coefficient AP
min in

the 111; �1111=200 three-beam case for the Ge slab having the

(001) entrance surface with thickness of 0.05 cm, as demon-

strated in Table 1, by retrieving the data on the attenuation

length from CXRO (https://henke.lbl.gov/optical_constants/
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Figure 2
Schematic of the relation between Ko, the wavevector of the incident
X-rays, and n001, the (001) surface normal, or n0�111, the 0�111

� �
surface

normal. Angles ð�=2Þ � ! and !� ð�=4Þ correspond to direction cosines

o of Ko to n001 and n0�111, respectively.



atten2.html). Furthermore, it was observed that AP
min for both

polarizations in the three-beam case are approximately 20

times the values in the two-beam case, due to which the

phenomenon is called the super-Borrmann effect.

4. Topography experiment using the super-Borrmann
effect for Ge crystals

To take X-ray topographs with minimized image deformation,

we employed forward-transmitted (but refracted) X-rays that

satisfied the Bragg conditions for the two {111} adjacent planes

lying symmetrically with respect to the {100} plane of

symmetry, as demonstrated in Fig. 3. An X-ray diffraction

goniometer with an X-ray source of approximately

1.2 mm � 1.2 mm was used with 10 keV X-rays from the

synchrotron radiation through a silicon double-crystal mono-

chromator at the BL24XU8 beamline of SPring-8 (Tsusaka

et al., 2001), similar to previously reported multiple-beam

diffraction topography (Tsusaka et al., 2016, 2019). In order to

avoid the harmonics of the incident synchrotron beam, the

usual detuning treatment was carried out before carrying out

the topography experiment.

Various interference patterns on diffracted and transmitted

images with defect appearance were also studied using a

coherent X-ray beam under multiple-diffraction conditions

(Okitsu et al., 2003; Okitsu, 2003). However, in the present

case, topographic images were taken directly by the forward-

transmitted X-ray beam instead of the diffracted X-ray beam

using an X-ray imaging detector (Hondoh et al., 1989). The

detector comprises a 20 mm-thick Gd3Al2Ga3O12 (GAGG)

scintillator, relay lens optics and a high-speed CMOS camera

(Hamamatsu, C11440-22CU). This detector resolved a 1 mm

line-and-space pattern.

A Ge slab of dimensions 10 mm (width) � 14 mm

(height) � 0.5 mm (thickness) and the (001) surface was

prepared for the super-Borrmann topography experiment.

The slab was rotated in the clockwise direction around the

[100] axis until bright spots corresponding to the reflections

from two adjacent {111} planes, for example (111) and �1111
� �

,

could be recognized on a fluorescent sheet. It is clear that

this multiple (n-beam) diffraction from a single crystal is not

considered to be so-called umweganregung (Reninger,

1937a,b) but simply simultaneous excitation of the plural

diffractions. After confirming the double fluorescent spots by

the two 111 reflections on the sheet, the images formed by

the forward-transmitted beam were directly captured by the

CMOS camera. As demonstrated in Fig. 3, an adjacent pair of

{111} planes was selected by rotating the slab 90� clockwise

around the normal to the (001) slab surface.

Figs. 4(a)–4(c) show a fluorescent spot from (a) the directly

transmitted X-ray beam denoted as ‘0’, (b) the direct beam

and the 111 reflected beam, and (c) the direct beam, the 111

reflected beam and the �1111 reflected beam. It can be easily

noticed that the triple fluorescent spots in Fig. 4(c) are much

brighter than those in Fig. 4(b), indicating the super-Borrmann

effect. The shining light on the right-hand side of Fig. 4(c) is

due to a specular reflection by the Ge crystal surface from the

111 reflection spot on the fluorescent sheet. After the triple

fluorescent spots were recognized with nearly the same

brightness by sample rotation adjustment around [100] and

[001], the topographic image formed by the transmitted beam

was captured by the CMOS camera. During the usual Borr-

mann topography adjustment procedure, no clear dislocation

images were recognized on the monitor.

Fig. 5 shows one of the topographs taken under the super-

Borrmann conditions shown in Fig. 4(c) using a pair of 111 and
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Figure 3
Incident X-rays Ko and reflected X-rays K111 and K�1111 simultaneously
satisfying the Bragg conditions for the 111 and �1111 reflections,
respectively, where sample rotations around [001] and [100] are
performed, respectively, to select a pair of {111} planes and for Bragg
condition adjustment to satisfy the individual three-beam diffraction
condition.

Figure 4
Reflection spots on a fluorescent sheet. (a) Directly transmitted X-ray
beam denoted as ‘0’, (b) direct beam and 111 reflected beam (suggesting
the usual Borrmann case) and (c) direct beam and 111 and �1111 reflected
beams (suggesting the super-Borrmann case).

Table 1
	o, 	e, AP

min for ro and po polarizations in the 111; �1111=200 three-beam
reflection case for a Ge slab (thickness: 0.05 cm; X-ray entrance surface:
(100); X-ray energy: 10 keV).

Polarization

Linear
absorption
coefficient
	o

Polarization
component
P

Effective
absorption
coefficient
	e

Minimum
attenuation
coefficient AP

min =
exp �	et=
oð Þ

ro 192.213
1.380 4.638 0.672

po 1.349 8.878 0.594



�1111 reflections without deformation correction. Considering

the X-ray source is approximately 1.2 mm � 1.2 mm in size,

four shots of topographic images are pasted together to

achieve a wide-area topograph. Regarding the usual Borr-

mann topography (two-beam case), the images of the dis-

locations correspond to local lower transmitted intensities (in

the forward-refracted direction) or lower diffraction inten-

sities (along the diffraction direction), since crystal imperfec-

tion can destroy the Borrmann effect. This is also true for the

current super-Borrmann topography (three-beam case), since

double excitation of the 111 and �1111 reflections only enhances

the Borrmann effect, i.e. black contrast on the camera monitor

corresponds to the local lower diffraction intensity and white

contrast corresponds to the local higher intensity, a phenom-

enon contradictory to that on negative film.

There are four combinations of two adjacent 111 reflections,

i.e. 111 and �1111 reflections (called A-type), �1111 and �11�111

reflections (B-type), �11�111 and 1�111 reflections (C-type), and 1�111

and 111 reflections (D-type). Additionally, there are two

combinations of diagonal 111 reflections, i.e. 111 and �11�111

reflections (E-type), and �1111 and 1�111 reflections (F-type).

Therefore, if one observes dislocation images disappearing

only in an A-type topograph, the dislocation should have

a Burgers vector of ð1=2Þ 01�11
� 


, considering this vector is

commonly perpendicular to both [111] and �1111
� 


. Similarly,

from the invisibility rule g � b = 0, where g is the diffraction

vector and b the dislocation Burgers vector, B-, C- and D-type

topographs do not include any images of the dislocations with

Burgers vectors of, respectively, (1=2Þ 101½ �, ð1=2Þ 011½ � and

ð1=2Þ �1101
� 


. However, the combination of diagonal 111

reflections (E- and F-type) does not develop into the super-

Borrmann effect owing to the existence of �220 instead of �200

in equation (2). According to the partial lack of the super-

Borrmann conditions, Burgers vectors of all the dislocations

cannot be determined completely by only observing the

A-, B-, C- and D-type topographs. Nevertheless, we can

conclude that the Burgers vector of the dislocations dis-

appearing only on the A-type topograph should belong to

ð1=2Þ 01�11
� 


. For example, some parts of A- and B-type topo-

graphs are shown in Figs. 6(a) and 6(b), respectively, for the

same part of the specimen. The dislocation configurations

circled in red can be seen in both topographs.

5. Conclusions

In this study, we conducted synchrotron X-ray topography

exerting the super-Borrmann effect for imaging dislocations

using a CMOS camera. Forward-transmitted X-rays can reveal

dislocations in relatively thick crystals by simultaneously

exciting a pair of adjacent {111} planes owing to the super-

Borrmann effect. Super-Borrmann topographs can be

captured for relatively thick crystals, even when a conven-

tional Lang X-ray topography technique is difficult to apply.

Prior to the experiment, the minimum attenuation coeffi-

cients A�
min and A�

min for �- and �-polarizations, respectively, of

the incident X-rays in the three-beam (super-Borrmann) case

were calculated. It was found that A�
min and A�

min were almost

20 times larger than those in the two-beam (usual Borrmann

effect) case.

Although it is possible to determine Burgers vectors for

some of the dislocations based on the invisibility criteria, it is

difficult to finalize the Burgers vectors of most dislocations

considering that the employment of a pair of diagonal {111}

planes does not produce the super-Borrmann effect.

In addition to the topographs taken by employing forward-

transmitted X-rays under multiple-diffraction conditions

(bright-field X-ray topographs), the forward-transmitted

X-rays riding on the super-Borrmann effect also reveal

dislocations existing in comparatively thick crystals by simul-

taneously exciting a pair of adjacent {111} planes such as (111)

and �1111
� �

. Therefore, this study deals with X-ray topography
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Figure 6
X-ray topographs of a germanium slab taken by (a) simultaneous 111 and
�1111 reflections and (b) simultaneous �1111 and �11�111 reflections with
deformation correction where dislocation configurations circled in red in
(a) and (b) correspond to each other.

Figure 5
X-ray topograph of a germanium slab taken by simultaneous 111 and �1111
reflections without deformation correction. Four shots of images are
pasted together to obtain a wide-area topograph.



using synchrotron radiation performed under three-beam

multiple diffraction conditions exerting the super-Borrmann

effect for thick Ge crystals. Future research will attempt to

experimentally detect dislocation behaviors around the very

initial growth stage in the necking parts of dislocation-free

silicon crystals.

It was clarified that forward-transmitted X-rays using

synchrotron radiation can be used to confirm the efficacy

for capturing topographs not only under usual multiple

diffraction conditions but also under super-Borrmann

conditions.
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