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A new algorithm to perform coherent mode decomposition of undulator

radiation is proposed. It is based on separating the horizontal and vertical

directions, reducing the problem by working with one-dimension wavefronts.

The validity conditions of this approximation are discussed. Simulations require

low computer resources and run interactively on a laptop. The focusing with

lenses of the radiation emitted by an undulator in a fourth-generation storage

ring (EBS-ESRF) is studied. Results are compared against multiple optics

packages implementing a variety of methods for dealing with partial coherence:

full two-dimension coherent mode decomposition, Monte Carlo combination

of wavefronts from electrons entering the undulator with different initial

conditions, and hybrid ray-tracing correcting geometrical optics with wave

optics.

1. Introduction

The migration to fourth-generation storage rings has signifi-

cantly improved the brilliance and coherence of X-ray

synchrotron sources. The transverse coherent fraction of the

new sources is increased by at least one order of magnitude

with respect to the third-generation sources (typically from

10�3 to 10�2 at 10 keV). This has a beneficial impact1 for

many applications requiring coherent beams, such as X-ray

photon correlation spectroscopy, coherent diffraction imaging,

propagation-based phase-contrast imaging, and ptychography

(Paganin, 2006). However, the diffraction effects produced by

the interaction of the beam with the edges and distortions of

the optical elements strongly affect the quality of the beam.

Diffraction patterns show higher visibility due to the increased

coherent fraction in new sources, and its accurate modelling

is fundamental for the design and optimization of beamlines.

The physical models for the limiting cases of full incoherence

(usually simulated by geometrical ray-tracing) or by propa-

gating a single wavefront (valid for fully coherent radiation)

are not sufficient for a complete understanding of the beam

transport (Sanchez del Rio et al., 2019). The coherent fraction

of the radiation emitted by new generation storage rings,

although much improved with respect to previous generations,

is still of the order of a few percent at hard X-rays, which

means that it is mandatory to account for partial coherence.

In recent years, several modelling approaches have been
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1 At third-generation light sources, very restrictive pinholes and slits were used
for spatial filtering with a dramatic loss of flux when improving and tuning the
coherent fraction of the beam. Due to the increased coherent fraction at
fourth-generation sources, much less restrictive filtering is necessary, with
higher photon transmission as a consequence.
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demonstrated to work for beamlines using undulator radia-

tion. Starting from incoherent beams, Shi et al. (2014)

proposed some correction algorithms to include diffraction

effects that occur with coherent radiation. More accurate

methodologies exploit the well known propagation of

coherent wavefronts. The partial coherence is treated by

propagating a set of wavefronts that all together describe

the undulator radiation. Two approaches are possible. One

consists of calculating the wavefronts emitted by electrons

entering the undulator with different initial conditions,

sampled by Monte Carlo from the electron beam emittance

(multi-electron in SRW) (Chubar et al., 2011). A second

method, the coherent mode decomposition (CMD), assigns

these wavefronts to the coherent modes, which are the

eigenfunctions of the cross-spectral density (CSD), and can

be numerically calculated for the undulator source (Glass &

Sanchez del Rio, 2017). A full treatment of CMD with two-

dimensional (2D) wavefronts was implemented a few years

ago in the COMSYL package (Glass, 2017a). Both methods

require the use of high-performance computer (HPC)

resources that are not always at hand. The problem in CMD

is to manipulate and diagonalize a huge stack representing

the CSD with enough precision, which is a four-dimensional

(4D) entity when using 2D wavefronts. After the release of

COMSYL, different techniques have been proposed to deal

with the magnitude of the problem. The single-value-decom-

position method presents some advantages when used for

the diagonalization of the CSD (Xu et al., 2022). When

the wavefronts are highly convergent or divergent, sufficient

sampling of the electric field phase requires a very fine grid.

In these cases, the sampling is dictated by a quadratic phase.

A method developed by Li & Chubar (2022) consists of

subtracting the quadratic phase which is analytically propa-

gated, thus reducing the computational effort to limits

acceptable by an average laptop.

In this paper, we propose a new method for dealing with

partial coherence of undulator beams. The key point is to

reduce the dimensionality of the problem to deal with one-

dimensional (1D) wavefront cuts (i.e. separating horizontal

and vertical directions).

We demonstrate that whenever this 1D approximation can

be used, like in many cases of practical interest, the results

are comparable with the other 2D methods but require much

fewer resources, thus allowing simulations using a standard

laptop.

The new code, referred to here as WOFRY1D, is bench-

marked against other existing codes that are available in the

OASYS simulation ecosystem (Rebuffi & Sanchez del Rio,

2017). The optical system studied here derives from the

project for the new EBSL1 beamline at the upgraded EBS-

ESRF storage ring. We have compared results for different

set-ups implementing two refractive systems (transfocators),

plus a slit placed upstream of the transfocators. The beam

properties simulated by four different transfocator config-

urations are studied in detail using four packages available

in OASYS: (i) the novel 1D CMD, implemented in the code

WOFRY1D, (ii) full CMD in 2D with COMSYL (Glass,

2017a), (iii) SRW-ME: multi-electron simulations in SRW

(Chubar & Elleaume, 1998), and (iv) HYBRID ray-tracing as

described by Shi et al. (2014) and implemented in ShadowOUI

(Rebuffi & Sanchez del Rio, 2016).

2. Methods for describing partial coherent beams from
undulators in a storage ring

In this section, we summarize the basic theory underneath

partially coherent emission from electrons in storage rings.

We start by showing that a relativistic single electron emits

fully coherent radiation when passing through an undulator

magnetic field. We then move to the emission from relativistic

electron bunches showing that an electron beam with non-

negligible emittance will produce a partially coherent emission

and that a higher coherent fraction is associated with a

lower electron-beam emittance. Finally, we present the basic

principles underlining the numeric calculations within the

packages used.

2.1. Description of undulator emission

We quickly remind that an ultrarelativistic charged particle

following a curved trajectory [usually wiggly as produced by

alternated magnetic fields in insertion devices (IDs)] emits

radiation. This electric field can be calculated in the frame-

work of classical electrodynamics [see, for example, equation

(14.14) of Jackson (1999)]. In the frequency domain, the

electric field at an observation point r = (x, y, z) can be written

as

E!ðrÞ ¼
ie!

4�c�0

Z1
�1

n� ½ðn� bÞ � _bb �

ð1� b � nÞ3
þ

c

�2R

n� b

ð1� b � nÞ3

" #

� exp
�
i! ðt � n � r=cÞ

�
dt; ð1Þ

where the subscript ! indicates the photon frequency, e is the

electron charge, c the velocity of light, �0 the electric constant,

� ’ 1957E [GeV] is the Lorentz factor with E being the

electron energy in practical units, b = _rr=c is the electron

relative velocity and the dot denotes the time derivative. Also

n(t) = r � re(t)/|r � re(t)| is the unit vector pointing from the

particle to the observation point r; the electron trajectory is

represented by re(t), which is completely determined by the

3D distribution of the magnetic field inside the ID and the

electron initial conditions prior to entering it. The origin of the

vector r is usually at the centre of the insertion-device/straight-

section. Figure 1 serves as a visual aid to equation (1) and its

parameters.

Equation (1) describes a fully spatially coherent field and

has been conceptualized for a single electron. A common

abstraction that derives from it is the ‘filament beam’, where

Ne electrons overlap in space following the same trajectory

re(t), which is useful to represent an idealized zero-emittance

storage ring. In this case, a multiplicative factor Ne is applied

to equation (1). Much like the single electron emission, the

filament beam also radiates a fully transverse coherent

wavefront.
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Several codes are available in the synchrotron community

to calculate the undulator emission characteristics in different

cases. The codes URGENT (Walker & Diviacco, 1992) and US

(Dejus & Luccio, 1994) compute undulator emission in the far-

field for undulators with a sinusoidal magnetic field. The codes

SPECTRA (Tanaka & Kitamura, 2001) and SRW (Chubar &

Elleaume, 1998) are more generic as they calculate emission

in the near- and far-field for any electron trajectory (with

different initial conditions) and submitted to an arbitrary

magnetic field.

2.2. Electron beam distribution in storage rings

At any position s in the storage ring, an electron can be

described by five coordinates, S = (xe, �xe
, ye, �ye

, �E), repre-

senting the phase space coordinates and a term �E expressing

the relative deviation of the electron energy from the main

storage ring energy (also known as the energy spread). It

follows that at any given s the many electrons in a bunch

follow a 5D Gaussian distribution,

f ðSÞ ¼
1

ð2�Þ5=2 detðM�1Þ½ �
1=2

exp �
1

2
S

TMS

� �
; ð2Þ

with M as the inverse of the generalized variance 5 � 5 matrix.

A common assumption is that the variables are correlated only

if they are in the same plane (x or y). In some particular points

s where the covariance between spatial and angle terms is

zero, only the diagonal terms in M are non-zero: (1=�2
x , 1=�2

�x
,

1=�2
y , 1=�2

�y
, 1=�2

E). This is usually the case at the centre of the

straight sections, where the undulators are often placed. We

also assume that the electron bunch has a Gaussian distribu-

tion with �z along the longitudinal direction, as most particle

beams do [cf. x8 in Wiedemann (2019)].

2.3. Emission from electron bunches

Having summarized the coherent emission from a single

electron in Section 2.1 and how the electrons are statistically

distributed in a bunch (Section 2.2), we now turn our attention

to the emission from the electron bunch with finite emittance.

The total electric field emitted from all Ne electrons in a

bunch circulating in a storage ring is given by

E!;bunchðrÞ ¼
XNe

n¼ 1

E!;nðrÞ: ð3Þ

In terms of intensity,

��E!;bunchðrÞ
��2 ’ Ne

Z ��E!ðr;SÞ
��2 f ðSÞ dS

þ NeðNe � 1Þ

����
Z

E!ðr;SÞ f ðSÞ dS

����
2

: ð4Þ

The electric field E!ðr;SÞ is the emission by a single electron

with a trajectory defined by the undulator magnetic field and

electron initial conditions S at the observation point r [see

equation (1)]. The first term in equation (4) is a sum at r of the

intensity of every electron emission weighted by its probability

f, which describes temporally incoherent synchrotron radia-

tion (SR). The second term stands for the enhancement of the

intensity due to coherent superposition of the emission of

the Ne electrons, modelling temporally coherent synchrotron

radiation. It follows that Ibunch = IiSR + IcSR. For emitted

wavelengths � shorter than the electron bunch length (�z > �),

the power associated with the term IcSR vanishes quickly

(Hirschmugl et al., 1991; Wiedemann, 2019). Considering

typical undulator radiation emission, i.e. X-ray energy ranges

from a few hundred electronvolts to a few hundred keV, and

typical electron bunch lengths in storage rings (�T > 30 ps),

IcSR can be neglected when considering standard mono-

chromatization schemes in beamlines.2

Similarly, the mutual correlation of the electric field

between two observation points r1 and r2 is

�
E�!ðr1ÞE!ðr2Þ

�
¼
XNe

m¼ 1

XNe

n¼ 1

E�!m
ðr1ÞE!n

ðr2Þ

¼ N2
e

ZZ
E�!ðr1;S1ÞE!ðr2;S2Þ

� f ðS1Þ f ðS2Þ dS1 dS2; ð5Þ

where the superscript asterisk (�) indicates the complex

conjugate, the angular brackets h . . . i indicate the sum over

the bunches, r1 = (x1, y1, z1) and r2 = (x2, y2, z2) (see Fig. 1).

This equation is the cross-spectral density, that will be

discussed later and rewritten in a more manageable form.
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Figure 1
Spontaneous emission of relativistic electrons and propagation of wavefronts along the beamline.

2 Geloni et al. (2008) provide a counter-example discussing the high-resolution
monochromator of their reference 15.



2.4. Multi-electron Monte Carlo (SRW-ME)

Synchrotron radiation emitted by undulators in storage

rings is a fundamentally random process and should be treated

probabilistically. The SRW-ME algorithm used to account for

partial coherence implements equations (4) and (5) by indi-

vidually calculating the synchrotron emission (electric field) of

several electrons subjected to the initial conditions sampled

from f ðSÞ assuming these are uncorrelated and passing

through an arbitrary magnetic field describing the X-ray

source. Each resulting electric field from this Monte Carlo

sampling is then propagated through the beamline until the

observation point, where the contributions from different

electrons are added in intensity (Chubar et al., 2011). It is

impractical (and unnecessary) to account for the emission of

every single electron in a beam that very often has a current of

a few hundred mA. Electrons are then divided into so-called

macro-electrons (me), which is an abstraction that allows the

emission of several individual electrons to be grouped into one

‘superparticle’ emitting a fully coherent wavefront but with

resulting intensity given by the total intensity Ibunch divided by

the number of macro-electrons Nme used in the simulation,

��E! bunchðrÞ
��2 ’ Ne

Nme

XNme�1

n¼ 0

��E!ðr;SnÞ
��2: ð6Þ

An advantage of the SRW-ME approach is that, since the

electric fields of the macro-electrons propagate independently

from each other, a convenient parallelization of the wavefront

propagations among many processors is possible, requiring the

use of HPC in most cases.

2.5. Coherent mode decomposition of undulator radiation

The cross-spectral density, generally represented as

Wðr1; r2;!Þ ¼
�
E�!ðr1ÞE!ðr2Þ

�
; ð7Þ

expresses the correlation of the emitted radiation between

any two spatial points r1 and r2. It is the fundamental object

that we will use to describe all partially coherent properties of

the synchrotron beams. We justify first, in the context of the

existing literature, the conditions of its usage for synchrotron

light. Then we present the CMD and its practical imple-

mentation in 2D (with COMSYL) and the proposed 1D

algorithm (with WOFRY1D).

2.5.1. Validity of CSD usage for emission in storage rings.
Geloni et al. (2008) show3 that, although synchrotron radiation

emission (a random process obeying Gaussian statistics) is not

intrinsically stationary nor homogeneous, the second-order

coherence theory of scalar fields as presented by Mandel &

Wolf (1995) can be applied when the following conditions are

observed:

(1) Radiation frequency ! is ‘sufficiently high’.

(2) e-bunch time-length �T is ‘sufficiently large’ so that

!�T � 1.

(3) Radiation bandwidth �! is not ‘too narrow’

(�! � 1/�T).

Excluding infra-red frequencies and below, condition (1)

holds for soft and hard X-rays; condition (2) is satisfied by

storage rings, where typically �T > 30 ps, but not at free-

electron lasers, where �T < 0.1 ps due to micro-bunching

effects; and, finally, condition (3) is generally met by standard

monochromatization schemes. This set of conditions, related

to the longitudinal electron-beam direction, ensures that

synchrotron radiation emission is a quasi-stationary (or a

wide-sense stationary) process.

In the (2D) transverse direction, following Geloni et al.

(2008), the source is quasi-homogeneous when (i) the intensity

slowly varies compared with the coherence length, and (ii) the

complex degree of coherence depends only on �r = r2 � r1.

The following additional conditions delimit the applicability of

quasi-homogeneity:

(4) Nx � 1 and/or Dx � 1.

(5) Ny � 1 and/or Dy � 1, with

Nx;y ¼
�2

x;y

�- Lu

; Dx;y ¼
�0 2x;y

�- =Lu

; ð8Þ

where �x,y and �0x;y represent the electron beam transverse

sizes and divergences, Lu is the undulator length (number of

periods Nu times the magnetic period �u) and �- = �/2�. If

conditions (4) and (5) are met with ‘and’, we have a Gaussian

quasi-homogeneous source. For third-generation synchrotron

light sources, condition (4) is met with ‘and’ and condition (5)

with ‘or’. Here the source is quasi-homogeneous and can be

separated in H and V, as shown by Geloni et al. (2008)

[equation (56)]. As the horizontal emittance reduces, as it

is the case of fourth-generation light sources (for the cases

studied here Nx = 13, Dx = 2.6, Ny = 0.4, Dy = 0.3), we slowly

approach a region where quasi-homogeneity breaks down.

2.5.2. Coherent modes, coherent fraction and coherent
length. The CSD in equation (7) is used to define the spectral

density4 as

Iðr;!Þ ¼ Wðr; r;!Þ; ð9Þ

for the case where r = r1 = r2. We also define the normalized

cross-spectral density function or spectral degree of coher-

ence5, hereafter referred to as DoC, as

	ðr1; r2;!Þ ¼
Wðr1; r2;!Þ

Iðr1;!Þ Iðr2;!Þ
� �1=2

: ð10Þ

The modulus value of equation (10) is limited to 0 	

j	ðr1; r2;!Þj 	 1, where |	| = 0 means total uncorrelation and

|	| = 1 denotes full correlation of the fluctuations at positions

r1 and r2 .

A well known result from coherence theory is the coherent

mode representation of partially coherent fields in free space
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3 During the review of this manuscript, the authors came across the work of
Trebushinin et al. (2022), which also covers the theoretical background of
undulator statistical properties.

4 Spectral density is sometimes loosely called intensity. The spectral density
and the intensity functions are equivalent for the stationary case. The same
holds for the CSD and the mutual optical intensity (MOI) (Mandel & Wolf,
1995).
5 It is sometimes called complex spatial (or spectral) degree of coherence, see
x4.3.2 in Mandel & Wolf (1995).



[see x4.7.1 in Mandel & Wolf (1995)]. It is possible to

decompose the CSD into an infinite sum of orthonormal

coherent modes,

Wðr1; r2;!Þ ¼
X1
n¼ 0

�nð!Þ�
�
nðr1;!Þ�nðr2;!Þ; ð11Þ

where �n (eigenvalues) are the intensity weights and �n are

the coherent modes (eigenfunctions). Some important char-

acteristics of this coherent mode decomposition are:

(1) The modes �n are orthonormal in the integral sense.

(2) The decomposition maximizes the CSD making the

truncation optimal,

�ð!Þ 2 R : 0 	 �iþ1ð!Þ<�ið!Þ; 8 i 2 N:

(3) The eigenvalues �n are a measure of the intensity of the

corresponding mode �n .

(4) We define the occupation 
 of the ith mode as its

normalized intensity,


ið!Þ ¼
�ið!ÞP1

n¼ 0

�nð!Þ
: ð12Þ

(5) Radiation is considered fully coherent if and only if there is

only a single mode.

From these arguments, it is now natural to rigorously define

coherent fraction (CF) as the occupation of the first coherent

mode,

CF ¼ 
0 ¼ �0ð!Þ
.X1

n¼ 0

�nð!Þ: ð13Þ

The transverse coherence length (CL) is related to the width

of a cut of the modulus of the DoC. There is no unanimous

accepted way of defining the CL, a parameter of practical

importance for daily beamline operations. Quantitative values

of CL are discussed in x5.1. Importantly, the blind application

of the van Cittert–Zernike theorem may lead to errors, as

discussed in x4.1 of Geloni et al. (2008), because this theorem

was originally derived for incoherent sources.

The interest in the coherent mode decomposition method

applied to the optical design of X-ray beamlines is manyfold:

(i) the possibility of propagating a partially coherent beam

along a beamline by just propagating coherent modes; (ii) the

ability to compute the CSD and therefore all the related

coherence parameters from the propagated modes; (iii) the

use of the coherent fraction (a scalar parameter) as a well

defined measure of how coherent is the beam at any position

of the beamline; (iv) the numerical storage of the Nm modes

that depend on two spatial variables is more economic than

the storage of the CSD, a complex function of many variables;

and (v) the infinite series converges smoothly to the CSD,

therefore the truncation at a limited number of modes Nm

always guarantees that it is the best possible reduced repre-

sentation of the CSD and can be quantified.

2.5.3. Coherent mode decomposition with COMSYL.

COMSYL (COherent Modes for SYnchrotron Light) is a

software package to perform the CMD of undulator radiation

in a storage ring (Glass, 2017a). A complete description of the

code is given by Glass (2017b) and here we summarize the

principles underlying it. Applications of this software for

beamline modelling at the ESRF-EBS are presented by Glass

& Sanchez del Rio (2017) and Sanchez del Rio et al. (2019).

COMSYL was used to study the specked structure of the CSD

and the presence of X-ray coherence vortices and domain

walls (Paganin & Sanchez del Rio, 2019).

Coherent mode decomposition consists of calculating �i

and �i in equation (11). This operation can be seen as the

‘diagonalization’ of W where the eigenfunctions are the

coherent modes (�i) and the eigenvalues their intensity

weights (�i). These are the solution of the homogeneous

Fredholm integral equation of the second kind,Z
Wðr1; r2;!Þ�iðr1;!Þ dr1 ¼ �ið!Þ�iðr2; !Þ: ð14Þ

The eigenvalue in equation (14) can be written

AW ½�i� ¼ �i�i; ð15Þ

where we define the Hermitian operator for a generic function

g as

AW ½g�ðrÞ ¼

Z
Wð~rr; r;!Þ gð~rrÞ d~rr: ð16Þ

A first look at the CSD expression [see equation (5)] is enough

to get an impression of how it is resource-intensive calculating

and storing this 6D function. For synchrotron beams it is

useful to decouple the longitudinal coordinate – along the

optical axis in a beamline (see Fig. 1) – so that the CSD

reduces to 4D, and wavefronts are 2D. We use W2D notation

for this CSD. Knowing the CSD at a given position z, that is,

W2Dðx1; y1; x2; y2;!; zÞ, it is possible to propagate it to another

position z0 and also backpropagate to the source position.

Kim (1986) developed a propagation theory of synchrotron

radiation using Wigner distribution. He introduced the

‘brightness convolution theorem’ stating that the source

brightness due to a collection of electrons randomly distrib-

uted in their phase space is calculated by a convolution of the

source brightness due to a reference electron with the electron

distribution function. COMSYL applies Kim’s brightness

convolution theorem in a plane (sx, sy) at s0 = �Lu /2, which is

where the electrons enter the undulator. This distance s0 is

taken from the centre of the ID (origin of the optical axis) –

see Fig. 1. We have [cf. equation (3.37) in Glass (2017b)]

W2Dðr1; r2;!; s0Þ ¼

Z
E�!ðr1 � reÞE!ðr2 � reÞ

� expðikhe�rÞ f ðSÞ dS; ð17Þ

where re = (xe, ye), he = ð�xe
, �ye

) and �r = r2 � r1. The electric

field E! is calculated using SRW in an arbitrary plane at a

distance z and then backpropagated to s0 using the standard

Fresnel free-space propagator (see Section S2 of the

supporting information).

COMSYL starts with a matrix method that discretizes the

cross-spectral density operator AW2D
in a step function basis

set [see equation (4.4) of Glass (2017b)]. The discretization
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is followed by an iterative diagonalization using SLEPc

(Hernandez et al., 2005). The implementation uses parallel

computation and requires the use of an HPC. The key point

of COMSYL is to avoid storing the full representing matrix

because it requires significant memory and computational

resources. It scales essentially with N2
x � N2

y where Nx and Ny

are the numbers of grid points in the x and y dimension,

respectively. Typical sizes for Nx and Ny can easily reach a few

hundred up to a few thousand. In the latter case, the memory

requirements would reach several thousand terabytes. To

reduce the memory requirements of the matrix method,

COMSYL uses a two-step method that first performs a

coherent mode decomposition for a zero divergence electron

beam and based on this decomposition performs a second

decomposition that takes the divergence into account. The

memory requirement for our undulator applications is dras-

tically reduced to about 4 � Nx � Ny � Nm where Nm is the

number of requested coherent modes. This allows the calcu-

lation of higher harmonics or higher emittance rings where

Nx � Ny � Nm .

The modes calculated with the just-described method can

be propagated along the beamline and used to compute the

spectral density and cross-spectral density at any point of

the beamline. These modes can be conveniently propagated

downstream of a beamline with SRW or WOFRY using the

OASYS environment (see x3). However, due to modifications

by optical elements (cropping/truncation and/or absorption),

the propagated wavefronts generally lose their orthonorm-

ality. Thus, for computing the CF at a given point of the

beamline, it is necessary to perform a new CMD with the

propagated CSD. It is possible to apply the very same method

used to compute the initial coherent modes, but COMSYL

implements the action of the integral operator [equation (14)]

directly to the coherent modes, which is much more economic

in terms of memory usage.

2.5.4. Coherent mode decomposition with separate hori-
zontal and vertical directions (WOFRY1D). Resuming the

discussion in x2.5.1, we now assume to be in a quasi-homo-

geneous regime. This allows us to decompose the CSD as a

product of horizontal and vertical cross-spectral densities,

W2Dðr1; r2;!; zÞ ¼ W2Dðr1; r2;!; zÞ
���

y1 ¼ y2 ¼ 0

�W2Dðr1; r2;!; zÞ
���

x1 ¼ x2 ¼ 0
ð18Þ

¼ W1Dðx1; x2;!; zÞ �W1Dðy1; y2;!; zÞ:

The CSD for the horizontal (x) direction is

W1Dðx1; x2;!; zÞ ¼
�
E�!ðx1; zÞE!ðx2; zÞ

�
ð19Þ

¼
X1
n¼ 0

�nð!; zÞ��nðx1;!; zÞ�nðx2;!; zÞ;

and similarly for the vertical direction (replacing x by y), with

�n the eigenvalues (scalars) and �n the 1D eigenfunctions. The

CSD described in equation (19) is now a 2D function. This

dimension reduction is very welcome as it becomes very easy

to store, manipulate and diagonalize the CSD using common

tools (e.g. the Python numpy and SciPy libraries). Much like

that presented in x2.5.3 for the COMSYL software, we

calculate the 1D undulator emission at an arbitrary plane

located at z from the origin using pySRU (Thery et al., 2016),

and backpropagate this field to the centre of the undulator

using WOFRY’s zoom propagator (see Section S3 of the

online supporting information). W1D is then obtained using

Kim’s brightness convolution theorem at z = 0, which is

effectively constructed using equation (3.51) of Glass (2017b).

This recipe is implemented in the WOFRY wavefront

propagation add-on in OASYS. For a typical beamline, two

calculations are done: one for the horizontal direction and

another for the vertical. These two results can be combined

to obtain the CSD W2Dðr1; r2;!; zÞ = W1Dðx1; x2;!; zÞ �

W1Dðy1; y2;!; zÞ, implying numerical tensor operations.

Similarly, the 2D spectral density is retrieved as Iðx; yÞ =

IðxÞ IðyÞ. This will be extensively used in later sections. Note

that if the intensity is stored in arrays, the product is indeed

an outer product. Finally, this decomposition gives rise to two

values of coherence fraction: CFx for the horizontal direction

and CFy for the vertical direction. The 2D CF can be retrieved

as CF = CFx � CFy. Like in COMSYL, the �n eigenfunctions

can be propagated to any position of the beamline like stan-

dard wavefronts. The propagated W1D can, again, be decom-

posed in coherent modes to obtain the CF after propagation.

The factorization in equation (18) has been discussed by

Geloni et al. (2008) [see their x3.1, equation (56)] where it is

stated that this rearranging of equation (7) is only valid for

quasi-homogeneous sources (see x2.5.1). In the context of the

Wigner distribution, this separation in horizontal and vertical

components has been discussed by various authors and is

believed to work well for undulator radiation with photon

energies near the resonance of odd harmonics (Bazarov, 2012;

Tanaka, 2014; Nash et al., 2021). The Cartesian factorization

in equation (18) is supposed to work well when the electron

beam parameters in the horizontal are different from the

vertical ones. The Cartesian separation does not work for

rotationally symmetric sources (round beams). However, the

Wigner function in this case (and therefore the CSD, being

related by a Fourier transform) can be treated as a 1D

problem, as suggested by Agarwal & Simon (2000) and

developed by Gasbarro & Bazarov (2014). It would be inter-

esting for future fourth-generation sources that will create

round beams to develop a CMD tool using polar coordinates,

also including wave propagators like those discussed by Li &

Jacobsen (2015).

2.6. Hybrid ray-tracing (HYBRID)

Simulations methods using ray-tracing are simpler and

faster than those using wave-optics, and they offer useful

insight when studying and designing a synchrotron beamline

(Sanchez del Rio et al., 2019). However, pure ray-tracing

methods (based on geometrical optics) are not adequate when

analyzing optical systems dealing with (partially or fully)

coherent beams subjected to strong diffraction effects (e.g.

beam clipping by either physical acceptance of an optical
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element or by slits and optical errors). It is possible to add

diffraction effects to the geometric methods, by convolution of

the beam divergence profiles calculated by ray-tracing with

those resulting from the diffraction integrals, then proceeding

with classical ray-tracing methods. This hybrid concept (Shi et

al., 2014) is implemented as an extension to the ray-tracing

code SHADOW (Sanchez del Rio et al., 2011) available in the

ShadowOUI (Rebuffi & Sanchez del Rio, 2016) add-on in

OASYS. Since its release, this HYBRID ray-tracing imple-

mentation has been successfully used as an efficient and fast

tool to design beamlines also including coherence effects (Shi

et al., 2017; Rebuffi & Shi, 2020; Lordano, 2022).

3. Propagation of wavefronts along the beamline

In terms of design using physical optics, an X-ray beamline

is composed of two main elements: drift spaces and optical

elements. The first category is handled with diffraction inte-

grals, and a brief explanation of the wavefront propagators

used by the software in Section 2 is presented here. Optical

elements can usually be represented by transmission elements

and their treatment is also covered in this section.

3.1. Drift spaces

Under the scalar theory, a generic wavefront obeying the

wave equation and completely described at a position z, that

is, E!(r), known for all the xy plane, will propagate (evolve)

between two parallel planes separated by a distance L = z0 � z

as

E!ðr
0
Þ ¼

k

2�i

Z
�

E!ðrÞ
expðikjr0 � rjÞ

jr0 � rj
cos � ds: ð20Þ

Equation (20) is the first Rayleigh–Sommerfeld diffraction

equation (Huygens–Fresnel principle) and is valid for the case

where |r0 � r|� �, with � = 2�/k. We define a normal vector

parallel to the optical axis (z-axis) ‘ so that � is the angle

between �‘ and the vector r0 � r; � is the xy plane in z where

the integration takes place with ds = dx dy (see Fig. 1). Further

simplification to equation (20) can be done using the paraxial

approximation. In this case, it is assumed that cos � ’ 1; and

that the term |r0 � r| = [(x0 � x)2 + (y0 � y)2 + L2]1/2 can be

expanded in a Taylor series with L2
� (x0 � x)2 and L2

�

(y0 � y)2. Retaining the quadratic term in the exponential

function, but dropping it for the denominator,

E!ðr
0
Þ ¼

k expðikLÞ

2�iL
ð21Þ

�

Z
�

E!ðrÞ exp
ik

2L

�
ðx0 � xÞ

2
þ ðy0 � yÞ

2
�	 


ds:

This approximation is known as the Fresnel diffraction inte-

gral and strategies for its numerical calculation are plenty

(Kelly, 2014; Goodman, 2017); see also Rees (1987), Stern &

Javidi (2004) and Zhang et al. (2020) for other practical

considerations.

The different wave-optics packages in use have different

implementations of these propagators. The selection of the

propagator and its parametrization (sampling, padding,

interpolation, etc.) is made depending on the particular char-

acteristics of the optical element and propagation distances.

SRW uses four different propagators, summarized in Section

S2 of the supporting information. WOFRY1D basically uses

two different propagators (see Section S3).

3.2. Optical elements

Optical elements will interact with the wavefront by

manipulating its amplitude and phase. A very wide range of

optical elements can be represented by the complex trans-

mission element,

T!ðrÞ ¼
�
TBLðrÞ

�1=2
exp

�
i’ðrÞ

�
; ð22Þ

which is applied to the electric field E!(r) as a multiplicative

factor (Cloetens et al., 1996). This thin-element approximation

can be expanded to represent thick optical elements by

applying the multi-slicing method, which represents an optical

element as intercalation of several thin elements (slices) and

free-space propagation between them (Paganin, 2006; Li et al.,

2017; Munro, 2019) (see Section S4 of the supporting infor-

mation).

A generic aperture (slit, pin-hole and beam-stop) is repre-

sented by a binary opaque object: it masks part of the wave-

front,

TBLðrÞ ¼
T; if r is inside A;
1� T; elsewhere:

	
ð23Þ

When the element is a slit, then T = 1. If it is a beamstop, then

T = 0. A is the region defined by the object boundary.

Absorption filters, test patterns, X-ray refractive lenses,

refractive correctors (free-form refractive optics), zone plates

and transmission gratings are usually well represented by this

thin-element approximation in projection approximation with

TBLðrÞ ¼ exp ½�2k�!ðrÞ�zðrÞ�; ð24aÞ

’ðrÞ ¼ �k�!ðrÞ�zðrÞ: ð24bÞ

�z is the projected thickness of an optical element along the

z-axis. We define the index of refraction as n! = 1 � �! + i�!.

Optical errors can be simulated in a similar way (Laundy et al.,

2014; Celestre et al., 2020; Sanchez del Rio et al., 2020).

Refractive systems, like the lenses used in this work, are

calculated using the thin-object approximation with the lens

described by its profile and refraction index (material).

Usually, a single lens has a parabolic interface z = x2/(4R) with

R the radius at the apex. A lens has usually two parabolic

interfaces (front and back) separated by a lens thickness dL.

The interfaces are flat outside the lens aperture A. Therefore,

the lens thickness profile is

�zðxÞ ¼
ð1=2RÞ x2 þ dL; jxj < A=2;
ð1=2RÞðA=2Þ2 þ dL; jxj 
 A=2;

	
ð25Þ

used to compute the complex transmission with equation (22).
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Reflective optics can also be reasonably well approximated

by transmission elements with more complex calculations, e.g.

stationary-phase methods [application of equation (20) over

the mirror surface], geometric ray-tracing calculation of the

optical path difference (Canestrari et al., 2014) or even multi-

slicing (Li et al., 2017). Alternatively, 1D wavefronts can be

easily propagated in grazing-incidence mirrors and gratings

calculating directly the numeric integral in equation (20)

(Raimondi & Spiga, 2015; Sanchez del Rio et al., 2020).

4. Description of the optical system

The optical system under consideration is based on the future

‘EBSL1’ beamline at ESRF.6 This will be a long beamline

(200 m) for applications exploiting the beam coherence. The

source considered is an undulator with 138 periods of 18 mm

(length close to 2.5 m). We analyze a focusing system with two

transfocators, at 65 and 170 m from the source. They contain

sets of 2D and 1D lenses that will permit modifying inde-

pendently the focal lengths for the horizontal and vertical

directions. The use of two transfocators allows great flexibility

in beam transport (Vaughan et al., 2011). The first one can be

used to modify the divergence of the beam, even to collimate

it, to guarantee a full illumination at the second transfocator.

Each of the two transfocators in use (T1 and T2 in Fig. 2)

are idealized as two crossed 1D Be lenses. For each plane

(H and V), lens-1 and lens-2 have variable curvature radii R1

and R2 that match the focal distances f1 and f2 ( f = R/2�), with

� = 6.96� 10�6 for Be at 7 keV. The focal lengths for the lenses

are different for the horizontal and vertical directions to adapt

to the beam characteristics. A slit (CS in Fig. 2) of aperture ax

in the horizontal and ay in the vertical is placed upstream of

the lens-1. We set the distances matching the requirements of

the EBSL1 beamline (see Fig. 2), and we analyzed the system

at a photon energy of 7 keV for different focal distances of

lens-1 and lens-2.

We are interested in the beam properties (intensity distri-

bution, size, flux) at the sample plane for four cases. The first

case is selected to obtain a small spot (about 5 mm) and the

second one a large spot (more than 30 mm). For these

cases, the slits are selected to match CFx = CFy = 90% for a

photon energy of 7 keV. The values are shown in Table 1.

Cases 3 and 4 follow the same logic but the slits are opened

to increase intensity at the expense of reducing coherence

(CFx = CFy = 70%).

5. Results and discussion of multi-optics simulations

Calculations are done using the four different methodologies

discussed previously, implemented in four different add-ons of

the OASYS ecosystem.

5.1. Source characteristics and its propagation to the
entrance slit

We first calculated the source and the illumination at the

entrance slit plane (z = 36 m). The spectral density calculated

with the different codes is shown in Fig. 3. The distributions

calculated by the different methods are close with differences

in full width at half-maximum (FWHM) of less than 10%.

The CSD can be calculated using wave optics codes. Figure 4

shows the horizontal and vertical W1D at the source plane

calculated with SRW-ME and WOFRY1D. Again, an excellent

agreement is found, with similar FWHM of the profiles

crossing (0, 0) [9 mm for both codes in the horizontal (H) and

12 mm in the vertical (V)].

Figure 5 shows the horizontal and vertical DoC

at the slit plane expressed in the new coordinates (�xx;�x) =

[(x1 + x2)/2, x2� x1] (for the horizontal, similarly with y for the

vertical). The interest in using these coordinates is to redress

the plot of the CSD that lies on a diagonal (as shown in Fig. 4)

and obtain the ‘coherent length’ (CL) as a ‘width’ of the

research papers

J. Synchrotron Rad. (2022). 29, 1354–1367 Manuel Sanchez del Rio et al. � Partially coherent beamline simulations 1361

Figure 2
Schematic view of the beamline with the distances used in the simulations. The source is the undulator u18 set to K = 1.851 (7 keVat first harmonic). CS is
the coherence slit that controls the coherent fraction. DCM is the double-crystal monochromator (not used in the calculations). T1 and T2 are the two
transfocators, idealized in single parabolic lenses. The observation plane (sample) is 200 m from the source.

Table 1
Configurations selected for 2D simulations.

The slit aperture (ax and ay) is selected for obtaining CFx = CFy = 90% in cases
1 and 2, and CFx = CFy = 70% in cases 3 and 4.

Case h/v ax,y (mm) f1 (m) f2 (m) R1 (mm) R2 (mm)

1h 40.3 46.1 26.5 641.9 369.5
1v 227.0 15.0 22.2 209.4 309.6
2h 40.3 25.1 21.3 349.1 296.3
2v 227.0 42.2 55.6 588.6 775.3
3h 85.1 46.1 31.8 641.9 443.7
3v 506.7 85.2 27.8 1187.4 387.6
4h 85.1 25.1 20.7 349.1 288.7
4v 506.7 42.2 55.7 588.6 776.0

6 Throughout this work we have used the following values of electron beam
sizes at the centre of the straight section: �x = 29.7 mm, �x0 = 4.37 mrad, �y =
5.29 mm, �y0 = 1.89 mrad, corresponding to beam emittances: �x = 130 pm rad,
�y = 10 pm rad, and beta functions �x = 6.8 m, �y = 2.8 m.



modulus of the DoC versus �x at �xx = 0. If using the FWHM,

we obtain a horizontal CL of 76 mm with WOFRY1D and

80 mm with SRW-ME and a vertical CL of 444 mm with

WOFRY1D and 402 mm with SRW-ME. A naive application of

the van Cittert–Zernike theorem for a source with a Gaussian

intensity profile permits the calculation of the coherence

length (the FWHM of the Fourier transform of the source

intensity profile) as CL = 0.88�z/S, with z the source–obser-

vation plane distance, and S the source FWHM. In our case

[z = 36 m, source FWHM 70.6 mm (H) and 15.0 mm (V), and

� = 1.77 � 10�10 m] it gives CL = 79 mm (H) and CL = 374 mm

(V). The (rough) agreement of the values from the van

Cittert–Zernike theorem (corresponding to a fully incoherent

source) with our numerical values (for the partially coherent

beam) is justified by the fact that z is large enough to lie in the

z-range where the CL is linear [see discussion and Fig. 17 of

Geloni et al. (2008)].

It is worth mentioning that the modulus of the DoC (and

therefore the CL) is obtained experimentally by measuring

the interference of the two beams originated by a double-slit

(Thompson & Wolf, 1957). Examples of this type of experi-

ment with synchrotron radiation are presented elsewhere

(Chang et al., 2000; Paterson et al., 2001; Leitenberger et al.,

2003; Tran et al., 2005). We performed simulations with

WOFRY1D placing two slits of 2.5 mm with horizontal

separation sA in the plane at z = 36 m, and propagating the

resulting two beams to z = 46 m. The results are shown in

Fig. 6(a), where it can be appreciated that the visibility of the

fringes decreases when increasing sA. For a given sA, the

intensity profile [e.g. Fig. 6(b)] is used to compute the visibility

V = hImax � Imini=hImax þ Iminiwhich is equal to the modulus

of the DoC. We then obtained the visibility V versus the slit

separation sA that gives (as expected) the same values as the

modulus of DoC versus x2 � x1 in Fig. 5 [see Fig. 6(c)].

The principal role of the slit is to control the beam coherent

fraction. Closing the slit will increase the CF, with an obvious

research papers

1362 Manuel Sanchez del Rio et al. � Partially coherent beamline simulations J. Synchrotron Rad. (2022). 29, 1354–1367

Figure 4
Cross-spectral density at the source plane (z = 0) calculated by
WOFRY1D and SRW-ME for the horizontal (top row) and vertical
(bottom row) directions. The profiles correspond to the lines passing
through (0, 0).

Figure 3
Spectral density at the slit plane (36 m from source) calculated by the four
codes in use. The profiles correspond to the lines passing through (0, 0).

Figure 5
Modulus of the spectral degree of coherence at the slit plane (z = 36 m)
calculated by WOFRY1D and SRW-ME for the horizontal (top row) and
vertical (bottom row) directions. The profiles correspond to the lines
passing through (0, 0).



decrease in integrated intensity. The slit aperture necessary to

obtain a ‘good’ coherence is somehow related to the CL, but

quantitative values are better calculated using the CF versus

the slit aperture. Within the CMD theory, this requires

calculating coherent modes after the slit, which can be easily

done with WOFRY1D (see Fig. 7). From the CF versus slit

aperture plot, one can pick the aperture values to match the

desired CF (we selected 90% or 70% values of CF to select slit

apertures in Table 1), and at the same time estimate the losses

in flux.

5.2. Image at sample position

The intensity distribution at the sample plane is displayed

in Figs. 8(a)–8(d), for results using the WOFRY1D, COMSYL,

SRW-ME and HYBRID codes. Beam dimensions are obtained

by calculating the FWHM from the intensity distribution in

one direction, resulting from integration along the other

direction. They are displayed in the plots and summarized in

Table 2. The results for case 1 show a horizontal profile mostly

triangular with shoulders that evidence small diffraction

fringes. The fringes are more resolved in the vertical direction.

Case 2 presents in the horizontal a soft Gaussian-like profile,

but in the vertical important symmetric shoulders are visible.

Case 3 shows a smooth Gaussian profile in the horizontal and

a small shoulder with fringes in the vertical. Case 4 shows a

conventional smooth profile in the horizontal but an original

three-lobe plateau in the vertical. This variety of profile

distribution demonstrates how relevant the diffraction effects

are, which modulate the beam shape in a non-trivial way.

The WOFRY1D results are shown in Fig. 8(a). The 1D

intensity profile for each direction is obtained from the

summation of several modes. High modes have very low

eigenvalues. It is sufficient to consider only ten modes for

accounting for more than 99% of the spectral density. The

2D intensity distribution shown in Fig. 8(a) is obtained by

combining the calculated horizontal and vertical 1D profiles

via the outer product. We can observe in the intensity distri-

butions the same structures due to the diffraction effects as

those observed with the other calculation methods. The beam

profiles calculated, obtained with COMSYL and propagated

with WOFRY, are shown in Fig. 8(b). SRW-ME results

are given in Fig. 8(c). The good convergence of the values

displayed is guaranteed by a convergence analysis described in

Section S5. Hybrid ray-tracing for the four cases defined in

Table 1 are shown in Fig. 8(d). The obtained intensity distri-

butions are less structured than those calculated with the

other wave-optics methods (e.g. the three-lobe plateau in case

4v is not reproduced). However, the FWHM values agree with

full wave-optics calculations for most cases [except for two

particular cases: 1h (HYBRID 17.3 mm, WOFRY1D 8.5 mm)

and 2v (HYBRID 74.0 mm, WOFRY1D 32.4 mm)]. They will be

discussed in the next section.
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Figure 7
Coherent fraction (blue) and normalized integrated intensity (green)
versus aperture for the horizontal (solid) and vertical (dotted) directions
calculated by WOFRY1D at 7 keV.

Figure 6
Simulation of beam propagation after a double-slit at 7 keV: (a) pattern
intensity IðxÞ at z = 46 m versus the separation sA between the slits.
(b) Intensity profile Iðx; z = 46 m) for slit separation s = 29.3 mm.
(c) Modulus of the degree of coherence calculated from the profiles of
Fig. 5 (top row), compared with the value obtained from the visibility
extracted from (a).



The agreement between the results of WOFRY1D in

Fig. 8(a) and SRW-ME [Fig. 8(c)] is striking. All intensity

distributions reproduce the same features, and the differences

in FWHM values are less than 12%, a value that is compatible

with the errors of the simulations. This result validates the

1D CMD method proposed here, whose requirements in

computer power are extremely low (it runs very fast on an

average laptop).

The numeric value for sizes calculated with the different

methods (Table 2) depends not only on the code itself but also

on the particular specific parameters in each method (number

of pixels for sampling wavefronts, propagation parameters,

etc.). To estimate the calculation error in the final size

numbers, we vary randomly these specific parameters over a
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Table 2
Comparison of sizes (FWHM, in mm) calculated with different methods
for the cases defined in Table 1.

Numbers in brackets are the values for the fully coherent beam (single
electron with SRW, first coherent mode with COMSYL/WOFRY, and zero
emittance with HYBRID).

Case h/v WOFRY1D COMSYL SRW-ME HYBRID

1h 8.5 (8.1) 10.0 (9.9) 8.6 (7.5) 17.3 (17.5)
1v 4.8 (4.8) 4.7 (5.1) 4.6 (4.6) 3.3 (3.1)
2h 39.9 (38.2) 39.5 (39.5) 40.0 (36.1) 39.9 (37.5)
2v 32.4 (29.6) 30.6 (29.3) 34.4 (29.6) 74.0 (75.3)
3h 37.5 (29.0) 36.6 (28.1) 40.3 (28.4) 43.3 (33.0)
3v 6.1 (4.9) 6.4 (5.7) 6.3 (4.6) 6.5 (5.8)
4h 24.6 (19.1) 26.1 (18.6) 27.4 (18.0) 27.1 (18.8)
4v 133.7 (110.3) 111.7 (90.4) 137.4 (132.0) 150.2 (159.8)

Figure 8
Calculations of the intensity distribution at the sample plane for the cases listed in Table 1.



reasonable range (e.g. 10%). The dispersion (standard devia-

tion) of the sizes obtained is a good estimator of the error

in this parameter. This exercise would take considerable

computational effort using 2D methods, but it can be easily

done with WOFRY1D. We run 200 cases with 10% random

variation in the number of pixels and zoom factor for drift

spaces. The obtained sizes (horizontal � vertical) are

8.49 � 0.60 mm � 4.97 � 0.37 mm (case 1), 39.94 � 2.98 mm �

32.77 � 2.69 mm (case 2), 36.39 � 2.89 mm � 6.12 � 0.51 mm

(case 3), and 24.18 � 1.80 mm � 133.44 � 10.06 mm (case 4).

We confirmed that the values given in Fig. 8(a) are within

these error intervals.

The calculated beam sizes should be completed with flux. At

7 keV, the undulator in the selected configuration emits a

flux of 1.5 � 1015 photons s�1 (0.1% bandwidth)�1. Each of

the three elements studied (slit, lens-1 and lens-2) absorbs part

of the flux. The estimation of the absorption by the slit can be

done using simple geometrical arguments, and the absorption

by the lenses depends on the average Be thickness presented

to the beam. The linear attenuation coefficient of Be at 7 keV

is	 = 3 cm�1, giving 1.45% attenuation for a 50 mm-thick layer

(like the lens thickness used in the simulations7). From the

simulated data we extracted the absorption for the different

absorbing elements (slit, lens-1 and lens-2) (see Table 3). We

note a high absorption in lens-2 in cases 1 and 3; this is because

lens-2 is over-illuminated, therefore the 1 mm physical aper-

ture absorbs the beam considerably.

5.3. Computer resources

COMSYL requires high-performance computing to

perform full CMD of the undulator beam, by solving the

Friedholm problem and obtaining the full 2D eigenfunctions

(coherent modes) and eigenvalues. The simulation of the

source with COMSYL used to calculate Fig. 8(b) took 55 min

using 28 � 3.30 GHz CPUs of 251.82 GB RAM, for getting

174 modes of 1691 � 563 pixels. The modes calculated by

COMSYL were propagated with WOFRY in the OASYS

environment (Rebuffi & Sanchez del Rio, 2017). The propa-

gation used the 2D zoom propagator (see Section S3) and the

optical elements described in Section 3.

The good convergence of the SRW-ME results in Fig. 8(c) is

guaranteed by a convergence analysis described in Section S5

of the supporting information. It was used to determine the

minimum number of electrons that produce accurate results.

The SRW-ME simulations for the cases analyzed converge

with only a few thousand electrons in a node with 28 CPUs

totalizing 256 GB. This is because the beam after the slit has a

relatively high CF.

Concerning running times, the simulations with the new

WOFRY1D code run in a few seconds on a laptop. HYBRID

also requires light computer resources and also runs on a

laptop. The simulation of the full CMD with COMSYL

required about 1 h with 28 cores. The source is then reused for

propagating the different configurations. SRW-ME required a

full source simulation for each configuration that also runs in

about 1 h with 5000 electrons in a similar cluster.

5.4. Further simulations

The simulations presented, motivated by the EBSL1

project, use a simplified optical layout. They are used to

validate the WOFRY1D tool before proceeding with further

analyses.

A systematic and exhaustive study has been carried out

using WOFRY1D for the new EBSL1 beamline also including

other optical elements not considered here and multiple

transfocator configurations. It is important to match correctly

the two transfocators to guarantee that the focal point is

located at the sample plane. Heat load deformation must be

controlled at the white-beam mirrors and also at the mono-

chromator. For that, the deformations calculated by finite-

element methods are used in WOFRY1D for assessing the

optical impact, as we did previously (Sanchez del Rio et al.,

2020). It is imperative to study the effect of mirror slope errors

and surface errors at the lenses [as described by Celestre et al.

(2020)]. These results will be described elsewhere.

6. Summary and conclusions

We presented in Section 2 the theory of partially coherence

optics applied to undulator radiation and its implementation

in two different solutions: (i) Monte Carlo multi-electron

simulations as implemented in SRW-ME and (ii) coherent

mode decomposition as implemented in COMSYL and in the

new package WOFRY1D. The key point of WOFRY1D is that

it needs very scarce computer resources. The factorization of

the CSD in two directions (horizontal and vertical) is possible
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Table 3
Comparison of beam intensity attenuation in percent by the slit, lens-1 and lens-2 for the partially coherent beam for the four cases studied.

The WOFRY1D data shown here come after combining the horizontal and vertical wavefronts using the outer product. Each profile corresponds to the intensity
integrated along its perpendicular direction.

Slit Lens-1 Lens-2

Case WOFRY1D SRW-ME HYBRID WOFRY1D SRW-ME HYBRID WOFRY1D SRW-ME HYBRID

1 97.6 97.6 97.2 7.9 7.6 5.2 50.7 51.1 52.6
2 97.6 97.6 97.2 7.0 6.6 4.3 3.9 3.7 3.3
3 89.5 90.2 88.6 6.3 6.1 4.6 23.4 21.8 25.2
4 89.5 90.2 88.6 8.0 7.7 6.2 3.8 3.6 3.6

7 In the simulations, the horizontal and vertical focusing are separated in two
lenses, with accumulated thickness 100 mm thus absorption 3%.



in many cases of major interest when the undulator is tuned

close to odd-harmonic resonances, and when the horizontal

and vertical emittances of the storage ring are not the same

(i.e. non-round beams, as for the low-emittance storage ring

EBS-ESRF). Section 3 summarizes the propagation of wave-

fronts along empty drift spaces and thin objects, which include

the elements used in our simulations: slits and X-ray lenses.

We studied a particular case of focusing a partially coherent

beam produced by an undulator in EBS-ESRF by a system of

two transfocators (implemented as single parabolic lenses).

This case is of interest to the new EBSL1 beamline being

constructed at the ESRF. The combined effect of beam

diffraction at the slit and global focusing by the two lenses

produces images with a variety of intensity profiles (see Fig. 8).

We included HYBRID ray-tracing results as this method can

be used in the first simulation phase and produces approxi-

mated values of beam sizes and flux.

We have verified that simulations with the new WOFRY1D

code are consistent with the other three simulation codes

typically used to simulate synchrotron beamlines. A remark-

able agreement is found between WOFRY1D and SRW-ME

for the functions that describe partial coherence (CDS, DoC

and CL) (see Figs. 4 and 5). We further used WOFRY1D to

discuss the coherent fraction versus slit aperture (Fig. 7) and

to verify that the modulus of the DoC is consistent with the

results of a (simulated) experiment of two-beam interference

(Fig. 6).

Partial coherence calculations using 2D wavefronts are

expensive from the computation point of view, either because

many thousands of wavefronts are propagated (like in SRW-

ME) or because of the need to diagonalize an extremely large

4D cross-spectral function (like in COMSYL). The newly

developed coherent mode decomposition uses 1D wavefronts

and is very rapid and light. It can run interactively on a laptop.

This opens new paths for intensive simulations of experiments

using partially coherent beams, in particular for imaging

applications or beamline optimization, where thousands of

runs are necessary. It can also serve as a simulation engine for

systems exploiting machine learning or for digital twins of

beamline instruments.

The software tools developed here are available in the

WOFRY add-on of the OASYS suite (Rebuffi & Sanchez

del Rio, 2017). The OASYS workspaces and scripts for the

simulations performed in this work are also available from

https://github.com/oasys-esrf-kit/paper-multioptics-resources.

7. Related literature

The following references, not cited in the main body of the

paper, have been cited in the supporting information: Chubar

(2021); Chubar & Celestre (2019); Cowley & Moodie (1957);

He et al. (2020); Pirro (2017); Schmidt (2010).
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