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S1. Wavefront propagation in free-space

Under the scalar theory, a generic wavefront obeying the wave-equation and completely

described at a position z, that is, Eω(r) known for all the xy−plane will propagate

(evolve) between two parallel planes separated by a distance L = z′ − z as:

Eω(r
′) =

k

2πi

∫
Σ

Eω(r)
exp (ik|r′ − r|)

|r′ − r|
cos θ ds. (1)

Equation (1) is the first Rayleigh-Sommerfeld diffraction equation (Huygens-Fresnel

principle) and is valid for the case where |r′ − r| ≫ λ, with λ = 2π
/
k. We define a

normal vector parallel to the optical axis (z−axis) ℓ⃗ so that θ is the angle between

−ℓ⃗ and the vector r′ − r; Σ is the xy−plane in z where the integration takes place

with ds = dxdy. Further simplification to equation (1) can be done using the paraxial

approximation. In this case, it is assumed that cos θ ≈ 1; and that the term |r′ − r| =√
(x′ − x)2 + (y′ − y)2 + L2 can be expanded in a Taylor series with L2 ≫ (x′ − x)2

and L2 ≫ (y′ − y)2. Retaining the quadratic term in the exponential function, but

dropping it for the denominator:

Eω(r
′) =

k exp (ikL)

2πiL
·

·
∫
Σ

Eω(r) exp

{
ik

2L

[
(x′ − x)2 + (y′ − y)2

]}
ds.

(2)

This approximation is known as the Fresnel diffraction integral.



S2. The SRW propagators

The SRW propagators are grouped into three main methods for 2D wavefront propaga-

tion (Chubar, 2021). The first main method lies under the “standard Fresnel propaga-

tor”, which can be implemented as (a) direct numerical calculation of the convolution

integral in equation (2) by means of nested Riemann summations; or (b) through the

application of the convolution theorem:

Eω(r
′) =

k exp (ikL)

2πiL
Eω(r) ∗ exp

{
ik

2L

[
(x′)2 + (y′)2

]}
= exp (ikL)F−1

{
F{Eω(r)}F{h(r′)}

]
}

= exp (ikL)F−1
{
F{Eω(r)} exp

[
− iπλL

(
f2x + f2y

)]
},

(3)

where F{•} is the two-dimensional Fourier transform (FT) and F−1{•} denotes

inverse FT. This second approach is efficiently implemented in SRW using only two

fast Fourier transforms (FFTs) because the kernel h(r′) has an analytical Fourier

transform. Downsides to the FFT-based implementation include the heavy sampling

needed to avoid aliasing and also necessary in order to resolve small features in the

propagated wavefront Eω(r
′), since the application of equation (3) limits the range

and sampling in the output plane to those of the input plane Eω(r) (Kelly, 2014). The

interest in having a direct- and a reciprocal-space implementation of equation (2) is

summarised in Fig. 1 from (Li & Jacobsen, 2015).

A second family of propagators is obtained by the analytical treatment of the

quadratic radiation phase term in equation (2), which allows for considerable econ-

omy of memory and CPU resources as compared to the standard Fresnel free-space

propagator (Chubar & Celestre, 2019). Without losing generality, we assume that the

electric field Eω(r) has a quadratic phase term defined by the wavefront curvature

radii (Rx, Ry) centred at (x0, y0):

Eω(r) = Fω(r) exp

{
ik

2

[
(x− x0)

2

Rx
+

(y − y0)
2

Ry

]}
. (4)



Plugging equation (4) into equation (2) and collecting terms:

Eω(r
′) =

k exp (ikL)

2πiL
exp

{
ik

2

[
(x′ − x0)

2

Rx + L
+

(y′ − y0)
2

Ry + L

]}
·

·
∫
Σ

Fω(r) exp

{
ik

2L

[
Rx + L

Rx

(
Rxx

′ + Lx0
Rx + L

− x

)2

+

+
Ry + L

Ry

(
Ryy

′ + Ly0
Ry + L

− y

)2]}
ds.

(5)

Much like equation (2), equation (5) is a convolution type integral that not only

can be computed using the convolution theorem, but also has an analytical Fourier

transform of its kernel. We draw attention to the fact that the convolution is done

regarding scaled coordinates:

r̂ = (x̂, ŷ) =

(
Rxx

′ + Lx0
Rx + L

,
Ryy

′ + Ly0
Ry + L

)
, (6)

Equation 5 can, then, be calculated as:

Eω(r
′) = exp (ikL)·

· exp
{
ik

2

[
(x′ − x0)

2

Rx + L
+

(y′ − y0)
2

Ry + L

]}√
RxRy

(Rx + L)(Ry + L)
·

· F−1

{
F{Fω(r)} exp

[
− iπλL

(
Rx

Rx + L
f2x +

Ry

Ry + L
f2y

)]}
,

(7)

which is of particular interest because the application of the convolution theorem

implemented with FFTs yields a natural rescaling of the ranges of the output plane

[see Fig. 1 in (Chubar & Celestre, 2019)]. Padding with zeros and resampling the input

field in order to obtain reasonable results in the output plane are less often necessary

than when dealing with the formulation in equation (3). This propagator, by far the

most versatile in SRW, is presented to the user as two separate methods that differ

on the estimation of the wavefront curvature Rx and Ry and on the processing near

the beam waist (Rx ≈ −L and Ry ≈ −L).

Two less general propagators form the third family of methods proposed by SRW.

The first one is based on the Fraunhofer approximation of equation (2) and is used



for wavefront propagation over a very large distance (far field):

Eω(r
′) =

k exp (ikL)

2πiL
exp

[
i
k

2L
(x′2 + y′2)

]
·

·
∫
Σ

Eω(r) exp

[
− i

2π

λL

(
x′x+ y′y

)]
ds.

(8)

The integral in equation (8) is a Fourier transform of the field Eω(r) with spatial

frequencies given by fx = x′
/
λL and fy = y′

/
λL. Its implementation in SRW is done

using a single FFT. A second propagator based on a single FFT is implemented to

cover the case of a focusing wavefront being propagated over some distance to the

beam waist. A converging wavefront written as Eω(r) = Fω(r) · exp [−i k
2q (x

2 + y2)]

plugged into equation (2) yields:

Eω(r
′) =

k exp (ikL)

2πiL
exp

[
i
k

2L
(x′2 + y′2)

]
·

·
∫
Σ

Fω(r) exp

[
− i

2π

λL

(
x′x+ y′y

)
+

+i
k

2L
(x2 + y2)− i

k

2q

(
x2 + y2)

]
ds,

(9)

where q is the distance from the input plane to the beam waist. When the wavefront is

propagated to the the image plane, that is, L = q, the integral in equation (9) assumes

the formalism of a Fourier transform with fx = x′
/
λq and fy = y′

/
λq.



S3. The WOFRY propagators

The WOFRY propagators can be used to propagate any arbitrary wavefront gener-

ated within this software and in particular, the 1D and 2D coherent modes described

in the main paper. Like SRW, WOFRY offers the standard Fresnel propagator using

2 FFTs [equation (3)] and the Fraunhofer approximation calculated with one FFT

[equation (8)]. Both propagators are available in 1D and 2D implementations. To

overcome the issues with the output plane range when applying the convolution theo-

rem for the Fresnel propagator, WOFRY offers an implementation based on works by

Schmidt (2010) and Pirro (2017) that permits scale of the output plane range while

retaining the possibility of calculation by means of the convolution theorem. Let mx

and my be magnification factors for the output plane range and:

(x′ − x)2 = mx

(
x′

mx
− x

)2

+

(
mx − 1

mx

)
x′2 + (1−mx)x

2

(y′ − y)2 = my

(
y′

my
− y

)2

+

(
my − 1

my

)
y′2 + (1−my)y

2,

(10)

that we use in equation (2):

Eω(r
′) =

k exp (ikL)

2πiL
exp

{
i
k

2L

[(
mx − 1

mx

)
x′2 +

(
my − 1

my

)
y′2

]}
∫
Σ

Fω(r) exp

{
− i

k

2L

[
mx

(
x′

mx
− x

)2

+my

(
y′

my
− y

)2]}
ds

(11)

with:

Eω(r) = Fω(r) exp

{
i
k

2L

[
(1−mx)x

2 + (1−my)y
2
]}
. (12)

Equation (11) is a convolution between Fω(r) and a kernel with reduced scaled r̂ =

(x̂, ŷ) =
(
x′
/
mx, y

′/my

)
. This kernel has an analytical Fourier transform and the



application of the convolution theorem with two FFTs is possible:

Eω(r
′) =

exp (ikL)
√
mxmy

exp

{
i
k

2L

[(
mx − 1

mx

)
x′2 +

(
my − 1

my

)
y′2

]}
·

· F−1

{
F{Fω(r)} exp

[
− iπλL

(
f2x
mx

+
f2y
my

)]}
.

(13)

Note that when mx = 1 and my = 1 we recover equation (2) and equation (3). A 1D

version of this “zoom” propagator is also available in WOFRY.

For the cases where accuracy should be privileged over execution time, a 1D paraxial

version of the Rayleigh-Sommerfeld integral where cos(θ) = 1 is also implemented

in WOFRY. Similarly to the direct numerical calculation of the Fresnel diffraction

integral, the 1D version of equation (1) is implemented as a Riemann summation

(Sanchez del Rio et al., 2020).



S4. Transmission Elements

Consider an arbitrary-shaped scattering volume. Suppose that such scatterer is com-

pletely confined within a region z0 ≤ z ≤ z1 and outside that there is vacuum. Let

this sample be illuminated by a plane-wave moving along the positive direction of the

optical axis (z−axis). In the absence of the scatterer, the gradient between the z = z0

and z = z1 planes is very well defined and parallel to the optical axis. It follows [§2.2

in (Paganin, 2006)] that if the scatterer is sufficiently weak as to minimally disturb

the path that the wave-field would have taken in its absence, the transmission of a

wave-field through this sample is given by:

Eω(x, y, z1) ≈ exp

{
− ik

2

z=z1∫
z=z0

[
1− n2ω(x, y, z)

]
dz

}
Eω(x, y, z0). (14)

Equation (14) shows that the effect of a weak scatterer can be accounted for by a

multiplicative complex transmission element represented by the complex exponen-

tial. In the X-ray regime the index of refraction is typically very close to unity

and often expressed as nω = 1 − δω + i · βω, which allows for the approximation

1−nω(x, y, z)2 ≈ 2
[
δω(x, y, z)−i ·βω(x, y, z)

]
that can be substituted in equation (14).

The z−dependence of δω and βω is abandoned in the projection approximation, hence

the complex transmission element in equation (14) can be reduced to:

T(x, y, z) = exp

{
− ik

z=z1∫
z=z0

[
δω(x, y) + i · βω(x, y)

]
dz

}

= exp

{
− ik

[
δω(x, y) + i · βω(x, y)

]
∆z(x, y)

}
. (15)

∆z is the projected thickness along the z−axis and it depends on the transverse

coordinates (x, y), which can be dropped out for a more concise representation.

For the cases where the projection approximation may not be adequate to correctly

represent the scattering volume in question, multi-slicing techniques1 can be used for

1This technique was first described in the context of the scattering of electrons by atoms and crystals
(Cowley & Moodie, 1957).



describing the wave-field propagation inside an arbitrary-shaped scattering volume [see

discussion in §2.7 in (Paganin, 2006), (Li et al., 2017) and (Munro, 2019)]. Consider

again an arbitrary-shaped scattering volume. If its presence considerably disturbs the

path that the wave-field would have taken in its absence. It is possible to section the

sample into a number N of parallel slabs until the projection approximation is valid

between two adjacent slices. The projected thickness ∆z to be used in equation (15)

is the one in between slices, which are ∆S = (z1 − z0)
/
N apart from each other.

Each slice represented as a thin element in projection approximation is separated

by vacuum. The propagation of a wave-field through this sample is done step-wise,

where each step is composed of multiplication by a complex transmission element

in projection approximation and a free-space propagation over a distance ∆S . The

output field from this operation is again multiplied by a complex transmission element

in projection approximation followed by a free-space propagation from the plane ψj

to the ψj+1. This operation is done recursively N times until the wave-field emerges

from the sample.



S5. Some considerations on partially-coherent calculations using SRW’s
macro-electrons & simulation convergence

The convergence of the SRW-ME method is based on the finesse with which the

distribution f(S) is sampled (Eq. 4 in the main paper). While an exquisitely large

number of me’s will lead to a more accurate simulation, the resulting calculation

would be very long and impossible to be performed on personal computers within a

reasonable time even if performed in parallel. The number of me’s depends on the

overall beamline degree of coherence at the observation plane, which is impacted by

the source coherent fraction and beamline overall transmission (e.g. slits, creation

of secondary sources or any other spatial filtering scheme). Special attention to the

number of macro-electrons should be given if the simulation accounts for vibrations in

the beamline elements or broad-band radiation (e.g. pink beam or radiation filtered

by multi-layer monochromators).

To illustrate the effect of the number of macro-electrons on the beam profile we

choose the studied cases 1 and 3 from the section 5 in the main paper - due to their

CF, cases 2 and 4 are expected to have the same convergence as 1 and 3, respectively.

Both systems 1 & 3 (and 2 & 4) have the same X-ray source and are illuminated

up until the slits (36m downstream U18) by the same beam, differing mainly by the

coherent fraction selected for the rest of the beamline with case 1 having a higher CF

than case 3 - refer to Table 1 for the complete simulation parameters. The results for a

selected number of me’s are shown in Figs. S1 and S2. The 1 me simulation represents

the filament-beam source, where the electron beam emittance is negligible and the fully

spatial coherence is assumed - this is often called a “single electron simulation”. On the

other extreme, an exaggerated value of 100k me′s is chosen as a way of guaranteeing

convergence by brutal force. Two criteria are used to evaluate the convergence of

the simulations: the beam shape and peak intensity stabilisation. The profile cuts in



Fig. S1a-b and Fig. S2a-b show that the profile shape starts to converge to that of a

100k me′s after ∼500 macroelectrons for case 1 and ∼1k macroelectrons for case 3.

Beyond that, it is necessary to resort to the relative error standard deviation and the

peak intensity stabilisation. Fig. S1c-d and Fig. S2c-d show that for both cases, the

convergence happens between 2k and 5kme′s. Further increase in the number of macro

electrons does not translate into improvements in the simulations (see simulations for

10k me′s onward), but increase greatly the cost of the calculation as shown in Fig. S3.

For the work presented here a good compromise between accuracy and efficiency of

the calculations is reached at 5k me′s. Other factors contributing to the total elapsed

simulation time and overall parallel performance of SRW-ME method are presented

in §3.3 from (He et al., 2020), but these do not impact the SRW-ME convergence.

It is important to note that this large scan procedure is merely illustrative. Usually,

an experienced optical designer starts with a good guess of the necessary number

of me′s based on the characteristics of the source (degree of coherence) and optical

system (transmission and expected degree of coherence at the observation plane). This

choice usually includes considerations of time and resource consumption. If there are

signs that the choice may be too low, further attempts with higher me′s should be

done. If the simulation looks fine from the first guess, reducing the number of me′s

is also interesting as very often it is necessary to repeat the simulations (eg. testing

different configurations, different energies, tolerancing or even different observation

planes). At the time of writing, the authors are unaware of any widespread metric

within the SRW’s community capable of giving the exact number of me’s necessary

for the convergence of the SRW-ME method other than the me′s scan. We welcome

the discussion on SRW-ME convergence and we encourage the reader to reach out

if they employ any interesting and reproducible convergence metric that is less time

(and resource) consuming.
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Fig. S1. Partially-coherent simulations convergence study: case 1. (a) horizontal and
(b) vertical intensity cuts at E=7 keV for me′s ranging from 1 to 100k. (c) errors
relative to the me′s =100k plots and (d) peak intensity.
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Fig. S2. Partially-coherent simulations convergence study: case 3. (a) horizontal and
(b) vertical intensity cuts at E=7 keV for me′s ranging from 1 to 100k. (c) errors
relative to the me′s =100k plots and (d) peak intensity.
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Fig. S3. Total elapsed time for partially-coherent simulations using a computer cluster
with 28 processors for parallel calculations as a function of the number of me′s.
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